首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular ligninolytic enzyme activities were determined in two white-rot fungi, Bjerkandera adusta and Lentinus squarrosulus. To investigate the activity of extracellular enzymes, cultures were incubated over a period of 20 days in nutrient rich medium (NRM) and nutrient poor medium under static and shaking conditions. Enzymatic activity was varied with media and their incubation conditions. The highest level of Aryl alcohol oxidase (AAO) was detected under shaking condition of both medium while Manganese peroxidase (MnP) activity was best in NRM under both conditions. AAO is the main oxidases enzyme in B. adusta while laccase plays important role in L. squarrosulus. MnP is the main peroxidase enzyme in both varieties.  相似文献   

2.
土壤污染的生物修复技术研究进展   总被引:7,自引:0,他引:7  
李章良  孙珮石 《生态科学》2003,22(2):189-191,141
土壤污染是当今面临的一个重要环境问题。常规的土壤污染治理技术,如物理及化学治理技术,由于其技术要求高或经济成本昂贵,对土壤结构的扰动破坏严重,因而对其大规模的推广应用存在较大问题。而生物修复技术已被证明是一项非常有应用前景的新技术,成为土壤污染治理研究领域的一个热点,本文综述了近年来有机物及重金属土壤污染的生物修复机理和研究进展,并对其治理技术的最新研究动态、存在问题及发展趋势做了初步的讨论。  相似文献   

3.
Abstract Four strains of white rot fungi, including two strains of Pleurotus sp., one Dichomitus squalens, and one Ganoderma applanatum, were grown on milled straw. After colonization of the straw by the fungi, sterile or nonsterile plugs of soil were added to the fungal substrates. The influence of the sterile soil and the indigenous soil microbiota on fungal growth, overall respiration, and production of ligninolytic exoenzymes was assessed. A method for extraction of laccase from soil samples was developed. Lignocellulose decomposition, and enzyme production of D. squalens were enhanced by the presence of sterile soil. The availability of inorganic compounds such as manganese may be a trigger for this stimulation. Neither growth nor the production of laccase and manganese peroxidase (MnP) of the Pleurotus strains was markedly affected by the soil microbiota. These fungi were highly competitive with the soil microbiota. It was demonstrated for the first time that the exoenzymes of such fungi are active in nonsterile soil. Enzyme activity in the aqueous phase of soil was high as in the aqueous phase of the straw substrate. D. squalens and G. applanatum did not withstand the competition with the soil microbiota, but the mycelia associated with straw were overgrown by soil microorganisms. Correspondingly, the fungi did not penetrate the soil, decomposition of lignocellulose was impeded, and the activities of laccase and MnP decreased dramatically. Received: 2 April 1996; Accepted: 7 June 1996  相似文献   

4.
The efficacy of indigenous microorganisms to degrade diesel oil in contaminated mainland sites in Singapore was investigated. A semi‐scale trial was made by spiking topsoil with 6 % [w/w] of diesel oil. The results indicated that in the presence of NPK commercial (Rosasol®) fertilizer a 53 % reduction in contaminant concentration was recorded after 60 days compared to untreated controls while the addition of a mixture of urea and K2HPO4 effected a 48 % reduction in the Total Recoverable Petroleum Hydrocarbons. A commercial culture and an enriched/isolated microbial association proved to be the least effective with 25 and 9 % reductions, respectively. The results confirmed the bioremediation potential of indigenous microorganisms for diesel‐oil contaminated mainland soil. Identification of the persistent compounds was done and perceived as a tool in decision‐making on strategies for speeding up of the degradation process to achieve clean‐up standards in shorter remediation periods.  相似文献   

