首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Using a target simulator three serotine bats,Eptesicus serotinus, were trained to judge whether a phantom target was present or absent. The echolocation sounds emitted by the bats during the detection were intercepted by a microphone, amplified and returned by a loudspeaker as an artificial echo, with a delay of 3.2 ms and a sound level determined by the overall gain and cry amplitude. The cry level of each pulse was measured and the echo level received by the bat was calculated. The target was presented in 50% of the trials and the gain adjusted using conventional up/down procedures. Under these conditions between 40 and 48 dB peSPL were required for 50% detection (Figs. 2, 3).In a subsequent experiment the phantom target was masked with white noise (No) with a spectrum level of –113 dB re. 1 Pa·Hz–1/2. The thresholds were increased by 7–14 dB. Energy density (S) of a single pulse was measured and used to estimate S/No, which ranged from 36–49 dB at threshold. Theoretically the coherent receiver model predicts the ratio between hits and false alarms observed for the bats at a S/No of ca. 1–2 dB. Since the bats require 40–50 dB higher S/No (Fig. 3), this is taken as negative evidence for coherent reception (cross correlation).Furthermore, a strong sensitivity to clutter was found since there seemed to exist a fixed relationship between thresholds and clutter level.Abbreviations C clutter - Nbw noise in a specified bandwidth - No noise in i Hz bandwidth - peSPL peak equivalent sound pressure level - S signal energy - SD standard deviation - Y/N Yes/No psychometry - 2AFC two alternative forced choice psychometry  相似文献   

2.
Summary Hearing sensitivity and psychophysical tuning curves were determined for the mormyridGnathonemus petersii. Pure tone hearing thresholds were determined from 100 Hz to 2,500 Hz, with best sensitivity being about –31 dB (re: 1 dyne/ cm2) from 300 Hz to 1,000 Hz. In order to determine frequency tuning of the auditory system, psychophysical tuning curves (PTC's) were measured with the masker presented simultaneously with, or just ahead of, the 500 Hz test signal. The sound level for different frequencies needed to just mask the test tone were determined from 100 to 800 Hz. Maximum masking occurred in both forward and simultaneous conditions when the masker and the test tone were at the same frequency. As the masker was moved in frequency from 500 Hz, higher sound levels of maskers were needed to afford masking of the test tone. The data were similar in simultaneous and forward masking, with theQ 10 dB, a measure of sharpness of tuning, being about 5 in both cases. Data were compared for other species for which behavioral thresholds and PTC's are available.Gnathonemus hears about as wide a range of frequencies as the goldfish,Carassius auratus, although the PTC's for the two species are strikingly different. The PTC's forGnathonemus resemble those determined in a forward-masking paradigm for the clown knife fish,Notopterus chitala, even thoughGnathonemus has a wider hearing bandwidth.Abbreviations AM amplitude modulated - EOD electric organ discharge - PTC psychophysical tuning curve  相似文献   

3.
Auditory evoked potentials (AEP) were used to measure the hearing range and auditory sensitivity of the American sand lance Ammodytes americanus. Responses to amplitude‐modulated tone pips indicated that the hearing range extended from 50 to 400 Hz. Sound pressure thresholds were lowest between 200 and 400 Hz. Particle acceleration thresholds showed an improved sensitivity notch at 200 Hz but not substantial differences between frequencies and only a slight improvement in hearing abilities at lower frequencies. The hearing range was similar to Pacific sand lance Ammodytes personatus and variations between species may be due to differences in threshold evaluation methods. AEPs were also recorded in response to pulsed sounds simulating humpback whale Megaptera novaeangliae foraging vocalizations termed megapclicks. Responses were generated with pulses containing significant energy below 400 Hz. No responses were recorded using pulses with peak energy above 400 Hz. These results show that A. americanus can detect the particle motion component of low‐frequency tones and pulse sounds, including those similar to the low‐frequency components of megapclicks. Ammodytes americanus hearing may be used to detect environmental cues and the pulsed signals of mysticete predators.  相似文献   

4.
Psychophysical experiments demonstrated that the hearing abilities of two damselfish species change during ontogeny. Auditory thresholds of four size-groups of juvenile bicolor damselfish. Pomacentrus partitus, and for comparative purposes, three different sized juveniles belonging to a closely related species, P. variablis, were determined through classical conditioning experiments conducted in a standing wave tube. Young juveniles (10–27 days post-metamorphosis) exhibited poor hearing, with detection limens ranging from 54 dB (at 300 Hz) to 15 dB (at 1500 Hz) higher than known adult thresholds. Thresholds decreased exponentially with increasing age, while rapidly approaching adult levels. Youngest juveniles exhibited flat, untuned audiograms, with the appearance of a best frequency and a pattern of increasing acuity progressing in a manner similar to that observed in mammals and birds.  相似文献   

