首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be ±0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These data will be useful for preparing the feed material for subsequent fine grinding operations and designing new mills.  相似文献   

2.
3.
This study develops cost, energy input and carbon emissions for a number of switchgrass supply options. The Integrated Biomass Supply Analysis and Logistics (IBSAL) model developed at Oak Ridge National Laboratory is used to evaluate the delivery systems. Three biomass collection systems: baling, loafing and ensiling are evaluated. The number and operational performance of equipment are specified to complete collection operations within 120 days of harvest after August 1. Bales are stacked and tarped on the farm side. The transport of biomass from the farm side to a biorefinery takes place over a full year cycle, i.e. 365 days. Supply quantities range from 454 to 4540 dry tonnes/day (500-5000 dry tons/day). Delivered costs to a biorefinery with capacity of 1814 dry tonnes/day (2000 dry tons/day) are: 44-47 dollars/dry tonne for delivered bales (round and square); 37 dollars/dry tonne for delivered loafs (size 2.4 m x 3.6 m x 6 m); 40 dollars/dry tonne for chopped biomass; and 48 dollars/dry tonne for ensiled chops. These costs do not include any payment to the farmers or switchgrass farming cost. Based on the data from literature, the switchgrass farming cost can range from 30 to 36 dollars/dry tonne. These costs would be additional to the switchgrass collection and transportation cost. Switchgrass collection is generally less expensive than collection of straw or corn stover because of the assumed high yield of 11 dry tonnes/ha and a denser biomass. Energy consumption for delivery systems at this capacity ranges from 4.8% to 6.3% of the energy content of switchgrass. Additional 1% of the energy content of switchgrass is consumed in its farming. At 1814 dry tonnes/day (2000 dry tons/day) capacity, greenhouse gas emissions ranges from 75 to 100 kg of CO2/dry tonne of switchgrass delivered.  相似文献   

4.
A new reactor for biological waste gas treatment was developed to eliminate continuous solvents from waste gases. A trickle-bed reactor was chosen with discontinuous movement of the packed bed and intermittent percolation. The reactor was operated with toluene as the solvent and an optimum average biomass concentration of between 5 and 30 kg dry cell weight per cubic meter packed bed (m3pb). This biomass concentration resulted in a high volumetric degradation rate. Reduction of surplus biomass by stirring and trickling caused a prolonged service life and prevented clogging of the trickle bed and a pressure drop increase. The pressure drop after biomass reduction was almost identical to the theoretical pressure drop as calculated for the irregular packed bed without biomass. The reduction in biomass and intermittent percolation of mineral medium resulted in high volumetric degradation rates of about 100 g of toluene m-3pb h-1 at a load of 150 g of toluene m-3pb h-1. Such a removal rate with a trickle-bed reactor was not reported before.  相似文献   

5.
A considerable number of studies has been conducted on switchgrass (Panicum virgatum L.) as a bioresource for energy over the last few years. Nonetheless, some important issues concerning the agro-technique are still open. This research examines the long-term total dry matter yield (TDM) and ash content of two lowland (L) and two upland (U) switchgrass cytotypes, as affected by one or two-cut system, under southern EU climatic conditions (44 degrees 33' N). Overall, L produced higher TDM than U (on average 14.9 and 11.7 Mg ha(-1), respectively); two-cut system allowed to produce higher biomass yields (especially in U) than single harvest during the two first years, but it also drastically reduced plant vigour and productivity of all cytotypes in the following two years. Moreover, under two-cut system almost total seasonal biomass derived from the early harvest, while the second cut slightly contributed to the total seasonal biomass, nor it appeared to offset the additional harvest costs. Biomass quality was also significantly affected by cutting frequency, with two-cut system leading to a considerably higher ash content of biomass. Therefore, it is perceived that two-cut system is not worthwhile with U and L cytotypes as bioresource for energy production under southern EU conditions.  相似文献   

6.
The superiority of plastic embedding for the production of high quality sections for light microscopy is well known, but the use of conventional glass knives with a cutting edge of approximately 4 mm has severely restricted the size of specimens in the past. Ralph knives provide a much longer cutting edge and adapters are available for certain models of microtomes and ultramicrotomes. A modified knife holder for use with the Sorvall “Porter Blum” MT-2 microtome was described by Gorycki and Sohm (1979); however, this is not suitable for the MT-1 model. We have therefore designed and made an adapter which enables Ralph knives to be used with this instrument. The design allows approximately 18 mm of cutting edge to be used on each knife, allowing larger specimens to be sectioned than with a conventional glass knife and reducing the frequency with which the knife needs to be changed when working with smaller blocks.  相似文献   

