首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated the spatial magnetic gradient effects of static magnetic fields (SMF) on endothelial tubular formation by applying the maximum spatial gradient to a target site of culture wells for cell growth. The respective maximum values of magnetic flux density (B(max)), magnetic flux gradient (G(max)) and the magnetic force product of the magnetic flux density and its gradient (a parameter of magnetic force) were 120 mT, 28 mT/mm and 1428 mT(2)/mm. The effects of gradient SMF on tubular formation were compared with those of uniform SMF that has no spatial gradients on the entire bottom area of culture wells. Five experimental groups of 25 samples each were examined: (1) sham exposure (control); (2) peak gradient exposure in the peripheral part; (3) peak gradient exposure in the central part; (4) uniform exposure to 20 mT; (5) uniform exposure to 120 mT. The SMF or sham exposure was carried out for 10 days. Photomicrographs of tubular cells, immunostained with an anti-platelet-endothelial cell adhesion molecule-1 (PECAM-1 [CD31]) antibody as a pan-endothelial marker, were analyzed after the 10-day culture. Gradient SMF in the peripheral or central part was found to significantly promote tubular formation in terms of the area density and length of tubules in each peak gradient/force part of the wells, compared with the sham exposure. In contrast, uniform SMF did not induce any significant change in the tubular formation. These findings suggest that tubule formation can be promoted by applying the peak gradient/force to a target site of culture wells.  相似文献   

2.
Effects of a moderate-intensity static magnetic field (SMF) on the early-stage development of endothelial capillary tubule formation were examined during the initial cell growth periods using co-cultured human umbilical vein endothelial cells and human diploid fibroblasts. The co-cultured cells within a well (16 mm in diameter) were exposed to SMF intensity up to 120 mT (Bmax) with the maximum spatial gradient of 21 mT/mm using a disc-shaped permanent magnet (16 mm in diameter and 2.5 mm in height) for up to 10 days. Control exposure was performed without magnet. Some vascular endothelial cells were treated with vascular endothelial growth factor (VEGF)-A (10 ng/ml) to promote the tubule formation every 2-3 days. Four experimental protocols were performed: (1) non-exposure (control); (2) SMF exposure alone; (3) non-exposure with VEGF-A; (4) SMF exposure with VEGF-A. Photomicrographs of tubule cells immunostained with an anti-platelet-endothelial cell adhesion molecule-1 (PECAM-1 [CD31[) antibody as a pan-endothelial marker, were analyzed after culture at 37 degrees C for 4, 7, and 10 days. The mean values of the area density and the length of tubules (related mainly to arteriogenesis) as well as the number of bifurcations (related mainly to angiogenesis) were determined as parameters of tubule formation and were compared between the groups. After a 10 day incubation, in the peripheral part of the culture wells, SMF alone significantly promoted the tubule formation in terms of the area density and the length of tubules, compared with control group. In the central part of the wells, however, SMF did not cause any significant changes in the parameters of tubule formation. After a 7 day incubation, VEGF-A significantly promoted all the parameters of tubule formation in any part of the wells, compared with control group. With regard to the synergistic effects of SMF and VEGF-A on tubule formation, after a 10 day incubation, SMF significantly promoted the VEGF-A-increased area density and length of tubules in the peripheral part of the wells, compared with the VEGF-A treatment alone. However, SMF did not induce any significant changes in the VEGF-A-increased number of bifurcations in any part of the wells. The tubule cells observed in the wells had elongated, spindle-like shapes, and the direction of cell elongation was random, irrespective of the presence and direction of SMF. These findings suggest that the application of SMF to intact or VEGF-A-stimulated vascular endothelial cells leads mainly to promote or enhance arteriogenesis in the peripheral part of the wells, where the spatial gradient increases relative to the central part. The effects of SMF on the VEGF-A-enhanced tubule formation appear to be synergistic or additive in arteriogenesis but not in angiogenesis.  相似文献   

3.
