首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmid DNA carrying the adenosine 3',5'-cyclic monophosphate receptor protein (crp) gene of Escherichia coli was irradiated, in solution, with X-rays, and the mutations produced in the crp gene were assayed by transforming the recipient E. coli cells. Ninety-six mutant clones were isolated, and mutational changes were determined by DNA sequencing. Of the 92 mutations thus detected, 74 represented base substitution mutations and the remaining 18 were frameshifts. The base substitutions included 56 G:C to A:T transitions, 10 G:C to T:A transversions and 7 G:C to C:G transversions. An A:T to G:C transition was found only once, and neither an A:T to T:A nor an A:T to C:G transversion was detected. The frameshift mutations consisted of 11 one-base deletions and 7 one-base insertions. Accordingly, G:C to A:T transition was the predominant type of mutation, which constituted 76% (56/74) of the total base substitutions and 60% (56/92) of all detected mutations. Furthermore, of the 56 transitions, about three-quarters (41 clones) clustered at an identical site, a cytosine residue at the 706 position, demonstrating that this site is a distinct hot spot for X-ray mutagenesis. These results raise the possibility that radiation-induced mutations may not necessarily occur randomly, at least in certain cases.  相似文献   

2.
In order to examine possible cell-type specificity in mutagenic events, a shuttle-vector plasmid, pZ189, carrying a bacterial suppressor tRNA marker gene, was treated with ultraviolet radiation and propagated in Epstein-Barr virus transformed lymphoblastoid cell lines from a patient, XP12BE, with xeroderma pigmentosum (XP), group A, and a normal control. XP is a skin-cancer-prone disorder with UV hypersensitivity and defective DNA repair. Plasmid survival and mutations inactivating the marker gene were scored by transforming an indicator strain of E. coli. An earlier report on this data [Seetharam et al., (1990) J. Mol. Biol., 212, 433] indicated lower survival and higher mutation frequency with the UV-treated plasmid passed through the XP12Be(EBV) line. In the present report, sequence analysis of 198 mutant plasmids revealed a predominance of G:C----A:T transitions with both lymphoblastoid cell lines. This finding is consistent with the bias of polymerases toward insertion of an adenine opposite non-coding photoproducts (dinucleotides or other lesions). Transversion mutagenesis, non-adjacent double mutations, and triple-base mutations may involve other mechanisms. These results were compared to similar data from a fibroblast line from the same patient [Bredberg et al., (1986) Proc. Natl. Acad. Sci. (U.S.A.), 83, 8273]. The frequency of G:C----A:T transitions was higher, and there were fewer plasmids with multiple-base substitutions and with transversion mutations with both XP lymphoblasts and fibroblasts than with the normal lymphoblasts and fibroblasts. There were no significant differences in classes or types of mutations in the UV-treated plasmid replicated in the XP lymphoblasts and the XP fibroblasts. This suggests that the major features of UV mutagenesis in different cell types from the same individual are similar.  相似文献   

3.
We have assessed the role of cellular transformation in ultraviolet (uv)-induced mutagenic events in human cells. To maintain uniformity of genetic background and to eliminate the effect of DNA repair, primary nontransformed lymphocytes (T-cells) and Epstein-Barr virus-transformed lymphocytes (B-cells) from one patient (XP12Be) with the DNA repair-deficient disorder xeroderma pigmentosum (group A) were transfected with the mutagenesis shuttle vector pZ189. Parallel control experiments were performed with primary, nontransformed lymphocytes from a normal individual and with a repair-proficient Epstein-Barr virus-transformed lymphocyte line (KR6058). pZ189 was treated with uv and introduced into the four cell lines by electroporation. Plasmid survival and mutations inactivating the marker supF suppressor tRNA gene in the recovered pZ189 were scored by transforming an indicator strain of Escherichia coli. Plasmid survival was reduced and mutation frequency elevated equally with both XP-A cell lines compared to both normal cell lines. Base sequence analysis of more than 250 independent plasmids showed that while the G:C----A:T base substitution mutation was found in at least 60% of plasmids with single or tandem mutations with all four cell lines, the frequency with the transformed XP-A (93%) cells was significantly higher (P less than 0.01) than that with the nontransformed XP-A cells (77%). In addition, with the transformed XP-A cells, there were significantly fewer plasmids with transversions and with mutations at a transversion hotspot (base pair 134) than with plasmids recovered from nontransformed XP-A cells. Interleukin-2 and phytohemagglutinin (used to maintain growth of the nontransformed lymphocytes) treatment of transformed XP12Be cells did not change overall plasmid survival or mutation frequency, but increased the transversion frequency and induced a mutational hotspot (at base pair 159), while another mutational hotspot (at base pair 123) disappeared. Thus we have demonstrated that in repair-deficient human cells, cellular transformation, while not affecting overall postuv plasmid survival and mutation frequency, does increase the susceptibility to G:C----A:T transition mutations, a type of mutation associated with uv-induced neoplasia.  相似文献   