5.
In the present study, butachlor (5, 10, 20, 40 and 80 ppm) induced toxicity in Nostoc muscorum and their degradation was evaluated. The dose of butachlor dependent decreased in the cell survival and growth of N. muscorum was noticed. Scanning electron microscopy revealed the adverse impact on the cell size and shapes. Low concentrations of butachlor (10 and 20 ppm) induced the over expression of a polypeptides of 31.0 K Da and 42.7 K Da, respectively which could be responsible for developing resistance in the organism up to certain level. Further, the degradation product of butachlor as a result of metabolic activities of N. muscorum, identified by GC-MS analysis includes phenols and benzene dicarboxylic acid indicating the utilization of herbicide during active growth.  相似文献   

6.
The ability of white rot fungi (WRF) and their lignin modifying enzymes (LMEs), i.e. laccase and lignin‐ and manganese‐dependent peroxidase, to treat endocrine disrupting chemicals (EDCs) is extensively reviewed in this paper. These chemicals cause adverse health effects by mimicking endogenous hormones in receiving organisms. The alkylphenolic EDCs nonylphenol, bisphenol A and triclosan, the phthalic acid esters dibutylphthalate, diethylphthalate and di‐(2‐ethylhexyl)phthalate, the natural estrogens estrone, 17β‐estradiol, estriol and 17α‐ethynylestradiol and the phytoestrogens genistein and β‐sitosterol have been shown to be eliminated by several fungi and LMEs. WRF have manifested a highly efficient removal of EDCs in aqueous media and soil matrices using both LME and non LME‐systems. The ligninolytic system of WRF could also be used for the elimination of several EDCs and the associated hormone‐mimicking activity. The transformation of EDCs by LMEs and WRF is supported by emerging knowledge on the physiology and biochemistry of these organisms and the biocatalytic properties of their enzymes. Due to field reaction conditions, which drastically differ from laboratory conditions, further efforts will have to be directed towards developing robust and reliable biotechnological processes for the treatment of EDC‐contaminated environmental matrices.  相似文献   

7.
The rate and efficiency of decolorization of poly R-478- or Remazol Brilliant Blue R (RBBR)-containing agar plates (200 μg g−1) were tested to evaluate the dye degradation activity in a total of 103 wood-rotting fungal strains. Best strains were able to completely decolorize plates within 10 days at 28 °C. Irpex lacteus and Pleurotus ostreatus were selected and used for degradation of six different groups of dyes (azo, diazo, anthraquinone-based, heterocyclic, triphenylmethane, phthalocyanine) on agar plates. Both fungi efficiently degraded dyes from all groups. Removal of RBBR, Bromophenol blue, Cu-phthalocyanine, Methyl red and Congo red was studied with I. lacteus also in liquid medium. Within 14 days, the following color reductions were attained: RBBR 93%, Bromophenol blue 100%, Cu-phthalocyanine 98%, Methyl red 56%, Congo red 58%. The ability of I. lacteus to degrade RBBR spiked into sterile soil was checked, the removal being 77% of the dye added within 6 weeks. The capacity of selected white rot fungal species to remove efficiently diverse synthetic dyes from water and soil environments is documented.  相似文献   

8.
An integrated system for the biotreatment of acidic wastewaters containing both toxic metals and organics is presented. It consists of two bioprocess stages (i) an anaerobic, SRB stage (containing alkaline‐tolerant s ulfate‐ r educing b acteria) that at pH 8 (chosen to acclimatize the bacteria in the biomedium) produces high concentrations of total sulfide ions (more than 400 mg/L) which are added to the wastewater to precipitate the heavy metals out at pH 2 as metal sulfides, and (ii) an aerobic, acidophilic stage containing heterotrophic bacteria (WJB3) that degrade organic xenobiotics. The anaerobic system was comprised of a 4‐L fluidized bed bioreactor with immobilized SRB, a mixing tank, and a precipitation tank. The effluent from the bioreactor with a high concentration of sulfide ions was fed into a mixing tank where model wastewaters containing toxic metals and phenol at pH 2 were also fed at increasing loading rates until free metal ions could be detected in the precipitation tank outlet. Then the effluent from the precipitation tank outlet was fed into a 2.5‐L aerobic bioreactor in which phenol was degraded. In this research, 100 % removal efficiencies were obtained with wastewaters containing more than 400 mg/L metal ions and 900 mg/L phenol at a 6‐h HRT of the mixing tank.  相似文献   