The magnetic flux density of MRI for clinical diagnosis has been steadily increasing. However, there remains very little biological data regarding the effect of strong static magnetic fields (SMFs) on human health. To evaluate the effects of strong SMFs on biological systems, we cultured insulin-secreting cells under exposure to sham and SMF conditions (3-10 T of magnetic flux density, and 0-41.7 T/m of magnetic field gradient) for 0.5 or 1 h, and analyzed insulin secretion, mRNA expression, glucose-stimulated insulin secretion, insulin content, cell proliferation and cell number. Exposure to SMF with a high magnetic field gradient for 1 h significantly increased insulin secretion and insulin 1 mRNA expression. Exposure to SMF with a high magnetic flux density for 0.5 h significantly enhanced responsiveness to glucose stimulation. Exposure to SMF did not affect the insulin content, cell proliferation or cell number. Our results suggested that MRI systems with a higher magnetic flux density might not cause cell proliferative or functional damages on insulin-secreting cells, and that SMF with a high magnetic field gradient might be used clinically after thorough in vivo investigations are conducted.  相似文献   

4.
It is believed that static magnetic fields (SMF) cannot affect the pattern formation of the Belousov-Zhabotinsky (BZ) reaction, which has been frequently studied as a simplified experimental model of a nonequilibrium open system, because SMF produces no induced current and the magnetic force of SMF far below 1 T is too low to expect the effects on electrons in the BZ reaction. In the present study, we examined whether the velocity of chemical waves in the unstirred BZ reaction can be affected by a moderate-intensity SMF exposure depending on the spatial magnetic gradient. The SMF was generated by a parallel pair of attracting rectangular NdFeB magnets positioned opposite each other. The respective maximum values of magnetic flux density (B(max)), magnetic flux gradient (G(max)), and the magnetic force product of the magnetic flux density its gradient (a magnetic force parameter) were 206 mT, 37 mT/mm, and 3,000 mT(2)/mm. The ferroin-catalyzed BZ medium was exposed to the SMF for up to 16 min at 25 degrees C. The experiments demonstrated that the wave velocity was significantly accelerated primarily by the magnetic gradient. The propagation of the fastest wave front indicated a sigmoid increase along the peak magnetic gradient line, but not along the peak magnetic force product line. The underlying mechanisms of the SMF effects on the anomalous wave propagation could be attributed primarily to the increased concentration gradient of the paramagnetic iron ion complexes at the chemical wave fronts induced by the magnetic gradient.  相似文献   

5.
Static magnetic fields (SMF) in the millitesla (mT) range have been reported to modulate microcirculatory hemodynamics and/or blood pressure (BP) under pharmacologically modified state in mammals. This study was designed to investigate the acute effects of local application of a SMF to neck or pelvic region under pharmacologically modulated BP; norepinephrine (NE)-induced hypertension as well as an L-type voltage-gated Ca(2+) channel blocker, nicardipine (NIC)-induced hypotension in conscious rabbits. Magnetic flux densities were up to 5.5 mT and the spatial magnetic gradient peaked in neck (carotid sinus baroreceptor) region at the level of approximately 0.06 mT/mm. The duration of exposure was 30 min (including 10 min of pretreatment) and the effects on BP were investigated up to 100 min postexposure. Baroreflex sensitivity (BRS) was estimated from invasive recordings of systolic BP and pulse interval. Neck exposure to 5.5 mT significantly attenuated the pharmacologically induced vasoconstriction or vasodilation, and subsequently suppressed the increase or decrease in BP compared with sham exposure. In contrast, pelvic exposure to 5.5 mT did not significantly antagonized NE-elevated BP or NIC-reduced BP. The neck exposure to 5.5 mT has a biphasic and restorative effect on vascular tone and BP acting to normalize the tone and BP. The neck exposure to 5.5 mT caused a significant increase in BRS in NE-elevated BP compared with sham exposure. The buffering effects of the SMF on increased hemodynamic variability under NE-induced high vascular tone and NIC-induced low vascular tone might be, in part, dependent on baroreflex pathways, which could modulate NE-mediated response in conjunction with Ca(2+) dynamics.  相似文献   

6.