4.
Suppressors of a temperature-sensitive dnaZ polymerization mutant of Escherichia coli have been identified by selecting temperature-insensitive revertants. Those suppressed strains which concomitantly became cold sensitive were chosen for further study. Intragenic suppressor mutations, which caused cold-sensitive defects in DNA polymerization, were located in dnaZ by transduction with lambda dnaZ+ phages. Extragenic suppressor mutations were mapped within the initiation gene dnaA. These suppressor-containing strains were defective in initiation at low temperature as determined by measurements of DNA synthesis in vivo and in toluene-treated cells. The occurrence of suppressor mutations of dnaZ(Ts) within the dnaA gene is considered evidence that the dnaA and dnaZ products interact in vivo. A second indication of a dnaA-dnaZ protein-protein interaction was provided by the observation that the introduction of additional copies of the dnaZ+ gene into a strain carrying the dnaA suppressor mutation was lethal [whether the strain was dnaZ+ or dnaZ(Ts)].  相似文献   

5.
E Jay  A K Seth  J Rommens  A Sood    G Jay 《Nucleic acids research》1982,10(20):6319-6329
Mammalian genes, when inserted into bacterial plasmid or phage DNAs, will not be expressed into the corresponding specific proteins in E. coli unless proper initiations signals required for recognition by E. coli ribosomes are provided. We have studied these signals and chemically synthesized two DNA duplexes each containing different initiation signals. These have been inserted in front of the Simian virus 40 (SV40) small tumor antigen gene (SV40 t gene) at varying distances from the ATG initiation codon prior to its cloning into pBR322 plasmid DNA. Plasmid containing clones carrying either of these two synthetic ribosome binding sites (RBS) at varying distances from the SV40 t gene all produced a 17K protein identical to authentic t antigen by immunologic, electrophoretic and proteolytic digestion analyses. This provides a novel method to ensure the specific expression of any contiguous mammalian gene to be cloned to bacteria, and also a unique in vivo method for studying the structure-function (efficiency) relationship of RBS with specific base changes.  相似文献   

6.
Plasmid pGam18 carrying one of the cloned mutant loci, responsible for enhanced radiation resistance in the strain Escherichia coli Gamr444, was shown to increase resistance to the lethal effect of gamma-rays with a dose modification factor DMF = 2. Enhanced resistance was observed in wild-type cells and in the mutant recBC sbcB, but not recFBC sbcA. This indicates the involvement of a product of the gam18 locus in the RecF pathway of recombinational repair. The protective effect of plasmid pGam18 against radiation was completely abolished by mutations in the most RecF pathway genes (recF, recJ, recR, recO, recQ, recN, and ruvB). However, three mutations in the uvrD gene, which encodes DNA helicase II and belongs to the RecF pathway, can be partially complemented by plasmid pGam18. These data suggest that the mutant allele gam18 affects the DNA helicase II activity at the presynaptic stage of the RecF pathway-mediated repair of DNA double-stranded breaks induced by gamma-irradiation.  相似文献   

7.
The Escherichia coli tyrosine amber suppressor tRNA gene, supF, has been utilized as a mutagenic target in several shuttle-vector plasmids. Data on mutagenic inactivation of suppressor activity was obtained from induced mutagenesis experiments with plasmids pZ189 and p3AC, and from studies on alterations of the supF gene transduced into E. coli. 162 single or tandem base-substitution mutations that reduce or eliminate suppressor activity were identified at 86 sites within 158 base pairs. The 2 transition and 4 transversion mutations possible in double-stranded DNA were all detectable. At 56 sites two different inactivating mutations were found; and at 20 sites all 3 possible base substitution mutations inactivated suppressor function. Most of the mutations were clustered within the mature tRNA region: 144 of the base-substitution mutations were found at 74 sites within the 85-bp mature tRNA region. Insertions of 1 or 2 bases at 4 sites and deletions of 1 to 3 bases at 15 sites were found to inactivate supF function. A few silent mutations which do not inactivate suppressor function were found: single base-substitutions at 4 sites, 14 pairs of silent double mutations, and a large deletion including the promoter region. The supF gene is thus an extremely sensitive target for mutagenic inactivation in shuttle-vector plasmids.  相似文献   