7.
Densification of switchgrass into consistent and high-density solid feedstock will reduce the cost of transport, handling, and storage to produce fuels and chemicals. Development a novel, low-cost densification technology is critical for reducing the delivered cost of feedstock while improving the bulk flow properties of densified products. In this paper, a novel wet granulation technology was proposed to investigate the effect of lime pretreatment on the production of switchgrass granules. Granulation is a process of agglomerating fine powders by wetting powder surfaces with liquid binders and mild application of shear/vibrating forces. Switchgrass was size reduced into fine powders using a knife mill and pretreated with three lime loading rates (0.05, 0.1, 0.2 g/g of biomass) at 121 °C for 30 min and at room temperature (25 °C) for 72 h. The structural modification of pretreated samples was analyzed by scanning electron microscopy and autofluorescence microscopy. Pretreated samples were granulated using a pan granulator with pre-formulated starch binder. Granules made from 20 % (0.2 g/g of biomass) lime loading rate had significantly higher single granule density and angle of repose with lower binder requirement than that of untreated granules. Lime treatment did not significantly increase the bulk density and hardness of granules. Lime-treated granules had significantly higher ash content and lower gross calorific value than that of untreated granules. In overall, lime treatment was not attractive to produce granules for thermochemical conversion platform, but lime-treated granules could be used to produce liquid biofuels and platform chemicals in biochemical conversion platform.  相似文献   

8.
This study reports the results of experiments on continuous adsorption and desorption of Cr(VI) ions by a chemically modified and polysulfone-immobilized biomass of the fungus Rhizopus nigricans. A fixed quantity of polymer-entrapped biomass beads corresponding to 2 g of dry biomass powder was employed in packed bed, fluidized bed, and stirred tank reactor for monitoring the continuous removal and recovery of Cr(VI) ions from aqueous solution and synthetic chrome plating effluent. Parameters such as flow rate (5, 10 and 15 mL/min), inlet concentration of Cr(VI) ions (50, 100, 150 and 250 mg/L) and the depth of biosorbent packing (22.8, 11.2 and 4.9 cm) were evaluated for the packed bed reactor. The breakthrough time and the adsorption rates in the packed bed column were found to decrease with increasing flow rate and higher Cr inlet concentrations and to increase with higher depths of sorbent packing. To have a comparative analysis of Cr adsorption efficiency in different types of reactors, the fluidized bed reactor and stirred tank reactor were operated using the same quantities of biosorbent material. For the fluidized bed reactor, Cr(VI) solution of 100 mg/L was pumped at 5 mL/min and fluidized by compressed air at a flow rate of 0.5 kg/cm.(2) The stirred tank reactor had a working volume of 200 mL capacity and the inlet/outlet flow rate was 5 mL/min. The maximum removal efficiency (mg Cr/g biomass) was obtained for the stirred tank reactor (159.26), followed by the fluidized reactor (153.04) and packed bed reactor (123.33). In comparison to the adsorption rate from pure chromate solution, approximately 16% reduction was monitored for synthetic chrome plating effluent in the packed bed. Continuous desorption of bound Cr ions from the reactors was effective with 0.01 N Na(2)CO(3) and nearly 80-94% recoveries have been obtained for all the reactors.  相似文献   

9.
With cellulosic energy production from biomass becoming popular in renewable energy research, agricultural producers may be called upon to plant and collect corn stover or harvest switchgrass to supply feedstocks to nearby facilities. Determining the production and transportation cost to the producer of corn stover or switchgrass and the amount available within a given distance from the plant will result in a per metric ton cost the plant will need to pay producers in order to receive sufficient quantities of biomass. This research computes up-to-date biomass production costs using recent prices for all important cost components including seed, fertilizer, herbicide, mowing/shredding, raking, baling, storage, handling, and transportation. The cost estimates also include nutrient replacement for corn stover. The total per metric ton cost is a combination of these cost components depending on whether equipment is owned or custom hired, what baling options are used, the size of the farm, and the transport distance. Total costs per dry metric ton for biomass with a transportation distance of 60 km ranges between $63 and $75 for corn stover and $80 and $96 for switchgrass. Using the county quantity data and this cost information, we then estimate biomass supply curves for three Indiana coal-fired electric utilities. This supply framework can be applied to plants of any size, location, and type, such as future cellulosic ethanol plants. Finally, greenhouse gas emissions reductions are estimated from using biomass instead of coal for part of the utility energy and also the carbon tax required to make the biomass and coal costs equivalent. Depending on the assumed CO2 price, the use of biomass instead of coal is found to decrease overall costs in most cases.  相似文献   

