首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Somatostatin receptor gene expression in neuroblastoma   总被引:2,自引:0,他引:2  
Somatostatin receptor expression is a favorable prognostic factor in human neuroblastoma. Somatostatin receptors have been demonstrated in vitro by pharmacologic analysis of tumor tissue and in vivo by diagnostic radioreceptor scintigraphy. However, which receptor subtypes (sst(1), sst(2), sst(3), sst(4), and sst(5)) are expressed in these tumors has not yet been delineated. We used RT-PCR to analyze expression of the five somatostatin receptor genes in 32 neuroblastoma tumor specimens. All 32 tumor specimens expressed mRNA for c-abl and sst(1); sst(2) mRNA was detected in 27/32 samples and somatostatin mRNA was detected in 30/32 tumor specimens. The remaining receptor subtypes, sst(3), sst(4), and sst(5) were variably expressed. Receptor protein for sst(1) and sst(2) was visualized in tumor neuroblasts as well as in endothelial cells of tumor vessels using immunostaining with specific anti-receptor antibodies. The effect of high expression of somatostatin receptors on cell proliferation was examined in SKNSH neuroblastoma cells transfected with sst(1) and sst(2). SS(14) binding to wild-type SKNSH cells was undetectable; but the native peptide bound with high affinity to the SKNSH/sst(1) and SKNSH/sst(2) neuroblastoma cell lines. Pharmacologic analysis of binding with two long-acting analogues, CH275 and octreotide, confirmed selective expression of sst(1) and sst(2) in stably transfected SKNSH cells. Formation of neuroblastoma xenograft tumors in nude mice was significantly delayed for both SKNSH/sst(1) (P<0.001) and SKNSH/sst(2) (P<0.05) cells compared to wild-type SKNSH. We conclude that: (1) Somatostatin receptors, sst(1) and sst(2), are expressed in the majority of neuroblastomas at diagnosis; and (2) upregulation of functional sst(1) or sst(2) in neuroblastoma cell lines suppresses tumorigenicity in a xenograft model. These observations suggest that somatostatin receptors may be a useful therapeutic target in neuroblastoma.  相似文献   

2.
Restricted number of neuroendocrine tumors (NET) shows overexpression of somatostatin receptors. Therefore, long-acting somatostatin analogues are used in diagnosis and treatment of those tumors. Here we present our first case of NET, localized in pancreas treated with DOTA-D-Phe 1-Tyr 3-octreotide (DOTATATE), for receptor-mediated radioisotope therapy. DOTATATE is a newly developed somatostatin analogue labeled with beta-emitter yttrium 90 (90Y) and beta, gamma-emitter lutetium 177 (177Lu). A 34-year old woman was suffering from several years gastrointestinal symptoms. NET of the pancreas with multiple metastases into the liver was diagnosed based on histopatological, biochemical and radiological tests. First, she had chemiotherapy (leucovorin, 5-FU, cisplatin), however there was any positive effects of this therapy. Next, she received four single doses of 90Y DOTATATE at 4-6- week intervals, yielding a cumulative dose of 7.4 GBq/m2. During the 4th cycle the Lu-177 DOTATATE was additionally administered. As a renal protection i.v. infusion of amino acid solution were used during the treatment sessions. To date, patient has shown partial remission with reduction of tumor masses. We observed spectacular clinical, biochemical and radiological improvement. Radioisotope therapy could be a powerful and promising method of treatment at least in patients who had no other treatment option.  相似文献   

3.
The clinical relevance of the somatostatin receptor subtype 2 (sst2) is well defined in neuroendocrine tumors but it is still a matter of debate whether its expression may have a role also in other tumors not arising from the neuroectoderm. We investigated the prognostic value of the expression levels of sst2 mRNA in a consistent group of patients affected by colorectal cancer. Survival analysis of cancer-related death showed that patients with a high sst2 mRNA expression had an unfavourable outcome (p=0.037) and a significantly shorter disease-free survival (p=0.008). Surprisingly, our findings suggest that sst2 gene overexpression is a feature of colorectal tumors that have a negative outlook; in addition, it may allow additional insight into conventional therapeutic approaches for more aggressive tumors, whose prognosis needs to be improved.  相似文献   

