首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
In Saccharomyces cerevisiae, the spindle position checkpoint ensures that cells do not exit mitosis until the mitotic spindle moves into the mother/bud neck and thus guarantees that each cell receives one nucleus [1-6]. Mitotic exit is controlled by the small G protein Tem1p. Tem1p and its GTPase activating protein (GAP) Bub2p/Bfa1p are located on the daughter-bound spindle pole body. The GEF Lte1p is located in the bud. This segregation helps keep Tem1p in its inactive GDP state until the spindle enters the neck. However, the checkpoint functions without Lte1p and apparently senses cytoplasmic microtubules in the mother/bud neck [7-9]. To investigate this mechanism, we examined mutants defective for septins, which compose a ring at the neck [10]. We found that the septin mutants sep7Delta and cdc10Delta are defective in the checkpoint. When movement of the spindle into the neck was delayed, mitotic exit occurred, inappropriately leaving both nuclei in the mother. In sep7Delta and cdc10Delta mutants, Lte1p is mislocalized to the mother. In sep7Delta, but not cdc10Delta, mutants, inappropriate mitotic exit depends on Lte1p. These results suggest that septins serve as a diffusion barrier for Lte1p, and that Cdc10p is needed for the septin ring to serve as a scaffold for a putative microtubule sensor.  相似文献   

7.
8.
Analysis of Schizosaccharomyces pombe mutants that are defective in septum formation and cytokinesis has identified the product of the cdc15 gene as a key element in formation of a division septum. S. pombe cells lacking cdc15p function cannot assemble a functional medial ring, and do not make a division septum. cdc15 mRNA accumulates periodically during the cell cycle, peaking after entry into mitosis, and increased expression of the gene in G2-arrested cells can promote F-actin ring formation. Here, we have investigated the effects of mutations that block cell division upon the expression of cdc15 in synchronised cell populations, and analysed the expression of cdc15 when septum formation is induced by ectopic activation of the septation signalling network. We concluded the following: (i) the septation signalling network genes are not required for periodic accumulation of cdc15 mRNA; (ii) induction of septum formation in G2-arrested cells by activation of the septation signalling network does not result in accumulation of cdc15 mRNA, which is therefore not a prerequisite for septum formation; (iii) failure to turn off septum formation at the end of mitosis results in continued expression of cdc15; and (iv) periodic accumulation of cdc15 mRNA is mediated by a 97 bp region 5' to the mRNA start site.  相似文献   

9.
10.
11.
In the budding yeast Saccharomyces cerevisiae, the Cdc3p, Cdc10p, Cdc11p, Cdc12p, and Sep7p/Shs1p septins assemble early in the cell cycle in a ring that marks the future cytokinetic site. The septins appear to be major structural components of a set of filaments at the mother-bud neck and function as a scaffold for recruiting proteins involved in cytokinesis and other processes. We isolated a novel gene, BNI5, as a dosage suppressor of the cdc12-6 growth defect. Overexpression of BNI5 also suppressed the growth defects of cdc10-1, cdc11-6, and sep7Delta strains. Loss of BNI5 resulted in a cytokinesis defect, as evidenced by the formation of connected cells with shared cytoplasms, and deletion of BNI5 in a cdc3-6, cdc10-1, cdc11-6, cdc12-6, or sep7Delta mutant strain resulted in enhanced defects in septin localization and cytokinesis. Bni5p localizes to the mother-bud neck in a septin-dependent manner shortly after bud emergence and disappears from the neck approximately 2 to 3 min before spindle disassembly. Two-hybrid, in vitro binding, and protein-localization studies suggest that Bni5p interacts with the N-terminal domain of Cdc11p, which also appears to be sufficient for the localization of Cdc11p, its interaction with other septins, and other critical aspects of its function. Our data suggest that the Bni5p-septin interaction is important for septin ring stability and function, which is in turn critical for normal cytokinesis.  相似文献   