8.
9.
Johnson JM  Ding W  Henkhaus J  Fix D 《Mutation research》2001,479(1-2):121-130
Studies of N-ethyl-N-nitrosourea (ENU)-induced mutagenesis with a tyrosine auxotroph of Escherichia coli revealed a new type of revertant. This mutant strain was interesting because: (i) it was not a true revertant of the nonsense (ochre) defect nor a tRNA suppressor mutation; and (ii) it was induced by ENU to greater extent in a UmuC-defective host. Genetic mapping located the probable mutation to a region of the E. coli chromosome containing a newly described gene called tas. To investigate this mutation, the upstream region of the tas gene from both wild-type and mutant cells was cloned into a promoterless lacZ expression vector and recombined onto a lambda bacteriophage. Recombinant bacteriophage were inserted into the bacterial chromosome and beta-galactosidase (betaGal) assays were performed. These assays revealed an almost three-fold greater expression of betaGal from the mutant DNA than from the wild-type DNA. Sequence analysis of the region directly upstream of the tas gene revealed a G:C to A:T transition at base number 2263 (numbering based on GenBank Accession #AE000367), located within a potential promoter site. Further sequencing indicated no other mutations within the 1454bp region analyzed; however, there were several nucleotide differences seen in our B/r strain of E. coli, when compared with the published E. coli K-12 sequence. A total of 10 base differences were discovered; one in mutH, six within a potential open reading frame (ORF-o237) and three in non-coding regions. Yet, none of the changes altered the predicted amino acid sequences. These results provide evidence of a mechanism for increased expression of the novel gene tas and support the neutral drift hypothesis for the evolution of DNA sequences.  相似文献   

10.
In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid pKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions.  相似文献   

11.
12.
We describe the isolation and characterization of amber mutations in the lexA gene of Escherichia coli K-12. These mutations, designated spr(Am), were isolated and characterized in a lexA tif sfi genetic background. They abolished the sensitivity of the strain to UV light and resulted in high rates of synthesis of recA protein. Phage lambda+ failed to lysogenize the strains as observed with similar strains carrying non-amber spr mutations described previously, thereby indicating a constitutive expression of the phage induction pathway. Introduction of an amber suppressor mutation into a strain bearing the spr(Am) mutation restored expression of the LexA mutant phenotype. We conclude that spr mutations either inactivate or prevent synthesis of the lexA gene product and that loss of this product results in constitutive expression of the E. coli induction system in the tif sfi genetic background.  相似文献   

13.
In an E. coli strain carrying two mutations, one in the dnaC gene involved in initiation of DNA replication and another in the uvrB gene which affects the excision-repair system, it has been shown that the SOS response cannot be induced by UV. This is probably due to the absence of any inducing signal (Salles and Defais, 1984). The capacity to induce the SOS network was followed using RecA protein amplification as a probe. When breaks were produced in DNA, RecA protein induction was restored. We describe here a strain in which both RecA protein and beta-galactosidase from a sfiA::lacZ fusion can be measured simultaneously in the same bacterial extract. In conditions in which no replication proceeds, this strain can be used to detect the ability of chemicals to produce free radical-mediated DNA breaks in vivo.  相似文献   

14.
Prototrophic mutants produced by UV light in Escherichia coli K-12 strains with argE3(Oc) and hisG4(Oc) defects are distinguished as backmutations and specific nonsense suppressor mutations. In strains carrying a umuC defect, mutants are not produced unless irradiated cells are incubated and then exposed to photoreversing light (delayed photoreversal mutagenesis). The mutants thus produced are found to be specifically suppressor mutations and not backmutations. The suppressor mutations are primarily glutamine tRNA ochre suppressor mutations, which have been attributed previously to mutation targeted at T = C pyrimidine dimers. In a lexA51 recA441 strain, where the SOS mutagenesis functions are constitutive, targeting at dimers is confirmed by demonstrating that the induction of glutamine tRNA suppressor mutations is susceptible to photoreversal. In the same strain induction of backmutations is not susceptible to photoreversal. Thus delayed photoreversal mutagenesis produces suppressor mutations that can be targeted at pyrimidine dimers and does not produce backmutations that are not targeted at pyrimidine dimers. This correlation supports the idea that delayed photoreversal mutagenesis in umuC defective cells reflects a mutation process arrested at a targeting pyrimidine dimer photoproduct, which is the immediate cause of both the alteration in DNA sequence and the obstruction (unless repaired) to mutation fixation and ultimate expression.  相似文献   