4.
Somatostatin receptors (ssts) are expressed in thyroid cancer cells, but their biological significance is not well understood. The aim of this study was to assess ssts in well differentiated (WDTC) and poorly differentiated thyroid cancer (PDTC) by means of imaging and molecular tools and its relationship with the efficacy of somatostatin analog treatment. Thirty-nine cases of thyroid carcinoma were evaluated (20 PDTC and 19 WDTC). Depreotide scintigraphy and mRNA levels of sst-subtypes, including the truncated variant sst5TMD4, were carried out. Depreotide scans were positive in the recurrent tumor in the neck in 6 of 11 (54%) PDTC, and in those with lung metastases in 5/11 cases (45.4%); sst5TMD4 was present in 18/20 (90%) of PDTC, being the most densely expressed sst-subtype, with a 20-fold increase in relation to sst2. In WDTC, sst2 was the most represented, while sst5TMD4 was not found; sst2 was significantly increased in PDTC in comparison to WDTC. Five depreotide positive PDTC received octreotide for 3–6 months in a pilot study with no changes in the size of the lesions in 3 of them, and a significant increase in the pulmonary and cervical lesions in the other 2. All PDTC patients treated with octreotide showed high expression of sst5TMD4. ROC curve analysis demonstrated that only sst5TMD4 discriminates between PDTC and WDTC. We conclude that sst5TMD4 is overexpressed in PDTC and may be involved in the lack of response to somatostatin analogue treatment.  相似文献   

5.
The first potent small molecule sst2 antagonists are reported. Altering known sst2 agonist molecules yielded compounds with high sst2 binding affinity and full antagonist activity. Compound 7a, for example, displaced somatostatin binding to the sst2 receptor with an IC(50)=2.9 nM and antagonized somatostatin action with an IC(50)=29nM.  相似文献   

6.
Topographic and functional imaging hold a key position in endocrine oncology. In vivo somatostatin receptor scintigraphy using Indium-111 labeled DTPA-octreotide, a tracer with preferential affinity for the somatostatin receptor subtype 2 (sst2), is the gold-standard for initial diagnosis of gastroenteropancreatic neuroendocrine tumours (GEPNETs). Due to the detection limits of scintigraphy, other metabolic imaging modalities are required. Positron emission topography (PET) offers whole body scanning, facilitates tumour localization, and assesses the metastasis statement of the tumour. 18F-FDG is the most frequent radiotracer used in clinical practice because of its availability, but its interest is demonstrated only in undifferentiated GEPNETs. More recently, 18F-DOPA PET showed a high sensitivity in particular in carcinoid tumours detection. PET using different 68Ga-labeled-somatostatin analogs with high affinity for sst2 displayed better results than SRS in GEPNETs primary tumour and metastasis detection, especially when fusion with TDM images was performed. Using similar metabolic targets, peptide receptor radionuclide therapy (PRRT) with 177Lu-octreotate and 90Y-DOTA-TOC, is indicated in disseminated GEPNETs forms with an efficiency of 30 % and a minor toxicity.  相似文献   

7.
A novel class of non-peptide somatostatin receptor ligands bearing the octahydrobenzo[g]quinoline (obeline) structural element has been identified. SAR studies have been performed that led to the discovery of derivatives with high affinity (pK(d) r sst(1) > or = 9) and selectivity (> or = 150-fold for h sst(1) over h sst(2)-h sst(5)) for somatostatin receptor subtype sst(1). In a functional assay, the compounds act as antagonists at human recombinant sst(1) receptors.  相似文献   