9.
Hexavalent chromium Cr(VI) is regularly introduced into the environment through diverse anthropogenic activities. It is highly toxic, mutagenic and carcinogenic, and because of its solubility in water, chromate contamination can be difficult to contain. Bacteria can reduce chromate to insoluble and less toxic trivalent chromium Cr(III), and thus increasing attention is paid to chromate bioremediation to reduce its ecotoxicological impacts. In this study, the factorial design 23 was employed to optimize critical parameters responsible for higher Cr(VI) removal by a bacterial consortium. The factors considered were pH, temperature, and inoculum size at two markedly different levels. All three dependent variables have significant effect on Cr(VI) reduction. Optimal Cr(VI) removal by the bacterial consortium occurred at pH 9, temperature 37°C, and inoculum size OD = 3. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) value of 0.984, thus ensuring a satisfactory adjustment of the second-order regression model with the experimental data. In addition, the effect of bioaugmentation of Cr(VI)-polluted soil microcosms with the bacterial consortium was investigated using the best factor levels. Contaminated soil by 20 and 60 mg/Kg of Cr(VI) showed reductions of 83% and 65% of initial Cr(VI) by the bacterial consortium, suggesting that this bacterial consortium might diminish phytoavailable Cr(VI) in soil and be useful for cleaning up chromium-contaminated sites.  相似文献   

10.
The aim of this study was to select a bacterial strain able to degrade 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT), and to use it for bioaugmentation in order to decontamination soil. Advenella Kashmirensis MB-PR (A. Kashmirensis MB-PR) was isolated from DDT contaminated soil, and the degradation ability of DDT by this strain in the mineral salt medium was screened by gas chromatography. The efficiency of degradation was 81% after 30 days of bacterial growth. The study of intermediary products during the degradation of DDT showed the appearance and accumulation of DDD and DDE, which emerged from the first days of the experiment. Other metabolites were detected at a lower number of chlorine atoms, such as DBH. DNA samples were isolated and screened for the linA gene, encoding dehydrochlorinase. The bioaugmentation by A. Kashmirensis MB-PR of polluted sterile soil showed that 98% of DDT disappeared after 20 days of experience. This study demonstrates the significant potential use of A. Kashmirensis MB-PR for the bioremediation of DDT in the environment.  相似文献   

11.
Biodegradation of lignin by Streptomyces spp. results in the production of value-added chemicals such as Acid Precipitable Polymeric Lignins (APPLs), low molecular weight phenols, etc. To hasten the conversion metabolism through genetic manipulation, a preliminary attempt was made to standardize the methodology for isolation and regeneration of protoplasts. Protoplast fusion recombinants were developed and assayed for their ligninolytic activity, production of ligninolytic enzymes viz., peroxidase, laccase, polyphenol oxidase and crude protein. In comparison with the mutants and wild strain, fusion recombinant F4 showed higher laccase activity and lower peroxidase activity. This attribute can be positively used for polymerization of free phenolics to polycondensates related to humic acids in soil or composting environments. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The white-rot fungus Pleurotus eryngii F032 showed the capability to degrade a three fused-ring aromatic hydrocarbons fluorene. The elimination of fluorene through sorption was also investigated. Enzyme production is accompanied by an increase in biomass of P. eryngii F032 during degradation process. The fungus totally degraded fluorine within 23 d at 10-mg l−1 solution. Fluorene degradation was affected with initial fluorene concentrations. The highest enzyme activity was shown by laccase in the 10-mg l−1 culture after 30 d of incubation (1620 U l−1). Few activities of enzymes were observed in the fungal cell at the varying concentration of fluorene. Three metabolic were detected and separated in ethylacetate extract, after isolated by column chromatography. The metabolites, 9-fluorenone, phthalic acid, and benzoic acid were identified using UV–vis spectrophotometer and gas chromatography–mass spectrometry (GC–MS). The results show the presence of a complex mechanism for the regulation of fluorene-degrading enzymes.  相似文献   