Acute effects of whole body exposure to static magnetic field (SMF) on pharmacologically induced hypertension in a conscious rabbit were evaluated. Hypertensive and vasoconstrictive actions were induced by norepinephrine (NE) or a nonselective nitric oxide synthase (NOS) inhibitor, N(omega)-nitro-l-arginine methyl ester (l-NAME). The hemodynamics in a central artery of the ear lobe was measured continuously and analyzed by penetrating microphotoelectric plethysmography (MPPG). Concurrently, blood pressure (BP) changes in a central artery, contralateral to that of the MPPG measured ear lobe, were monitored. Magnetic flux densities were 5.5 mT (Bmax), the magnetic gradient peaked in the throat at the level of approximately 0.09 mT/mm, and the duration of exposure was 30 min. The results demonstrated that under normal physiological conditions without treatment of pharmacological agents, there were no statistically significant differences in the hemodynamics and BP changes between the sham and the SMF exposure alone. Under pharmacologically induced hypertensive conditions, the whole body exposure to nonuniform SMF with peak magnetic gradient in the carotid sinus baroreceptor significantly attenuated the vasoconstriction and suppressed the elevation of BPs. These findings suggest that antipressor effects of the SMF on the hemodynamics under NE or l-NAME induced high vascular tone might be, in part, dependent on modulation of NE mediated response in conjunction with alteration in NOS activity, thereby modulating BPs.  相似文献   

7.
The effects of a static magnetic field (SMF) on the proliferation of various types of human cells were determined. All cultures were maintained at 37 °C throughout the experiment. SMF was generated by placing two magnets oppositely oriented on either side of a T25 flask. The flux density in the flask ranged from 35 to 120 mT. Growth curves were constructed by plotting cell number at 18 h and 4, 7, 11, and 14 days after seeding, with the 18‐h point being a measure of attachment efficiency. Exposure to SMF significantly decreased initial attachment of fibroblasts and decreased subsequent growth compared to sham‐exposed control. Significant effects were observed in both fetal lung (WI‐38) and adult skin fibroblasts, but they were generally larger in the fetal lung fibroblast line. SMF did not affect attachment of human melanoma cells, but inhibited their growth by 20% on day 7. SMF produced no effects in a human adult stem cell line. Oxidant production increased 37% in WI‐38 cells exposed to SMF (230–250 mT) during the first 18 h after seeding, when cell attachment occurs. Conversely, no elevation in oxidant levels was observed after a prolonged 5‐day exposure. These results indicate that exposure to SMF has significant biological effects in some, but not all types of human cells. Bioelectromagnetics 32:140–147, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
We investigated the combined effects of a moderate-intensity static magnetic field (SMF) and two different sympathetic agonists, an alpha(1)-adrenoceptor agonist, phenylephrine and a beta(1)-adrenoceptor agonist, dobutamine, which induced hypertension and different hemodynamics in Wistar rats. Five-week-old male rats were continuously exposed to the SMF intensity of 12 mT (B(max)) with the peak spatial gradient of 3 mT/mm for 10 weeks. A loop-shaped flexible rubber magnet was adjusted to fit snugly around the neck region of a rat (diameter-adjustable to an animal size). Sham exposure was performed using a dummy magnet. Six experimental groups of six animals each were examined: (1) sham exposure with intraperitoneal (ip) saline injection (control); (2) SMF exposure with ip saline injection (SMF); (3) sham exposure with ip phenylephrine (1.0 microg/g) injection (PE); (4) SMF exposure with ip phenylephrine injection (SMF + PE); (5) sham exposure with ip dobutamine (4.0 microg/g) injection (DOB); (6) SMF exposure with ip dobutamine injection (SMF + DOB). Fifteen minutes after the injection of each agent, the first set of parameters, arterial blood pressure (BP) and heart rate (HR), the second set of parameters, skin