8.
Radiolabeled somatostatin analogues have been successfully used for targeted radiotherapy and for imaging of somatostatin receptor (sst1-5)-positive tumors. Nevertheless, these analogues are subject to improving their tumor-to-nontarget ratio to enhance their diagnostic or therapeutic properties, preventing nephrotoxicity. In order to understand the influence of lipophilicity and charge on the pharmacokinetic profile of [1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA)]-somatostatin-based radioligands such as [DOTA,1-Nal3]-octreotide (DOTA-NOC), different spacers (X) based on 8-amino-3,6-dioxaoctanoic acid (PEG2), 15-amino-4,7,10,13-tetraoxapentadecanoic acid (PEG4), N-acetyl glucosamine (GlcNAc), triglycine, beta-alanine, aspartic acid, and lysine were introduced between the chelator DOTA and the peptide NOC. All DOTA-X-NOC conjugates were synthesized by Fmoc solid-phase synthesis. The partition coefficient (log D) at pH = 7.4 indicated that higher hydrophilicity than [111In-DOTA]-NOC was achieved with the introduction of the mentioned spacers, except with triglycine and beta-alanine. The high affinity of [InIII-DOTA]-NOC for human sst2 (hsst2) was preserved with the structural modifications, while an overall drop for hsst3 affinity was observed, except in the case of [InIII-DOTA]-beta-Ala-NOC. The new conjugates preserved the good affinity for hsst5, except for [InIII-DOTA]-Asn(GlcNAc)-NOC, which showed decreased affinity. A significant 1.2-fold improvement in the specific internalization rate in AR4-2J rat pancreatic tumor cells (sst2 receptor expression) at 4 h was achieved with the introduction of Asp as a spacer in the parent compound. In sst3-expressing HEK cells, the specific internalization rate at 4 h for [111In-DOTA]-NOC (13.1% +/- 0.3%) was maintained with [111In-DOTA]-beta-Ala-NOC (14.0% +/- 1.8%), but the remaining derivatives showed <2% specific internalization. Biodistribution studies were performed with Lewis rats bearing the AR4-2J rat pancreatic tumor. In comparison to [111In-DOTA]-NOC (2.96% +/- 0.48% IA/g), the specific uptake in the tumor at 4 h p.i. was significantly improved for the 111In-labeled sugar analogue (4.17% +/- 0.46% IA/g), which among all the new derivatives presented the best tumor-to-kidney ratio (1.9).  相似文献   

9.
The somatostatin receptor subtype 2A (sst2A) mediates many of somatostatin's neuroendocrine actions and is the primary therapeutic target for the stable somatostatin analogs used to inhibit hormone secretion by pituitary and gastroenteropancreatic tumors. Two new multireceptor targeting somatostatin analogs currently under clinical investigation, the multisomatostatin receptor agonist cyclo-[diaminoethylcarbamoyl-HydroxyPro-Phenylglycine-D-Trp-Lys-(4-O-benzyl)Tyr-Phe] (SOM230) (Pasireotide) and pan-somatostatin receptor agonist Tyr-cyclo-[D-diaminobutyric acid-Arg-Phe-Phe-D-Trp-Lys-Thr-Phe] (KE108), behave as functionally selective ligands at the sst2A receptor, mimicking some of somatostatin's actions but antagonizing others. Further, SOM230 and KE108 are less able to induce receptor internalization than somatostatin, indicating that they exhibit functional selectivity for receptor regulation as well as signaling. Here, we identify agonist-specific differences in the molecular events regulating sst2A receptor endocytosis. SOM230 and KE108 were less potent and less effective than somatostatin at stimulating sst2A receptor phosphorylation at two pairs of residues, Ser341/343 and Thr353/354. Only the pattern of Thr353/354 phosphorylation correlated with receptor internalization, consistent with the known importance of Thr phosphorylation for sst2A receptor endocytosis. As expected, arrestin recruitment to membrane receptors was reduced with SOM230 and KE108. In addition, both receptor dephosphorylation and receptor recycling occurred more rapidly with SOM230 and KE108 than with somatostatin. Surprisingly, however, SOM230 and KE108 also altered sst2A internalization in a phosphorylation-independent manner, because these analogs were less effective than somatostatin at stimulating the endocytosis of a phosphorylation-negative receptor mutant. These results show that the decreased receptor internalization produced by SOM230 and KE108 compared with somatostatin result from phosphorylation-independent effects as well as reduced site-specific receptor phosphorylation and receptor-arrestin association.  相似文献   

10.
Although radiolabeled somatostatin analogs have become highly prevalent in the diagnosis and treatment of somatostatin receptor subtype (sst)-positive tumors, there are relatively few options with respect to sst-positive tumor cell lines and animal models. It would be highly beneficial, particularly for therapeutic purposes, to have several clones of one human sst2-positive cell line that express a range of sst2 concentrations for evaluating the dose response and intracellular processing of radiolabeled somatostatin analogs. The human non-small cell lung cancer line A-427 was stably transfected with a hemagglutinin-tagged human sst2. Expression of the receptor was evaluated in vitro using flow cytometry, saturation binding analysis, internalization assays, and quantitative polymerase chain reaction. The receptor expression was also validated in an in vivo mouse model in biodistribution and micro-positron emission tomography (microPET) studies using the somatostatin analog octreotide (OC), which was linked to the (64)Cu chelator 1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid (TETA), or (64)Cu-TETA-OC. Stable clones were isolated, and four clones (2, 4, 5, and 7) were chosen for further examination. In vitro assays showed that clone 4 had no expression of sst2, whereas the others had various levels in the order of 7 > 2 > 5. Biodistribution studies with (64)Cu-TETA-OC showed the same rank order, with tumor uptake of the clones ranging from 0.8 to 6.5% injected dose/g. These studies showed that there was a strong correlation among the in vitro assays and between the in vitro assays and the biodistribution. MicroPET confirmed significant uptake of (64)Cu-TETA-OC in clone 7 and background uptake in clone 4. These studies show that clones of a human cell line can be produced expressing various levels of sst2 that should be useful for the future evaluation of radiolabeled somatostatin analogs.  相似文献   