10.
The effects of pH, agitation speed, and dissolved oxygen tension (DOT), significant in common fungal fermentations, on the production of polygalacturonase (PG) enzyme and their relation to morphology and broth rheology were investigated using Aspergillus sojae in a batch bioreactor. All three factors were effective on the response parameters under study. An uncontrolled pH increased biomass and PG activity by 27% and 38%, respectively, compared to controlled pH (pH 6) with an average pellet size of 1.69 +/- 0.48 mm. pH did not significantly affect the broth rheology but created an impact on the pellet morphology. Similarly, at constant agitation speed the maximum biomass obtained at 500 rpm and at 30 h was 3.27 and 3.67 times more than at 200 and 350 rpm, respectively, with an average pellet size of 1.08 +/- 0.42 mm. The maximum enzyme productivity of 0.149 U mL-1 h-1 was obtained at 200 rpm with an average pellet size of 0.71 +/- 0.35 mm. Non-Newtonian and pseudoplastic broth rheology was observed at 500 rpm agitation speed, broth rheology exhibited dilatant behavior at the lower agitation rate (200 rpm), and at the medium agitation speed (350 rpm) the broth was close to Newtonian. Furthermore, a DOT range of 30-50% was essential for maximum biomass formation, whereas only 10% DOT was required for maximum PG synthesis. Non-Newtonian shear thickening behavior (n > 1.0) was depicted at DOT levels of 10% and 30%, whereas non-Newtonian shear thinning behavior (n < 1.0) was dominant at 50% DOT. The overall fermentation duration (50-70 h) was considerably shorter compared to common fungal fermentations, revealing the economic feasibility of this particular process. As a result this study not only introduced a new strain with a potential of producing a highly commercially significant enzyme but also provided certain parameters significant in the design and mathematical modeling of fungal bioprocesses.  相似文献   

11.
杨新国  李玉英  吴天龙  程序 《生态学报》2008,28(12):6043-6050
为深入认识半干旱黄土丘陵沟壑区引种能源植物柳枝稷生物质生产的开发潜力及其约束机制,调查了农田、植丛尺度上早熟和晚熟柳枝稷年度生命周期内生物量累积、分株建成动态,以及土壤水分供求平衡过程。研究发现,植丛尺度早熟柳枝稷抽穗比例近100%,分株生殖发生大小阈值依赖基本丧失,高度大小分布近似正态,种群内光资源竞争强度明显弱化,与晚熟类型形成明显差异。农田尺度晚熟柳枝稷生物质产量可以达到15t/hm^2,高出早熟类型近1倍,但是其立地80~400cm土层的含水量稳定在7%以下,土壤干旱已经发生,早期干旱胁迫导致的生长停滞,以及生长中后期的成片倒伏现象在两年的观测周期内连续出现。早熟柳枝稷立地则形成相对稳定的白草、柳枝稷复合优势植被结构,深层土壤水分含量稳定在10%以上,实现了跨年度的土壤水分供求平衡。植丛尺度的生物质形成在一定程度上取决于分株生殖发生的大小依赖程度和分株间竞争关系格局,基于植丛尺度普遍的生殖发生和明显弱化的光资源竞争,早熟柳枝稷表现出更为高效的生物质形成机制。农田尺度晚熟柳枝稷尽管在雨热同步期的降水资源利用效率上存在明显比较优势,但是在降水资源利用分配策略和效应上,早熟柳枝稷表现出了综合的生态适宜性优势。保证雨热同步期降水资源利用和保蓄的平衡,是半干旱黄土丘陵沟壑区生物质生产应该遵循的基本原则之一。  相似文献   

12.
Sulfate reducing bacteria (SRB) are commonly used in environmental bioprocesses for the treatment of acid mine drainage and sulfate wastewaters. Biogenic H(2)S is also a potential source of H(2) fuel with the recent development of H(2)S splitting technologies. In this study, a sulfate reducing packed bed bioreactor (PBR) capable of rapidly achieving high volumetric productivities was developed using a novel method of rational inoculum design and the selection of improved biomass carrier materials. An inoculum with initial composition of approximately 95% Desulfovibrio desulfuricans (ATCC 7757) and 5% SRB consortium was designed based on the pure strain's superior immobilization potential and the SRB consortium's superior kinetics. Diatomaceous earth (DE) pellets, porous glass beads, polyurethane foam and bone char were evaluated as potential biomass carrier materials. The DE pellets immobilized the most biomass and were employed in two packed bed bioreactor fermentations. Using the designed inoculum and DE pellets, a packed bed bioreactor achieved a volumetric productivity of 493 mol H(2)S m(-3) day(-1) (based on a 308 mL working volume) with a dissolved sulfide concentration of 9.9 mM. This occurred after 8.3 days of operation and represents a tenfold reduction in the start-up period compared to other sulfate reducing PBRs described in the literature.  相似文献   