12.
13.
14.
Hexamethylene bisacetamide (HMBA)-induced murine erythroleukemia (MELC) differentiation is characterized by a prolongation of the initial G1 which follows passage through S phase in the presence of inducer. Commitment to terminal cell division is first detected in a portion of the cell population during this prolonged G1. HMBA-induced commitment is stochastic. This study has examined changes in two known cell cycle regulators, p34cdc2 and cyclin A, in cycle-synchronized MELC in the absence and presence of HMBA. Histone H1 kinase activity of p34cdc2, and the levels of CDC2Mm mRNA, 1.8-kilobase mRNA of cyclin A, and cyclin A protein changed during cell cycle progression in MELC, and all of them were suppressed during G1. The suppression of the H1 kinase activity and cyclin A expression continued through the prolonged G1 in MELC cultured with HMBA, whereas p34cdc2 protein level did not vary through the cell cycle in MELC cultured without or with inducer. Phosphorylation of p34cdc2 in uninduced MELC gradually increased as cells progressed from G1 to S. In induced MELC, an increase in phosphorylation of p34cdc2 occurred during the prolonged G1, and prior to the exit of the bulk of the cells from G1 to S. These results suggest that in HMBA-induced MELC, p34cdc2 phosphorylation per se is not a limiting factor in determining G1 to S progression. The persistent suppression of cyclin A expression and histone H1 kinase activity may play a role in HMBA-induced commitment to terminal differentiation.  相似文献   

15.
The levels of cdc2 mRNA increase when quiescent cells are stimulated by growth factors. In BALB/c 3T3, both platelet-derived growth factor and insulin-like growth factor 1 (IGF-1) are required to increase cdc2 mRNA levels. In p6 cells, which constitutively overexpress the IGF-1 receptor, IGF-1 is sufficient. The importance of the IGF-1/IGF-1 receptor interaction in regulating the levels of cdc2 mRNA was further confirmed by showing that an antisense oligodeoxynucleotide to the IGF-1 receptor RNA inhibited the IGF-1-mediated increase.  相似文献   

16.
The protein kinase activity of the cell cycle regulator p34cdc2 is inactivated when the mitotic cyclin to which it is bound is degraded. The amino (N)-terminus of mitotic cyclins includes a conserved "destruction box" sequence that is essential for degradation. Although the N-terminus of sea urchin cyclin B confer cell cycle-regulated degradation to a fusion protein, a truncated protein containing only the N-terminus of Xenopus cyclin B2, including the destruction box, is stable under conditions where full length molecules are degraded. In an attempt to identify regions of cyclin B2, other than the destruction box, involved in degradation, the stability of proteins encoded by C-terminal deletion mutants of cyclin B2 was examined in Xenopus egg extracts. Truncated cyclin with only the first 90 amino acids was stable, but other C-terminal deletions lacking between 14 and 187 amino acids were unstable and were degraded by a mechanism that was neither cell cycle regulated nor dependent upon the destruction box. None of the C-terminal deletion mutants bound p34cdc2. To investigate whether the binding of p34cdc2 is required for cell cycle-regulated degradation, the behavior of proteins encoded by a series of full length Xenopus cyclin B2 cDNA with point mutations in conserved amino acids in the p34cdc2-binding domain was examined. All of the point mutants failed to form stable complexes with p34cdc, and their degradation was markedly reduced compared to wild-type cyclin. Similar results were obtained when the mutant cyclins were synthesized in reticulocyte lysates and when cyclin mRNA was translated directly in a Xenopus egg extract. These results indicate that mutations that interfere with p34cdc2 binding also interfere with cyclin destruction, suggesting that p34cdc2 binding is required for the cell cycle-regulated destruction of Xenopus cyclin B2.  相似文献   