13.
Inorganic cyanide and nitrile compounds are distributed widely in the environment, chiefly as a result of anthropogenic activity but also through cyanide synthesis by a range of organisms including higher plants, fungi and bacteria. The major source of cyanide in soil and water is through the discharge of effluents containing a variety of inorganic cyanide and nitriles. Here the fate of cyanide compounds in soil and water is reviewed, identifying those factors that affect their persistence and which determine whether they are amenable to biological degradation. The exploitation of cyanides by a variety of taxa, as a mechanism to avoid predation or to inhibit competitors has led to the evolution in many organisms of enzymes that catalyse degradation of a range of cyanide compounds. Microorganisms expressing pathways involved in cyanide degradation are briefly reviewed and the current applications of bacteria and fungi in the biodegradation of cyanide contamination in the field are discussed. Finally, recent advances that offer an insight into the potential of microbial systems for the bioremediation of cyanide compounds under a range of environmental conditions are identified, and the future potential of these technologies for the treatment of cyanide pollution is discussed.  相似文献   

14.
为揭示AM真菌对宿主滨梅(Prunus maritima)的作用特点及对根部土壤酶活性的影响,于2009年4月、7月和10月分别从江苏傅家边丘陵山地滨梅根围分0~10、10~20、20~30、30~40、40~50 cm 5个土层采集土壤样品,观察滨梅AM菌根结构,测定了AM真菌侵染率、孢子密度、土壤磷酸酶、脲酶活性及有效磷、碱解氮含量,着重分析了AM真菌与土壤酶活性之间的关系。结果表明,滨梅能与AM真菌形成良好的共生关系,共生体为泡囊-丛枝结构;AM真菌侵染率和孢子密度分别在7月份和10月份最高,均出现在0~20 cm土层,并随土层加深而下降;AM真菌侵染率与土壤酸性磷酸酶、中性磷酸酶、碱磷酸酶活性显著正相关,而与脲酶活性无相关性;AM真菌孢子密度与碱性磷酸酶、脲酶活性呈极显著正相关关系;孢子密度与土壤有效磷、土壤碱解氮含量显著正相关,但AM真菌侵染率仅与土壤有效磷含量显著正相关;孢子密度与菌根侵染率之间无相关性。可见,滨梅AM真菌侵染率与孢子密度有明显的时空分布并与土壤因子尤其是某些土壤酶活性密切相关,且AM菌根的形成是滨梅适应丘陵山地干旱贫瘠环境的有效对策之一。  相似文献   

15.
This investigation was designed to explore the relationships between lichen symbionts (phycobiont and mycobiont) and the substrate on which they grow by examining the chemical and ultrastructural features of the lichen-soil interface. These lichens form an integral part of microbiotic soil crusts. Fragments of three different lichen biotypes growing over gypsum crystals and marls were fixed and embedded in resin. The lichen-substratum interface was then examined by scanning electron microscopy with backscattered electron imaging. In situ observation, microanalytical (EDS), and FT-Raman plus infrared spectroscopy of the lichen-substratum interface indicated that different ultrastructural features of the mycobiont were related to biogeochemical processes and Ca 2+ distribution in the soil crust. Phycobionts were observed to make direct contact with the substratum and to be surrounded by a nondifferentiated thallus structure. These observations suggest that they can grow outside the thallus in the early stages of lichen development in the semi-arid conditions of their habitat. The particular ultrastructural features of the lichen thallus and of the lichen-substratum interface appear to have marked effects on runoff phenomena and ponding generation of the surface.  相似文献   