5.
Temporal cues are important for some forms of auditory processing, such as echolocation. Among odontocetes (toothed whales, dolphins, and porpoises), it has been suggested that porpoises may have temporal processing abilities which differ from other odontocetes because of their relatively narrow auditory filters and longer duration echolocation signals. This study examined auditory temporal resolution in two Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) using auditory evoked potentials (AEPs) to measure: (a) rate following responses and modulation rate transfer function for 100 kHz centered pulse sounds and (b) hearing thresholds and response amplitudes generated by individual pulses of different durations. The animals followed pulses well at modulation rates up to 1,250 Hz, after which response amplitudes declined until extinguished beyond 2,500 Hz. The subjects had significantly better hearing thresholds for longer, narrower-band pulses similar to porpoise echolocation signals compared to brief, broadband sounds resembling dolphin clicks. Results indicate that the Yangtze finless porpoise follows individual acoustic signals at rates similar to other odontocetes tested. Relatively good sensitivity for longer duration, narrow-band signals suggests that finless porpoise hearing is well suited to detect their unique echolocation signals.  相似文献   

6.
Summary The tympanate, arctiid moth,Cycnia tenera responds to pulsed, 30 kHz acoustic stimuli resembling bat echolocation signals by emitting trains of clicks. This phonoresponse was used to determine that this moth is maximally sensitive to stimulus pulse repetition rates of 30–50 pulses/s, rates typically emitted by bats shortly before they close with their targets. At rates both above and below this optimum moths exhibit higher thresholds and reduced responsiveness. These data suggest thatC. tenera is capable of using the repetition rate emitted by an approaching bat as a cue in determining the relative proximity of the bat. The use of repetition rate information should allow this moth both an unambiguous indication of a bat at very close range as well as the ability to distinguish sources of nocturnal, high-frequency sounds not emitted by predators.  相似文献   

7.
Many animal groups use sounds in reproduction in order to court mates or repel rivals. We describe the sounds and behavioural context of courtship sound production in male sand gobies, Pomatoschistus minutus, and examine the variability of acoustic parameters and the fine temporal patterning of sound units. Male sand gobies excavate a nest under a suitable solid substrate and attract females to mate, attaching the eggs to the ceiling of the nest. Before mating a female may repeatedly enter and leave a male's nest. Sounds were not detected during the courtship phase outside the nest, but were recorded when females were in the nest before spawning. Sounds were produced in 44–100% of such nest visits, varying with individual males. The sand goby sound consists of a train of pulses repeated at a rate of 23–29 pulses per second. The frequency spectrum of single pulses was continuous from 20–30Hz to 500Hz and reached a peak around 100Hz. The absolute sound pressure level ranged from 118 to 138dB re 1µPa at 1–3cm. The sand goby emits sound in distinct sound groups (bursts). Sound temporal features (duration, pulse repetition rate) vary systematically over the course of the burst. Within- and between-male variation of acoustic parameters was examined from sounds emitted by the male. Sound amplitude (peak-to-peak, mV) and pulse rate varied significantly among males, despite low individual stereotypy. Furthermore, sound pressure level correlated with body size. The potential informative content of acoustic parameters is discussed in the light of a possible role of the sand goby sound in mate choice.  相似文献   

8.
Several anabantoid species produce broad-band sounds with high-pitched dominant frequencies (0.8–2.5 kHz), which contrast with generally low-frequency hearing abilities in (perciform) fishes. Utilizing a recently developed auditory brainstem response recording-technique, auditory sensitivities of the gouramis Trichopsis vittata, T. pumila, Colisa lalia, Macropodus opercularis and Trichogaster trichopterus were investigated and compared with the sound characteristics of the respective species. All five species exhibited enhanced sound-detecting abilities and perceived tone bursts up to 5 kHz, which qualifies this group as hearing specialists. All fishes possessed a high-frequency sensitivity maximum between 800 Hz and 1500 Hz. Lowest hearing thresholds were found in T. trichopterus (76 dB re 1 μPa at 800 Hz). Dominant frequencies of sounds correspond with the best hearing bandwidth in T. vittata (1–2 kHz) and C. lalia (0.8–1 kHz). In the smallest species, T. pumila, dominant frequencies of acoustic signals (1.5–2.5 kHz) do not match lowest thresholds, which were below 1.5 kHz. However, of all species studied, T. pumila had best hearing sensitivity at frequencies above 2 kHz. The association between high-pitched sounds and hearing may be caused by the suprabranchial air-breathing chamber, which, lying close to the hearing and sonic organs, enhances both sound perception and emission at its resonant frequency. Accepted: 26 November 1997  相似文献   