11.
Previous studies from this laboratory demonstrated that N-methylation at Lys(5) residue in somatostatin octapeptide antagonist analogues increased the GH release inhibition potency by as much as 300%. We have now further investigated N-methylation of this Lys(5) residue in conjunction with a number of N- and C-terminal modifications previously found to give highly potent somatostatin receptor antagonists. Synthetic analogues were tested in a functional assay for their ability to inhibit somatostatin-inhibited GH release from rat pituitary cells in culture and to displace 125I-labeled somatostatin from CHO cells transfected with the five known human somatostatin receptors. Several interesting observations resulted from the study. Replacement of liphophilic Nal(8) at the C-terminus with a hydrophilic His(8) resulted in the increased affinity and selectivity for type 2 receptor to give the most potent antagonist analogue yet discovered (K(i), 1.5 nM), although in the rat pituitary cells inhibitory activity on somatostatin inhibited GH release decreased somewhat. A His(3) substitution within the cyclic portion of the analogues retained pituitary cell potency and affinity for type 2 receptor as did substitution with Bip(8) and Fpa(1). Replacement of Cpa(1) with Iph(1) did not effect the affinity for type 2 receptor significantly, but did decrease the effects on rat cell GH release. Iph(3) within-ring substitution increased the selectivity for sst(2) appreciably although the affinity for that receptor was considerably decreased. Substitution of Npa(3) resulted in good selectivity for sst(2) receptor. Replacement of Nal(8) with D-Trp(8) also increased the selectivity for type 2 receptor. Use of a 'bivalent ligand' approach in which two peptides were joined by 4,4'-biphenyldicarbonyl as a spacer destroyed the affinity for all the subtypes, however, the bivalent ligand formed with the Ahp spacer displayed significant affinity and high selectivity for the type 2 receptor.  相似文献   

12.
Non-peptidic compounds containing the octahydro-indolo[4,3-fg]quinoline (ergoline) structural element have been optimized into derivatives with high affinity (pK(d) r sst(1)>9) and selectivity (>1000-fold for h sst(1) over h sst(2)-h sst(5)) for the somatostatin sst(1) receptor. In functional assays, these ergolines act as antagonists at human recombinant sst(1) receptors. Pharmacokinetic studies in rodents reveal good oral bioavailability and brain penetration for some of these compounds.  相似文献   

13.
The aim of the study was to examine the effect of somatostatin (SST) and its analogs on the release of chromogranin A (CgA) and alpha-subunit (alpha-SU) from clinically non-functioning pituitary adenomas incubated in vitro. Seven pituitary macroadenomas surgically removed were investigated. All of the tumors were diagnosed before surgery as non-functioning, but they expressed either gonadotropins or their subunits as detected by immunohistochemistry. Two tumors additionally expressed prolactin and growth hormone. All adenomas also expressed chromogranin A (CgA) and at least 3 of 5 subtypes of somatostatin receptors. The cells isolated from the examined tumors were exposed in vitro to either native SST-14 or the following receptor-specific SST analogs: BIM-23926 (agonist of sst1 receptor), BIM-23120 (agonist of sst2 receptor), BIM-23206 (agonist of sst5 receptor) and BIM23A387 (somatostatin/dopamine chimera). The concentration of CgA was measured by means of ELISA method and of alpha-SU was measured by an immunoradiometric method. It was found that the exposure on SST-14 resulted in the decrease of CgA and alpha-SU release from tumor cells in majority of samples, and the effect on CgA was positively correlated with the expression of sst3 and also with the sst2A/sst2B expressions ratio. The inhibitory effect of SST-14 on CgA and alpha-SU seems also to correlate negatively with the expression of sst2B. CgA inhibition also correlates positively with sst5 expression. Among the other compounds studied, only the sst2 agonist decreased the release in all the investigated samples. The remaining substances (agonists of sst1 and sst5 and SST/DA chimera) produced the divergent changes (increased or decreased release, depending on the sample). The data suggest that the inhibition of CgA (and possibly of alpha-SU) release by SST is mediated via subtypes sst2A, sst3 and sst5, whereas sst2B subtype may induce the opposite effect.  相似文献   