13.
A water drop on a superhydrophobic surface that is pinned by wire loops can be reproducibly cut without formation of satellite droplets. Drops placed on low-density polyethylene surfaces and Teflon-coated glass slides were cut with superhydrophobic knives of low-density polyethylene and treated copper or zinc sheets, respectively. Distortion of drop shape by the superhydrophobic knife enables a clean break. The driving force for droplet formation arises from the lower surface free energy for two separate drops, and it is modeled as a 2-D system. An estimate of the free energy change serves to guide when droplets will form based on the variation of drop volume, loop spacing and knife depth. Combining the cutting process with an electrofocusing driving force could enable a reproducible biomolecular separation without troubling satellite drop formation.  相似文献   

14.
There is mounting concern that selection and breeding of native grasses for greater biomass production could promote weediness. Yet little is known about the invasion potential or ecological impacts of such selectively bred native grasses. Here we focus on cultivars of native switchgrass (Panicum virgatum L.) that have undergone selection, breeding, and intraspecific hybridization to improve agronomic traits for biomass production. We evaluated the competitive effects of switchgrass cultivars (EG-2101 and ‘Trailblazer’) and wild switchgrass populations on two native prairie grasses [sideoats grama, Bouteloua curtipendula (Michx.) Torr., and Canada wild rye, Elymus canadensis L.] across a gradient of switchgrass density in a greenhouse. Cultivars produced 48–128% more biomass and reduced sideoats grama biomass by 25–59% more than wild switchgrass. Effects of switchgrass cultivars on Canada wild rye were minimal compared to sideoats grama. Later flowering and larger seed size of cultivars may be contributing to their greater biomass and competitive effects on sideoats grama. These data suggest that breeding switchgrass for enhanced biomass yield may increase competitive effects on some native grasses. Further studies are merited to test the potential for switchgrass biomass cultivars to spread and impact species diversity of restored and remnant native plant communities.  相似文献   

15.
Expanded bed or fluidized bed adsorption has emerged as an important unit operation in downstream processing of proteins. A number of specifically designed commercial adsorbents are available today for expanded bed purification of proteins. Protein purification essentially requires adsorbent matrices that have large pore size. Very large pore size or macroporous adsorbents can provide high efficiency in packed beds even at high flow rates on account of reduced pore diffusion resistance resulting from finite intraparticle flow in the macropores. This is reflected in leveling off of HETP (height equivalent to theoretical plate) versus flow curve after a threshold velocity. Expanded bed operation, on the other hand, can also show plateauing of the HETP curve, but not necessarily on account of macroporosity of adsorbent. It is shown in this article how any adsorbent intended for protein adsorption in expanded bed mode can give plateauing HETP curve, regardless of pore size. As a result, RTD measurements on an expanded bed can give equal, and at times better, performance than a corresponding packed bed. Large pore size, on the other hand, can result in lesser retention of biomass and easy flushing of the adsorbent to obtain an entirely particulate-free adsorbent prior to the product elution step. Adsorbent with larger pores is also shown to provide faster and more efficient elution both in packed and expanded bed modes.  相似文献   

16.
Weed interference limits switchgrass (Panicum virgatum L.) establishment from seed. Our objectives were to determine the effect of selected post-plant, preemergence herbicides on stand establishment and subsequent biomass yields of adapted upland switchgrass cultivars grown in three environments in the Central and Northern Great Plains. A separate experiment was conducted in eastern Nebraska to determine if there were any differences among switchgrass ecotypes for herbicide tolerance to the optimal herbicide combination. Herbicides applied immediately after planting were different concentrations of atrazine [Aatrex 4L®; 6-chloro-N-ethyl-N′-(1-methylethyl)-1,3,5-triazine-2,4-diamine], quinclorac (Paramount®; 3,7-Dichloro-8-quinolinecarboxylic acid), atrazine+quinclorac, imazapic {Plateau®; 2-[4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl]-5-methyl-3-pyridinecarboxylic acid}, and quinclorac+imazapic. Herbicide efficacy was determined by measuring stand frequency of occurrence and biomass yield the year after establishment. The application of quinclorac plus atrazine resulted in acceptable stands and high biomass yields. Imazapic often reduced switchgrass stands in comparison to the nontreated control and is not recommended for switchgrass establishment. In the multi-state trials, the herbicide by cultivar interaction was not significant for stands or biomass yields, indicating that the effects of herbicides on switchgrass stands and biomass yields were consistent over the upland cultivars used in the trials. No differences were detected among switchgrass lowland and upland ecotypes for tolerance to atrazine and quinclorac. Quinclorac, which provides effective control of grassy weeds, and herbicides such as atrazine which provide good broadleaf weed control are an excellent herbicide combination for establishing switchgrass for biomass production in the Great Plains and the Midwest.  相似文献   