9.
It is unknown whether the fish utricle contributes to directional hearing. Here, we report response properties of single utricular fibers in a teleost fish (Dormitator latifrons) to linear accelerations at various stimulus frequencies and axes. Characteristic frequencies ranged from 50–400 Hz (median=80 Hz), and best frequencies shifted from 50 to 250 Hz with stimulus level. Best sensitivity of utricular fibers was distributed from –70 to –40 dB re: 1 g (mean=–52 dB), which is about 30 dB less sensitive than saccular fibers. Q50% fell between 0.16 and 11.50 (mean=2.04) at 15 dB above threshold. We observed temporal response patterns of entrained phase-locking, double phase-locking, phase-locked bursting, and non-phase-locked bursting. Most utricular fibers were directionally selective with various directional response profiles, and directional selectivity was stimulus-level dependent. Horizontal best-response axes were distributed in a 152° range while mid-sagittal best-response axes were clustered around the fish longitudinal axis, which is consistent with the horizontal orientation of the utricle and morphological polarizations of utricular hair cells. Therefore, results of this study indicate that the utricle in this vertebrate plays an auditory role in azimuth and that utricular fibers extend the response dynamic range of this species in directional hearing.  相似文献   

10.
Individual variation in vocalizations is a common feature of many forms of long‐distance communication in vertebrates. The extent to which individual variation occurs in non‐vocal, long‐distance acoustic communication has not, however, been tested. Here, we examine the spectral and temporal characteristics of a non‐vocal acoustic signal, the wing‐beating drumming display of the male Ruffed Grouse (Bonasa umbellus, L.), and test whether its structure varies more among individuals than within them. Drumming displays were recorded over two field seasons, and we measured several temporal and spectral features of these recordings. Each drumming display consists of 39–50 pulses produced over a period of 9–10 s with most of the energy concentrated at frequencies below 100 Hz. We calculated the potential for individual coding of several temporal and spectral features, and both the number of pulses and pulse rate were highly individually specific. This was corroborated by analyses of variance, bivariate plots of pulse number and rate, and discriminant function analyses. Overall, we conclude that male Ruffed Grouse produce individually specific drumming displays in a similar fashion to vocal individuality in other birds. The extent to which these individual differences persist from one season to the next is unclear, but individual differences in the number of pulses and pulse rate could provide information on individual identity to conspecifics.  相似文献   

11.
Binaural hearing involves using information relating to the differences between the signals that arrive at the two ears, and it can make it easier to detect and recognize signals in a noisy environment. This phenomenon of binaural hearing is quantified in laboratory studies as the binaural masking-level difference (BMLD). Mandarin is one of the most commonly used languages, but there are no publication values of BMLD or BILD based on Mandarin tones. Therefore, this study investigated the BMLD and BILD of Mandarin tones. The BMLDs of Mandarin tone detection were measured based on the detection threshold differences for the four tones of the voiced vowels /i/ (i.e., /i1/, /i2/, /i3/, and /i4/) and /u/ (i.e., /u1/, /u2/, /u3/, and /u4/) in the presence of speech-spectrum noise when presented interaurally in phase (S0N0) and interaurally in antiphase (SπN0). The BILDs of Mandarin tone recognition in speech-spectrum noise were determined as the differences in the target-to-masker ratio (TMR) required for 50% correct tone recognitions between the S0N0 and SπN0 conditions. The detection thresholds for the four tones of /i/ and /u/ differed significantly (p<0.001) between the S0N0 and SπN0 conditions. The average detection thresholds of Mandarin tones were all lower in the SπN0 condition than in the S0N0 condition, and the BMLDs ranged from 7.3 to 11.5 dB. The TMR for 50% correct Mandarin tone recognitions differed significantly (p<0.001) between the S0N0 and SπN0 conditions, at –13.4 and –18.0 dB, respectively, with a mean BILD of 4.6 dB. The study showed that the thresholds of Mandarin tone detection and recognition in the presence of speech-spectrum noise are improved when phase inversion is applied to the target speech. The average BILDs of Mandarin tones are smaller than the average BMLDs of Mandarin tones.  相似文献   