17.
During Saccharomyces cerevisiae mating, chemotropic growth and cell fusion are critical for zygote formation. Cdc24p, the guanine nucleotide exchange factor for the Cdc42 G protein, is necessary for oriented growth along a pheromone gradient during mating. To understand the functions of this critical Cdc42p activator, we identified additional cdc24 mating mutants. Two mating-specific mutants, the cdc24-m5 and cdc24-m6 mutants, each were isolated with a mutated residue in the conserved catalytic domain. The cdc24-m6 mutant responds normally to pheromone and orients its growth towards a mating partner yet accumulates prezygotes during mating. cdc24-m6 prezygotes have two apposed intact cell walls and do not correctly localize proteins required for cell fusion, despite normal exocytosis. Our results indicate that the exchange factor Cdc24p is necessary for maintaining or restricting specific proteins required for cell fusion to the cell contact region during mating.  相似文献   

18.
The G2 DNA damage checkpoint ensures maintenance of cell viability by delaying progression into mitosis in cells which have suffered genomic damage. It is controlled by a number of proteins which are hypothesized to transduce signals through cell cycle regulators to delay activation of p34cdc2. Studies in mammalian cells have correlated induction of inhibitory tyrosine 15 (Y15) phosphorylation on p34cdc2 with the response to DNA damage. However, genetic studies in fission yeast have suggested that the major Y15 kinase, p107wee1, is not required for the cell cycle delay in response to DNA damage, although it is required for survival after irradiation. Thus, the target of the checkpoint, and hence the mechanism of cell cycle delay, remains unknown. We show here that Y15 phosphorylation is maintained in checkpoint-arrested fission yeast cells. Further, wee1 is required for cell cycle arrest induced by up-regulation of an essential component of this checkpoint, chk1. We observed that p107wee1 is hyperphosphorylated in cells delayed by chk1 overexpression or UV irradiation, and that p56chk1 can phosphorylate p107wee1 directly in vitro. These observations suggest that in response to DNA damage p107wee1 is phosphorylated by p56chk1 in vivo, and this results in maintenance of Y15 phosphorylation and hence G2 delay. In the absence of wee1, other Y15 kinases, such as p66mik1, may partially substitute for p107wee1 to induce cell cycle delay, but this wee1-independent delay is insufficient to maintain full viability. This study establishes a link between a G2 DNA damage checkpoint function and a core cell cycle regulator.  相似文献   

19.
20.
Cell cycle regulation of the p34cdc2 inhibitory kinases.   总被引:15,自引:4,他引:11       下载免费PDF全文
In cells of higher eukaryotic organisms the activity of the p34cdc2/cyclin B complex is inhibited by phosphorylation of p34cdc2 at two sites within its amino-terminus (threonine 14 and tyrosine 15). In this study, the cell cycle regulation of the kinases responsible for phosphorylating p34cdc2 on Thr14 and Tyr15 was examined in extracts prepared from both HeLa cells and Xenopus eggs. Both Thr14- and Tyr15- specific kinase activities were regulated in a cell cycle-dependent manner. The kinase activities were high throughout interphase and diminished coincident with entry of cells into mitosis. In HeLa cells delayed in G2 by the DNA-binding dye Hoechst 33342, Thr14- and Tyr15-specific kinase activities remained high, suggesting that a decrease in Thr14- and Tyr15- kinase activities may be required for entry of cells into mitosis. Similar cell cycle regulation was observed for the Thr14/Tyr15 kinase(s) in Xenopus egg extracts. These results indicate that activation of CDC2 and entry of cells into mitosis is not triggered solely by activation of the Cdc25 phosphatase but by the balance between Thr14/Tyr15 kinase and phosphatase activities. Finally, we have detected two activities capable of phosphorylating p34cdc2 on Thr14 and/or Tyr15 in interphase extracts prepared from Xenopus eggs. An activity capable of phosphorylating Tyr15 remained soluble after ultracentrifugation of interphase extracts whereas a second activity capable of phosphorylating both Thr14 and Tyr15 pelleted. The pelleted fraction contained activities that were detergent extractable and that phosphorylated p34cdc2 on both Thr14 and Tyr15. The Thr14- and Tyr15-specific kinase activities co-purified through three successive chromatographic steps indicating the presence of a dual-specificity protein kinase capable of acting on p34cdc2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号