14.
15.
Somatostatin analogs and radiopeptides in cancer therapy   总被引:11,自引:0,他引:11  
Since the discovery of somatostatin (sst) in 1973, numerous chemical and biological studies have been carried out to develop sst analogs with enhanced resistance to proteases and prolonged activity. Three highly potent sst analogs-octreotide, lanreotide, and vapreotide-are now available in the clinic, and demonstrate efficacy in the treatment of tumors of the pituitary and the gastroenteropancreatic tract. The most striking effect is the control of hormone hypersecretion associated with these tumors. Available data on growth suppression in patients indicate a limited antiproliferative action, tumor shrinkage is observed in 10-20% patients, and tumor stabilization in about half of the patients for duration of 8-16 months. Eventually, however, all patients escape from sst analog therapy with regard to both hormone hypersecretion and tumor growth, the only exception being observed in acromegalic patients who do not experience tachyphylaxis even after more than 10 years of daily octreotide injection. The mechanism underlying the escape phenomenon is not yet clarified. Regarding the molecular mechanisms involved in sst antineoplastic activity, both indirect and direct effects via specific somatostatin receptors (SSTRs) expressed in the target cells have be described. Direct action may result from blockade of mitogenic growth signal or induction of apoptosis following interaction with SSTRs. Indirect effects may be the result of reduced or inhibited secretion of growth-promoting hormones and growth factors that stimulate the growth of various types of cancer; also, inhibition of angiogenesis or influence on the immune system are important factors. Five SSTR subtypes have been identified so far, which are variably expressed in a variety of tumors such as gastroenteropancreatic (GEP) tumors, pituitary tumors, and carcinoid tumors. Although all five SSTR subtypes are linked to adenylate cyclase, they are now known to affect multiple other cellular signaling systems and hence they differentially participate in the regulation of the various cellular processes. The finding of several laboratories that SSTR-expressing tumors frequently contain two or more SSTR subtypes, and the recent discovery that SSTR subtypes might form homo/heterodimers to create a novel receptor with different functional characteristics, expand the array of selective SSTR activation pathways and subsequent intracellular signaling cascades. This may lead to improved clinical protocols that take into account possible synergistic interactions between the SSTR subtypes present on the same cancer cell. Radiolabeled sst analogs, such as [(111)In]-[diethylenetriamine pentaacetic acid (DTPA)-D-Phe(1)]-octreotide (OcreoScan), have proved to be very useful for tumor scintigraphy and internal radiotherapy of SSTR overexpressing tumors. The recent introduction of the metal chelator DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) considerably improved the stability of the radioconjugates, making possible the incorporation of a variety of radionuclides, such as (90)Y for receptor-mediated radionuclide therapy or (68)Ga for positron emission tomography (PET). Another promising area is the development of sst conjugates incorporating cytotoxic anticancer drugs.  相似文献   

16.
The tetradecapeptide somatostatin (SRIF) has an inhibitory action on acid secretion in the stomach. It has been suggested that somatostatin may act directly on parietal cells as well as indirectly via histamine-producing cells. A family of high affinity membrane-bound receptors, which are termed sst1-sst5 receptors, mediates the physiological effects of somatostatin. On the basis of functional studies it has been suggested that somatostatin may mediate its actions in the stomach by activation of a somatostatin sst2 receptor type. Two splice variants of the rat sst2 receptor exist, sst2(a) and sst2(b), which differ in length and composition of their intracellular carboxy termini. To date, little information is available on the distribution of the somatostatin sst2(b) receptor in any peripheral tissue. Here we show for the first time the localisation of this receptor isoform in the rat oxyntic mucosa, where the receptor protein was found to be present in parietal cells. This is in contrast to sst2(a) receptor, which was localised to enterochromaffin-like cells and nerve fibres. The differential localisation of the receptor isoforms to two key cell types, parietal cells and enterochromaffin-like cells, may explain how somatostatin inhibits acid secretion by more than one mechanism.  相似文献   