blood flow (SBF) and skin blood velocity (SBV), or the third set of parameters, the number of rearing (exploratory behavior) responses and body weight was monitored. Each agent was administered three times a week for 10 weeks, and each set of parameters was monitored on different days, once a week. The dose of phenylephrine significantly increased BP and decreased HR, SBF, SBV, and the number of rearing responses in the PE group compared with those in the respective age-matched control group. The dose of dobutamine significantly increased BP and HR, increased SBF, SBV, and the number of rearing responses in the DOB group compared with those in the control group. Continuous neck exposure to the SMF alone for up to 10 weeks induced no significant changes in any of the measured cardiovascular and behavioral parameters. The SMF exposure for at least 2 weeks (1) significantly depressed phenylephrine effects on BP, SBF, SBV, and rearing activity (SMF + PE group vs. PE group); (2) significantly depressed dobutamine effects on BP, SBF, and SBV, and suppressed dobutamine-induced increase in the rearing activity (SMF + DOB group vs. DOB group). These results suggest that continuous neck exposure to 12 mT SMF for at least 2 weeks may depress or suppress sympathetic agonists-induced hypertension, hemodynamics, and behavioral changes by modulating sympathetic nerve activity.  相似文献   

9.
Human exposure to magnetic fields, increased through use of new technologies like magnetic resonance imaging (MRI), has prompted investigations into possible effects of static magnetic fields (SMFs) on cellular processes. However, controversy still remains between many studies, which likely results from a lack of uniformity across experimental parameters, including the length of magnetic field exposure, the strength of the magnetic field, and the cell type or organism under investigation. The purpose of this research was to monitor effects of SMF exposure using real‐time luminescence photometry. The study investigated the potential interaction of a 100 mT SMF on a heat shock protein (hsp70)/luciferase reporter construct in stably transfected NIH3T3 cells. Changes in heat shock promoter activation following 100 mT SMF exposure were analyzed and detected as bioluminescence in real‐time. Two heat parameters were considered in combination with sham‐ and 100 mT‐exposed experiments: no heat or 1,800 s heat. As expected, there was a significant increase in bioluminescence in response to 1,800 s of heat alone. However, no significant difference in average hsp70 promoter activation between sham and 100 mT experiments was observed for no heat or 1,800 s heat experiments. Therefore, a 100 mT SMF was shown to have no effect on the activation of the heat shock protein promoter during SMF exposure or when SMF exposure was combined with a heat insult. J. Cell. Biochem. 108: 956–962, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Calcium ions are involved in a number of important signal transduction pathways in cells. Cytosolic calcium concentration ([Ca(2+)](c)) can be affected by the activation of Ca(2+) channels through the action of ligands such as ATP. The response of [Ca(2+)](c) to ligands may be affected by external factors like magnetic fields. The purpose of this study was to determine if exposure to a static magnetic field (SMF) for 800 s altered the [Ca(2+)](c) response to ATP in undifferentiated HL-60 cells. We sham exposed or field exposed fura-2 loaded HL-60 cells to a SMF of 1, 10, and 100 mT. Cells were activated with ATP 300 s into the exposure. The level of [Ca(2+)](c) was followed before, during, and after field or sham exposure with a ratiometric fluorescence spectroscopy system. It was found that high concentrations of ATP resulted in greater [Ca(2+)](c) responses, but faster recovery to near basal levels. The application of 1, 10, or 100 mT SMF did not affect the [Ca(2+)](c) response to ATP. Future work could examine the effect of a longer SMF exposure on the [Ca(2+)](c) response to ATP. Longer exposures might provide sufficient time for morphological changes in the plasma membrane to occur.  相似文献   

11.