17.
18.
Switchgrass (Panicum virgatum L.), big bluestem (Andropogon gerardii Vitman), and indiangrass (Sorghastrum nutans (L.) Nash) are native warm-season grasses commonly used for pasture, hay, and conservation. More recently switchgrass has also been identified as a potential biomass energy crop, but management of mixtures of these species for biomass is not well documented. Therefore, the objectives of our study were to: (1) determine the effects of harvest timing and N rate on yield and biomass characteristics of established warm-season grass stands containing a mixture of switchgrass, big bluestem, and indiangrass, and (2) evaluate the impact of harvest management on species composition. Five N rates (0, 56, 112, and 224 kg ha(-1) applied annually in spring and 224 kg ha(-1) evenly split between spring and fall) and two harvest timings (anthesis and killing frost) were applied to plots at two South Dakota USA locations from 2001 to 2003. Harvesting once a year shortly after a killing frost produced the greatest yields with high concentrations of neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) along with lower concentrations of total nitrogen (TN) and ash. This harvest timing also allowed for the greatest percentage of desirable species while maintaining low grass weed percentages. While N rates of 56 and 112 kg ha(-1) tended to increase total biomass without promoting severe invasion of grass and broadleaf weed species, N application did not always result in significant increases in biomass production. Based on these results, mixtures of switchgrass and big bluestem were well suited for sustainable biomass energy production. Furthermore, N requirements of these mixtures were relatively low thus reducing production input costs.  相似文献   

19.
Sustainable development of a bioenergy industry will require low‐cost, high‐yielding biomass feedstock of desirable quality. Switchgrass (Panicum virgatum L.) is one of the primary feedstock candidates in North America, but the potential to grow this biomass crop using fertility from biosolids has not been fully explored. The objective of this study was to examine the effects of harvest frequency and biosolids application on switchgrass in Virginia, USA. ‘Cave‐in‐Rock’ switchgrass from well‐established plots was cut once (November) or twice (July and November) per year between 2010 and 2012. Class A biosolids were applied once at rates of 0, 153, 306, and 459 kg N ha?1 in May 2010. Biomass yield, neutral and acid detergent fiber, cellulose, hemicellulose, lignin, and ash were determined. Theoretical ethanol potential (TEP, l ethanol Mg?1 biomass) and yield (TEY, l ethanol ha?1) were calculated based on cellulose and hemicellulose concentrations. Cutting twice per season produced greater biomass yields than one cutting (11.7 vs. 9.8 Mg ha?1) in 2011, but no differences were observed in other years. Cutting once produced feedstock with greater TEP (478 vs. 438 l Mg?1), but no differences in TEY between cutting frequencies. Biosolids applied at 153, 306, and 459 kg N ha?1 increased biomass yields by 25%, 37%, and 46%, and TEY by 25%, 34%, and 42%, respectively. Biosolids had inconsistent effects on feedstock quality and TEP. A single, end‐of‐season harvest likely will be preferred based on apparent advantages in feedstock quality. Biosolids can serve as an effective alternative to N fertilizer in switchgrass‐to‐energy systems.  相似文献   

20.
Most biomass pretreatment processes for monosaccharide production are run at low-solid concentration (<10 wt%) and use significant amounts of chemical catalysts. Biphasic CO(2) -H(2) O mixtures could provide a more sustainable pretreatment medium while using high-solid contents. Using a stirred reactor for high solids (40 wt%, biomass water mixture) biphasic CO(2)-H(2) O pretreatment of lignocellulosic biomass allowed us to explore the effects of particle size and mixing on mixed hardwood and switchgrass pretreatment. Subsequently, a two-temperature stage pretreatment was introduced. After optimization, a short high-temperature stage at 210°C (16 min for hardwood and 1 min for switchgrass) was followed by a long low-temperature stage at 160°C for 60 min. Glucan to glucose conversion yields of 83% for hardwood and 80% for switchgrass were obtained. Total molar sugar yields of 65% and 55% were obtained for wood and switchgrass, respectively, which consisted of a 10% points improvement over those obtained during our previous study despite a 10-fold increase in particle size. These yields are similar to those obtained with other major pretreatment technologies for wood and within 10% of major technologies for switchgrass despite the absence of chemical catalysts, the use of large particles (0.95 cm) and high solid contents (40 wt%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号