12.
For deaf individuals with residual low-frequency acoustic hearing, combined use of a cochlear implant (CI) and hearing aid (HA) typically provides better speech understanding than with either device alone. Because of coarse spectral resolution, CIs do not provide fundamental frequency (F0) information that contributes to understanding of tonal languages such as Mandarin Chinese. The HA can provide good representation of F0 and, depending on the range of aided acoustic hearing, first and second formant (F1 and F2) information. In this study, Mandarin tone, vowel, and consonant recognition in quiet and noise was measured in 12 adult Mandarin-speaking bimodal listeners with the CI-only and with the CI+HA. Tone recognition was significantly better with the CI+HA in noise, but not in quiet. Vowel recognition was significantly better with the CI+HA in quiet, but not in noise. There was no significant difference in consonant recognition between the CI-only and the CI+HA in quiet or in noise. There was a wide range in bimodal benefit, with improvements often greater than 20 percentage points in some tests and conditions. The bimodal benefit was compared to CI subjects’ HA-aided pure-tone average (PTA) thresholds between 250 and 2000 Hz; subjects were divided into two groups: “better” PTA (<50 dB HL) or “poorer” PTA (>50 dB HL). The bimodal benefit differed significantly between groups only for consonant recognition. The bimodal benefit for tone recognition in quiet was significantly correlated with CI experience, suggesting that bimodal CI users learn to better combine low-frequency spectro-temporal information from acoustic hearing with temporal envelope information from electric hearing. Given the small number of subjects in this study (n = 12), further research with Chinese bimodal listeners may provide more information regarding the contribution of acoustic and electric hearing to tonal language perception.  相似文献   

13.
Low-frequency distortion-product otoacoustic emissions were measured in two species of kangaroo rats to test the prediction that a large footdrumming species (e.g., Dipodomys spectabilis) would have greater distortion-product otoacoustic emission amplitude than a small non-footdrumming species (e.g., Dipodomys merriami), indicating better hearing sensitivity at low frequencies. Equal-level (65 dB SPL) stimulus tones (f 1, f 2), presented over a (f 1) range of 200–1000 Hz, were used to evoke the 2f 1f 2 distortion-product otoacoustic emission. Mean 2f 1f 2 levels for D. merriami showed good correspondence to previously published audiograms for that species. Mean 2f 1f 2 levels and 95% confidence intervals indicated species differences below 400 Hz, supporting the theory that low-frequency hearing sensitivity is better in large kangaroo rat species. These results suggest that the size-related divergence in footdrumming behavior may be related to differential auditory sensitivity.Abbreviations DPOAE distortion-product otoacoustic emission - OAE otoacoustic emission - PVC polyvinyl chloride  相似文献   

14.
Summary Evoked potential (EP) recordings in the auditory cortex of the porpoise,Phocoena phocoena, were used to obtain data characterizing the auditory perception of this dolphin. The frequency threshold curves showed that the lowest EP thresholds were within 120–130 kHz. An additional sensitivity peak was observed between 20 and 30 kHz. The minimal EP threshold to noise burst was 3·10–4–10/s-3 Pa. The threshold for response to modulations in sound intensity was below 0.5 dB and about 0.1% for frequency modulations. Special attention was paid to the dependence of the auditory cortex EP on the temporal parameters of the acoustic stimuli: sound burst duration, rise time, and repetition rate. The data indicate that the porpoise auditory cortex is adapted to detect ultrasonic, brief, fast rising, and closely spaced sounds like echolocating clicks.Abbreviation EP evoked potential  相似文献   