The aim of this study was to reveal whether static magnetic fields (SMFs) influence the repair of radiation‐damaged DNA on leukocytes or has any effect on DNA. After 4 Gy of 60Co‐γ irradiation, some of the samples were exposed to inhomogeneous SMFs with a lateral magnetic flux density gradient of 47.7, 1.2, or 0.3 T/m by 10 mm lateral periodicity, while other samples were exposed to homogeneous SMF of 159.2 ± 13.4 mT magnetic flux density for a time period of 0.5 min, 1, 2, 4, 6, 18, 20, or 24 h. Another set of samples was exposed to the aforementioned SMFs before gamma irradiation. The following three groups were examined: (i) exposed to SMF only, (ii) exposed to SMF following irradiation by 60Co‐γ, and (iii) exposed to SMF before 60Co‐γ irradiation. The analysis of the DNA damage was made by single‐cell gel electrophoresis technique (comet assay). Statistically significant differences were found at 1 h (iSMF), 4 h (hSMF), and 18 h (hSMF) if samples were exposed to only SMF, compared to control. When the SMF exposure followed the 60Co‐γ irradiation, statistically significant differences were found at 1 h (iSMF) and 4 h (hSMF). If exposure to SMF preceded 60Co‐γ irradiation, no statistically significant difference was found compared to 4 Gy gamma‐irradiated group. Bioelectromagnetics 31:488–494, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
We investigated the combined effects of a moderate intensity static magnetic field (SMF) and an L-type voltage-gated Ca(2+) channel blocker, nicardipine in stroke-resistant spontaneously hypertensive rats during the development of hypertension. Five-week-old male rats were exposed to SMF intensity up to 180 mT (B(max)) with a peak spatial gradient of 133 mT/mm for 14 weeks. Four experimental groups of 14 animals each were examined: (1) sham exposure with intraperitoneal (ip) saline injection (control); (2) SMF exposure with ip saline injection (SMF); (3) sham exposure with ip nicardipine injection (NIC); (4) SMF exposure with ip nicardipine injection (SMF + NIC). A disc-shaped permanent magnet or a dummy magnet was implanted in the vicinity adjacent to the left carotid sinus baroreceptor region in the neck of each rat. Nicardipine (2 mg/kg ip) was administered three times a week for 14 weeks, and then 15 min after each injection, arterial blood pressure (BP), heart rate (HR), baroreflex sensitivity (BRS), skin blood flow (SBF), skin blood velocity (SBV), plasma nitric oxide (NO) metabolites (NO(x) = NO(2) (-) + NO(3) (-)), plasma catecholamine levels and behavioral parameters of a functional observational battery were monitored. The action of nicardipine significantly decreased BP, and increased HR, SBF, SBV, plasma epinephrine and norepinephrine in the NIC group compared with the control respective age-matched group without changing plasma NO(x) levels. Neck exposure to SMF alone for 5-8 weeks significantly suppressed or retarded the development of hypertension together with increased BRS in SMF group. Furthermore, the exposure to SMF for 1-8 weeks significantly promoted the nicardipine-induced BP decrease in the SMF + NIC group compared with the respective NIC group. Moreover, the SMF induced a significant increase in plasma NO(x) in the nicardipine-induced hypotension. There were no significant differences in any of the physiological or behavioral parameters measured between the SMF + NIC and the NIC groups, nor between the SMF and the control groups. These results suggest that the SMF may enhance nicardipine-induced hypotension by more effectively antagonizing the Ca(2+) influx through the Ca(2+) channels compared with the NIC treatment alone. Furthermore, the enhanced antihypertensive effects of the SMF on the nicardipine-treated group appear to be partially related to the increased NO(x). Theoretical considerations suggest that the applied SMF (B(max) 40 mT, 0 Hz) can be converted into a changing magnetic field (B(max) 30-40 mT, 5.7-6.5 Hz or 7.5-8.3 Hz) in the baroreceptor region by means of the carotid artery pulsation. Therefore, we propose that the moderate intensity changing magnetic field, i.e., the magnetic field modulated by the pulse rate, may influence the activity of baroreceptor and baroreflex function.  相似文献   

13.