16.
Dieldrin and endrin are persistent organic pollutants that cause serious environmental problems. Although these compounds have been prohibited over the past decades in most countries around the world, they are still routinely found in the environment, especially in the soil in agricultural fields. Bioremediation, including phytoremediation and rhizoremediation, is expected to be a useful cleanup method for this soil contamination. This review provides an overview of the environmental contamination by dieldrin and endrin, along with a summary of our current understanding and recent advances in bioremediation and phytoremediation of these pollutants. In particular, this review focuses on the types and abilities of plants and microorganisms available for accumulating and degrading dieldrin and endrin.  相似文献   

17.
利用无菌滤纸片平板法从沙门氏菌(Salmonella)污染土壤中筛选到一株有效拮抗沙门氏菌的细菌A45,通过形态学、革兰氏染色和16SrDNA序列同源性分析鉴定为产碱杆菌(Alcaligenes sp.)。温室土培试验和田间原位试验结果都发现,利用该菌株制备的沙门氏菌拮抗菌剂能显著降低土壤中沙门氏菌数量(P0.05),与对照相比土壤中沙门氏菌数量下降2-3个数量级,表明该拮抗细菌可应用于沙门氏菌污染土壤的修复。  相似文献   

18.
An investigation was carried out to estimate soil respiration rate and its relationship with microbial population in natural tropical forest soil, deforested soil and deforested-and-cultivated soil of Orissa, India. Soil respiration measurements and microbial isolation were performed following standard procedures. Monthly variation of soil respiration was observed to be governed by soil moisture. Considering respiration as a function of microbial population a regression analysis was made. The microfungal population showed positive relationship with the rate of soil respiration. The study revealed that conversion of natural forest led to a reduction of soil microbes and rate of soil respiration. Considering the importance of the microbial component in soil, we conclude that the conversion of natural forests to different land uses leads to the loss of biological stability of the soil.  相似文献   

19.
碳水化合物活性酶数据库(CAZy)中位于“辅助活性”(auxiliary activities,AA)3家族的酶属于葡萄糖-甲醇-胆碱氧化还原酶大家族。它们以黄素腺嘌呤二核苷酸(FAD)作为辅酶,通过反应产物(H2O2或对苯二酚)协助其他AA家族酶发挥作用,或辅助糖苷水解酶降解木质纤维素。根据结构序列相似性,AA3家族酶进一步细分为4个亚家族,包括 AA3_1(纤维二糖脱氢酶)、AA3_2(芳醇氧化酶、葡萄糖氧化还原酶)、AA3_3(醇氧化酶)、AA3_4(吡喃糖氧化还原酶)。AA3家族酶因其独特的结构、广泛的用途,近几十年来受到人们的广泛关注。本文系统综述了CAZy-AA3家族酶来源、分子结构及改造,对部分AA3家族酶在生物传感器中的最新研究进展进行了重点综述,并对未来研究方向进行了展望。  相似文献   

20.
A culture-independent diversity assessment of archaea, bacteria and fungi in the Thar Desert in India was made. Six locations in Ajmer, Jaisalmer, Jaipur and Jodhupur included semi-arid soils, arid soils, arid sand dunes, plus arid cryptoendolithic substrates. A real-time quantitative PCR approach revealed that bacteria dominated soils and cryptoendoliths, whilst fungi dominated sand dunes. The archaea formed a minor component of all communities. Comparison of rRNA-defined community structure revealed that substrate and climate rather than location were the most parsimonious predictors. Sequence-based identification of 1240 phylotypes revealed that most taxa were common desert microorganisms. Semi-arid soils were dominated by actinobacteria and alpha proteobacteria, arid soils by chloroflexi and alpha proteobacteria, sand dunes by ascomycete fungi and cryptoendoliths by cyanobacteria. Climatic variables that best explained this distribution were mean annual rainfall and maximum annual temperature. Substrate variables that contributed most to observed diversity patterns were conductivity, soluble salts, Ca2+ and pH. This represents an important addition to the inventory of desert microbiota, novel insight into the abiotic drivers of community assembly, and the first report of biodiversity in a monsoon desert system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号