15.
Field studies of hearing in teleost fish   总被引:3,自引:0,他引:3  
Summary 1. Field measurements of hearing in haddock,Melanogrammus aeglefinus, pollack,Pollachius pollachius and ling,Molva molva, show that they are sensitive to sounds in the frequency range from 30 to 500 Hz, with greatest sensitivity from 100 to 300 Hz.2. At the most sensitive frequencies the thresholds varied between — 15 to — 25 dB relative to a sound pressure of 1µbar.3. In all three species, the thresholds at some frequencies were affected by the level of ambient sea noise. A direct correlation between the thresholds and the spectrum level of sea noise was obtained in haddock and pollack.4. The masking effect of sea noise was confirmed in some experiments on cod,Gadus morbua and haddock, where the background noise level was raised artificially. It was found that the masking of a tone signal was reduced by about 8 dB when the tone and noise were from different directions (85° apart), suggesting that directional discrimination may be well developed in these fish.
Freilandversuche über das Hörvermögen bei Teleostiern
Kurzfassung Versuche über das Hörvermögen verschiedener mariner Fische — des Schellfischs(Melanogrammus aeglefinus), des Pollacks(Pollachius pollachius), des Kabeljaus(Gadus morhua) und des Lengs(Molva molva) — wurden im Biotop, und zwar in 20 m Tiefe bei Loch Torridon (Schottland) durchgeführt. Die Reaktionen der Fische wurden mit Hilfe einer besonderen Dressurtechnik getestet, wobei dem Tonreiz ein leichter elektrischer Schock folgte; wurde das akustische Signal wahrgenommen, traten Veränderungen im Elektrokardiogramm der Fische auf. Alle 4 Arten wiesen ein ähnliches Hörvermögen auf. Im Niederfrequenzbereich von etwa 60–300 Hz wurde die höchste Empfindlichkeit registriert. Bei höheren Frequenzen stellte sich eine Verminderung der Empfindlichkeit ein; nurMolva molva konnte zuverlässig auf einen Ton von 550 Hz abgerichtet werden. Im Bereich niederer Frequenzen waren alle Fische äußerst empfindlich; es ergaben sich Hinweise, daß die Hörschwellen vom Eigenrauschen des Meeres maskiert wurden. Dies wurde durch Versuche bestätigt, bei denen die Intensität des Eigenrauschens vergrößert wurde, die Mithörschwellen aber in konstantem Abstand zum Störpegel blieben. Ferner wurde festgestellt, daß die Verdeckung reiner Töne wesentlich vermindert wurde, wenn Ton und Störpegel aus verschiedenen Richtungen (im rechten Winkel zueinander) abgestrahlt wurden. Daraus ist zu schließen, daß die Fähigkeit, die Richtung der Schallquellen zu unterscheiden, gut entwickelt sein dürfte.
  相似文献   

16.
Summary The effect of temperature on the response properties of primary auditory fibres in caiman was studied. The head temperature was varied over the range of 10–35 ° C while the body was kept at a standard temperature of 27 °C (Ts). The temperature effects observed on auditory afferents were fully reversible. Below 11 °C the neural firing ceased.The mean spontaneous firing rate increased nearly linearly with temperature. The slopes in different fibres ranged from 0.2–3.5 imp s–1 °C–1. A bimodal distribution of mean spontaneous firing rate was found (<20 imp s–1 and >20 imp s–1 at Ts) at all temperatures.The frequency-intensity response area of the primary fibres shifted uniformly with temperature. The characteristic frequency (CF) increased nearly linearly with temperature. The slopes in different fibres ranged from 3–90 Hz °C–1. Expressed in octaves the CF-change varied in each fibre from about O.14oct °C–1 at 15 °C to about 0.06 oct °C–1 at 30 °C, irrespective of the fibre's CF at Ts. Thresholds were lowest near Ts. Below Ts the thresholds decreased on average by 2dB°C–1, above Ts the thresholds rose rapidly with temperature. The sharpness of tuning (Q10db) showed no major change in the temperature range tested.Comparison of these findings with those from other lower vertebrates and from mammals shows that only mammalian auditory afferents do not shift their CF with temperature, suggesting that a fundamental difference in mammalian and submammalian tuning mechanisms exists. This does not necessarily imply that there is a single unifying tuning mechanism for all mammals and another one for non-mammals.Abbreviations BF best frequency: frequency of maximal response at an intensity 10 dB above the CF-threshold - CF characteristic frequency - FTC frequency threshold curve, tuning curve - T s standard temperature of 27 °C  相似文献   

17.
Field measurements of hearing thresholds were obtained from the Atlantic sharpnose shark Rhizoprionodon terraenovae using the auditory evoked potential method (AEP). The fish had most sensitive hearing at 20 Hz, the lowest frequency tested, with decreasing sensitivity at higher frequencies. Hearing thresholds were lower than AEP thresholds previously measured for the nurse shark Ginglymostoma cirratum and yellow stingray Urobatis jamaicensis at frequencies <200 Hz, and similar at 200 Hz and above. Rhizoprionodon terraenovae represents the closest comparison in terms of pelagic lifestyle to the sharks which have been observed in acoustic field attraction experiments. The sound pressure levels that would be equivalent to the particle acceleration thresholds of R. terraenovae were much higher than the sound levels which attracted closely related sharks suggesting a discrepancy between the hearing threshold experiments and the field attraction experiments.  相似文献   