It has been suggested that exposure to electromagnetic fields may be a risk factor for cardiovascular disease in humans. Low density lipoprotein (LDL) modifications such as peroxidation and aggregation have been implicated in the pathogenesis of atherosclerosis. The present study investigated the effects of weak (0.125–0.5 mT) and moderate (1–4 mT) static magnetic fields (SMFs) on LDL oxidation, aggregation and zeta potential in vitro. Our results demonstrated that magnetic flux densities of 0.25 and 0.5 mT decreased, and magnetic flux densities of 3 and 4 mT increased the zeta potential and LDL oxidation in comparison with the control samples. All doses of SMFs increased the LDL aggregation in a time‐ and dose‐dependent manner. It is concluded that SMFs can alter the susceptibility of LDL to oxidation and this alteration is dependent on the applied magnetic flux density. The SMF, in addition to its role in the production and stabilization of free radicals and promotion of lipid peroxidation, may influence the metabolism of lipoproteins and their interaction with other molecules such as apolipoproteins, enzymes and receptors through the alteration of the LDL zeta potential and its particles tendency to aggregation. Bioelectromagnetics 34:397–404, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
The aim of this study was to investigate the effect of static magnetic fields (SMF) on reactive oxygen species induced by X‐ray radiation. The experiments were performed on lymphocytes from male albino Wistar rats. After exposure to 3 Gy X‐ray radiation (with a dose rate of 560 mGy/min) the measurement of intracellular reactive oxygen species in lymphocytes, using a fluorescent probe, was done before exposure to the SMF, and after 15 min, 1 and 2 h of exposure to the SMF or a corresponding incubation time. For SMF exposure, 0 mT (50 µT magnetic field induction opposite to the geomagnetic field) and 5 mT fields were chosen. The trend of SMF effects for 0 mT was always opposite that of 5 mT. The first one decreased the rate of fluorescence change, while the latter one increased it. Bioelectromagnetics 34:333–336, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
In this experiment, we evaluated the effects of strong static magnetic fields (SMF) on the orientation of myotubes formed from a mouse-derived myoblast cell line, C2C12. Myogenic differentiation of C2C12 cells was conducted under exposure to SMF at a magnetic flux density of 0-10 T and a magnetic gradient of 0-41.7 T/m. Exposure to SMF at 10 T led to significant formation of oriented myotubes. Under the high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient, myotube orientation increased as the myogenic differentiation period increased. At the 3 T exposure position, where there was a moderate magnetic flux density and moderate magnetic field gradient, myotube orientation was not observed. We demonstrated that SMF induced the formation of oriented myotubes depending on the magnetic flux density, and that a high magnetic field gradient and a high value of the product of the magnetic flux density and magnetic field gradient induced the formation of oriented myotubes 6 days after myogenic differentiation. We did not detect any effect of the static magnetic fields on myogenic differentiation or cell number. To the best of our knowledge, this is the first report to demonstrate that myotubes orient to each other under a SMF without affecting the cell number and myogenic differentiation.  相似文献   

16.