15.
Segments of DNA are deleted from recombinant cosmid DNAs with high frequency during propagation in standard recA Escherichia coli hosts. An attempt has been made to derive an appropriate strain of E. coli, suitable for cosmid cloning, in which such deletions do not occur. We examined the effects of a series of host recombinational mutations on the deletion process, using six independent recombinant cosmids that carry inserts of mouse, Chinese hamster, or human DNA. Various E. coli host cells carrying the recombinant cosmids were cultured serially in liquid medium, and the recombinant cosmid DNAs were extracted from the host cells and analyzed by agarose gel electrophoresis and by gene transfer of the DNAs into cultured mammalian cells. Of the mutations examined, only a recB recC sbcB recJ (or recN) quadruple combination of host mutations prevented the deletion of DNA segments. The recombinant cosmid DNAs propagated in E. coli hosts that carried this combination of mutations were functionally as well as structurally intact. We propose that the recJ (and/or recN) gene is involved in some aspect of the events that lead to deletions of cosmid DNA in a recB recC sbcB genetic background.  相似文献   

16.
We describe the generation of mammalian cell lines carrying amber suppressor genes. Nonsense mutants in the herpes simplex virus thymidine kinase (HSV tk) gene, the Escherichia coli xanthine-guanine phosphoribosyl transferase (Eco-gpt) gene and the aminoglycoside 3′ phosphotransferase gene of the Tn5 transposon (NPT-II) were isolated and characterized. Each gene was engineered with the appropriate control signals to allow expression in both E. coli and mammalian cells. Expression in E. coli made possible the use of well developed bacterial and phage genetic manipulations to isolate and characterize the nonsense mutants. Once characterized, the nonsense mutants were transferred into mammalian cells by microinjection and used, in turn, to select for amber suppressor genes. Xenopus laevis amber suppressor genes, prepared by site-specific mutagenesis of a normal X. laevis tRNA gene, were microinjected into the above cell lines and selected for the expression of one or more of the amber mutant gene products. The resulting cell lines, containing functional amber suppressor genes, are stable and exhibit normal growth rates.  相似文献   

17.
18.
A simian virus 40-based shuttle vector was used to characterize UV-induced mutations generated in mammalian cells. The small size and placement of the mutagenesis marker (the supF suppressor tRNA gene from Escherichia coli) within the vector substantially reduced the frequency of spontaneous mutations normally observed after transfection of mammalian cells with plasmid DNA; hence, UV-induced mutations were easily identified above the spontaneous background. UV-induced mutations characterized by DNA sequencing were found primarily to be base substitutions; about 56% of these were single-base changes, and 17% were tandem double-base changes. About 24% of the UV-induced mutants carried multiple mutations clustered within the 160-base-pair region sequenced. The majority (61%) of base changes were the G . C----A . T transitions; the other transition (A . T----G . C) and all four transversions occurred at about equal frequencies. Hot spots for UV mutagenesis did not correspond to hot spots for UV-induced photoproduct formation (determined by a DNA synthesis arrest assay); in particular, sites of TT dimers were underrepresented among the UV-induced mutations. These observations suggest to us that the DNA polymerase(s) responsible for mutation induction exhibits a localized loss of fidelity in DNA synthesis on UV-damaged templates such that it synthesizes past UV photoproducts, preferentially inserting adenine, and sometimes misincorporates bases at undamaged sites nearby.  相似文献   

19.
Site-specific mutation was demonstrated in a shuttle vector system using nitrogen mustard-conjugated oligodeoxyribonucleotides (ODNs). Plasmid DNA was modified in vitro by ODNs containing all four DNA bases in the presence of Escherichia coli RecA protein. Up to 50% of plasmid molecules were alkylated in the targeted region of the supF gene and mutations resulted upon replication in mammalian cells. ODNs conjugated with either two chlorambucil moieties or a novel tetrafunctional mustard caused interstrand crosslinks in the target DNA and were more mutagenic than ODNs that caused only monoadducts.  相似文献   

20.
We constructed a new type of cloning vector, pERISH2, that transforms Escherichia coli HB101 only when a foreign DNA fragment is ligated into the cloning site of the plasmid vector. Plasmid pERISH2 carries the rcsB gene which is derived from the chromosome of E. coli HB101 and is involved in the regulation of colanic acid production. When E. coli HB101 is transformed by this vector carrying the intact rcsB gene, the gene product RcsB blocks bacterial growth. However, if the rcsB gene is inactivated by the insertion of a foreign DNA fragment, this recombinant plasmid no longer inhibits the growth of E. coli HB101. Although E. coli HB101 is not stably transformed by pERISH2, E. coli K-12 strains such as JM109 and C600 can harbor this vector. Therefore, pERISH2 can be amplified in JM109 and be prepared from this strain in a large quantity using conventional methods. A chromosomal gene library of Klebsiella pneumoniae is constructed easily and efficiently by the utilization of this new cloning vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号