17.
Nonpeptide sst2 agonists can provide a new treatment option for patients with acromegaly, carcinoid tumors, and neuroendocrine tumors. Our medicinal chemistry efforts have led to the discovery of novel 3,4-dihydroquinazoline-4-carboxamides as sst2 agonists. This class of molecules exhibits excellent human sst2 potency and selectivity against sst1, sst3, sst4 and sst5 receptors. Leading compound 3-(3-chloro-5-methylphenyl)-6-(3-fluoro-2-hydroxyphenyl)-N,7-dimethyl-N-{[(2S)-pyrrolidin-2-yl]methyl}-3,4-dihydroquinazoline-4-carboxamide (28) showed no inhibition of major CYP450 enzymes (2C9, 2C19, 2D6 and 3A4) and weak inhibition of the hERG channel.  相似文献   

18.
19.
In a series of human corticotroph adenomas, we recently found predominant mRNA expression of somatostatin (SS) receptor subtype 5 (sst5). After 72 h, the multiligand SS analog SOM230, which has a very high sst5 binding affinity, but not Octreotide (OCT), significantly inhibited basal ACTH release. To further explore the role of sst5 in the regulation of ACTH release, we conducted additional studies with mouse AtT-20 cells. SOM230 showed a 7-fold higher ligand binding affinity and a 19-fold higher potency in stimulating guanosine 5'-O-(3-thiotriphosphate) binding in AtT-20 cell membranes compared with OCT. SOM230 potently suppressed CRH-induced ACTH release, which was not affected by 48-h dexamethasone (DEX) pretreatment. However, DEX attenuated the inhibitory effects of OCT on ACTH release, whereas it increased the inhibitory potency of BIM-23268, an sst5-specific analog, on ACTH release. Quantitative PCR analysis showed that DEX lowered sst(2A+2B) mRNA expression significantly after 24 and 48 h, whereas sst5 mRNA levels were not significantly affected by DEX treatment. Moreover, Scatchard analyses showed that DEX suppressed maximum binding capacity (B(max)) by 72% when 125I-Tyr3-labeled OCT was used as radioligand, whereas B(max) declined only by 17% when AtT-20 cells were treated with [125I-Tyr11]SS-14. These data suggest that the sst5 protein, compared with sst2, is more resistant to glucocorticoids. Finally, after SS analog preincubation, compared with OCT both SOM230 and BIM-23268 showed a significantly higher inhibitory effect on CRH-induced ACTH release. In conclusion, our data support the concept that the sst5 receptor might be a target for new therapeutic agents to treat Cushing's disease.  相似文献   

20.
The G(i)-coupled somatostatin 2A receptor (sst2A) mediates many of the neuromodulatory and neuroendocrine actions of somatostatin (SS) and is targeted by the SS analogs used to treat neuroendocrine tumors. As for other G protein-coupled receptors, agonists stimulate sst2A receptor phosphorylation on multiple residues, and phosphorylation at different sites has distinct effects on receptor internalization and uncoupling. To elucidate the spatial and temporal regulation of sst2A receptor phosphorylation, we examined agonist-stimulated phosphorylation of multiple receptor GPCR kinase sites using phospho-site-specific antibodies. SS increased receptor phosphorylation sequentially, first on Ser-341/343 and then on Thr-353/354, followed by receptor internalization. Reversal of receptor phosphorylation was determined by the duration of prior agonist exposure. In acutely stimulated cells, in which most receptors remained on the cell surface, dephosphorylation occurred only on Thr-353/354. In contrast, both Ser-341/343 and Thr-353/354 were rapidly dephosphorylated when cells were stimulated long enough to allow receptor internalization before agonist removal. Consistent with these observations, dephosphorylation of Thr-353/354 was not affected by either hypertonic sucrose or dynasore, which prevent receptor internalization, whereas dephosphorylation of Ser-341/343 was completely blocked. An okadaic acid- and fostriecin-sensitive phosphatase catalyzed the dephosphorylation of Thr-353/354 both intracellularly and at the cell surface. In contrast, dephosphorylation of Ser-341/343 was insensitive to these inhibitors. Our results show that the phosphorylation and dephosphorylation of neighboring GPCR kinase sites in the sst2A receptor are subject to differential spatial and temporal regulation. Thus, the pattern of receptor phosphorylation is determined by the duration of agonist stimulation and compartment-specific enzymatic activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号