The objective of this study was to observe whether a rotating magnetic field (RMF) could change the anomalous chemical wave propagation induced by a moderate‐intensity gradient static magnetic field (SMF) in an unstirred Belousov–Zhabotinsky (BZ) reaction. The application of the SMF (maximum magnetic flux density = 0.22 T, maximum magnetic flux density gradient = 25.5 T/m, and peak magnetic force product (flux density × gradient) = 4 T2/m) accelerated the propagation velocity in a two‐dimensional pattern. Characteristic anomalous patterns of the wavefront shape were generated and the patterns were dependent on the SMF distribution. The deformation and increase in the propagation velocity were diminished by the application of an RMF at a rotation rate of 1 rpm for a few minutes. Numerical simulation by means of the time‐averaged value of the magnetic flux density gradient or the MF gradient force over one rotation partially supported the experimental observations. These considerations suggest that RMF exposure modulates the chemical wave propagation and that the degree of modulation could be, at least in part, dependent on the time‐averaged MF distribution over one rotation. Bioelectromagnetics 34:220–230, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
The aim of this study was to determine the effect of gradient static magnetic field (SMF) on reactive oxygen species (ROS) production in human neutrophils in peripheral blood in vitro. Blood samples collected from healthy individuals were incubated in an inhomogeneous SMF (in a south or north pole of the field) for 15, 30 or 45 minutes. The maximum value of induction (B max) amounted to ≈ 60 mT. To determine the strength of the ROS production, dihydrorhodamine (123DHR) as fluorophore and phorbol 12-myristate 13-acetate (PMA) as respiratory burst stimulator were used. 123DHR oxidation by ROS was measured by flow cytometry. The exposure of blood samples to SMF induced statistically significant changes in ROS production in unstimulated and PMA-stimulated neutrophils. The observed effects were highly correlated with the exposure time and depended on the orientation of the field. Although intracellular mechanisms underlying such interactions are not thoroughly understood, it could be presumed that SMF affects ROS metabolic oscillations and their formation and inactivation. This study emphasizes the importance of proper adjustment of exposure time to SMF for any potential therapeutic applications.  相似文献   

18.
Previously, we found that whole body exposure to static magnetic fields (SMF) at 10 mT (B(max)) and 25 mT (B(max)) for 2-9 weeks suppressed and delayed blood pressure (BP) elevation in young, stroke resistant, spontaneously hypertensive rats (SHR). In this study, we investigated the interrelated antipressor effects of lower field strengths and nitric oxide (NO) metabolites (NO(x) = NO(2)(-) + NO(3)(-)) in SHR. Seven-week-old male rats were exposed to two different ranges of SMF intensity, 0.3-1.0 mT or 1.5-5.0 mT, for 12 weeks. Three experimental groups of 20 animals each were examined: (1) no exposure with intraperitoneal (ip) saline injection (sham-exposed control); (2) 1 mT SMF exposure with ip saline injection (1 mT); (3) 5 mT SMF exposure with ip saline injection (5 mT). Arterial BP, heart rate (HR), skin blood flow (SBF), plasma NO metabolites (NO(x)), and plasma catecholamine levels were monitored. SMF at 5 mT, but not 1 mT, significantly suppressed and retarded the early stage development of hypertension for several weeks, compared with the age matched, unexposed (sham exposed) control. Exposure to 5 mT resulted in reduced plasma NO(x) concentrations together with lower levels of angiotensin II and aldosterone in SHR. These results suggest that SMF may suppress and delay BP elevation via the NO pathways and hormonal regulatory systems.  相似文献   

19.
20.
In the present experiment, the effect of a single 30 min inhomogeneous static magnetic field (SMF) exposure on thermal pain threshold (TPT) was examined in 15 young healthy human volunteers. The SMF had a maximum peak‐to‐peak amplitude of 330 mT with a maximum gradient of 13.2 T/m. In either of two experimental sessions (SMF or SHAM), four blocks of 12 TPT trials were carried out under SMF or SHAM exposure on all fingertips of the dominant hand, excluding the thumb. TPT and visual analog scale (VAS) data were recorded at 0, 15, and 30 min exposure time, and 30 min following exposure. SMF treatment resulted in a statistically significant increase in TPT during the entire exposure duration and diminished within‐block thermal habituation, leaving pain perception unchanged. These results indicate that SMF‐induced peripheral neuronal or circulatory mechanisms may be involved in the observed TPT increase by setting the pain fibre adaptation potential to higher levels. Bioelectromagnetics 32:131–139, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号