18.
Summary Cochlear microphonic (CM) and evoked neural potentials (N1) were recorded from the cochlear aqueduct of awakePteronotus parnellii. The CM audiograms obtained with continuous sounds had more or less uniform thresholds except for a sharp threshold notch at about 60 kHz (Fig. 1). When brief tone bursts were presented, the envelopes of the CM responses were always similar to the envelopes of the applied signals except when tone bursts having frequencies at or close to the frequency of the tuned sensitivity notch were presented (i.e., 59–63 kHz). The CM rise-decay times for frequencies around 60kHz were much longer than those of the presented signals (Fig. 2). The prolonged decay times are thought to be due to the ringing of the basilar membrane resulting from a mechanical resonance in the cochlea.The evoked neural potential audiograms (N1-on and N1-off responses) differed considerably from the CM audiogram. Of particular importance is the N1-off audiogram which exhibited very sharp tuning in four frequency regions: 31–33 kHz, 60–63 kHz, 71–73 kHz, and 91–92 kHz (Fig. 5). The frequencies evoking the lowest thresholds of the CM and N1-off (in the 60 kHz region) were either identical or differed by only 100–400 Hz.The sharp tuning in the 60 kHz region of both the CM and N1 audiograms could be eliminated by presenting 90–100 dB continuous sounds for one min but only if the signal frequency was equal to the tuned frequency of the CM audiogram (Figs. 8–13). Presenting intense sounds having frequencies above or below the tuned 60kHz region had no effect on the audiogram. The overstimulation procedure had remarkably specific effects on the CM and N1-off audiograms causing the greatest threshold increases at the 60 kHz tuned frequency and progressively smaller threshold changes on the slopes of the tuned notch.Assuming that the sharp changes of the N1-off thresholds reflect some important underlying mechanism, the N1-off audiograms demonstrate multiple specializations in the peripheral auditory system ofPteronotus with the bat possessing at least three and possibly four sharply tuned regions. With regard to mechanism, the tuned notch in the CM audiogram, the curious CM rise-decay times evoked by tone bursts, and the ease with which the 60 kHz sensitivity notch can be eliminated all argue strongly in favor of a mechanical resonance in the cochlea which is responsible for the sharp tuning around 60 kHz. On the other hand, the absence of tuned notches in the 30 kHz and 90 kHz regions of the CM audiogram together with the absence of any discernable ringing of the CM potentials evoked by 30 kHz and 90 kHz tone bursts both argue against a resonance mechanism for the tuning at these harmonically related frequency regions. Finally, the fact that overstimulating the 60 kHz region had no discernable effect on the N1-off tuning at 30 kHz and 90 kHz demonstrates that the mechanism responsible for the tuned regions at 30 kHz and 90 kHz are independent of the resonance feature of the cochlea at 60 kHz.Abbreviations BF best frequency - CF constant frequency - CM cochlear microphonics - CM-aft after-response of the CM - FM frequency modulated - N 1 evoked neural potentials We thank Professor Alvin Novick for the generous support provided during the conduct of these experiments. We also thank Professor Gerhard Neuweiler and Dr. Gerd Schuller for their helpful comments and suggestions. Supported by PHS Grant NB7616 11.  相似文献   

19.
The acoustic intensity discrimination ability of the oscar (Astronotus ocellatus), a cichlid fish, was investigated using an automated positive reward method. Intensity discrimination thresholds (I, in dB) for 7-s continuous pure tone signals were measured both as functions of sound intensity above thresholds, i.e., sensation levels, (SL)(+10 dB, +20 dB and +30 dB) and frequency (200 Hz, 500 Hz, and 800 Hz). I at 500 Hz for +10 dB, +20 dB, and +30 dB SLs are 8.9, 5.5, and 3.3 dB, respectively. I (at+20 dB SL) for 200 Hz, 500 Hz, and 800 Hz are 4.5, 5.5, and 9.3 dB, respectively. Despite having poor auditory sensitivity (narrow frequency range and high thresholds), the intensity discrimination ability of the oscar follows the general trends of previously studied fish species, however, with higher thresholds.  相似文献   

20.
Odontocetes are believed to receive sounds primarily through the pan bone region of the lower jaw although much variation in jaw morphology exists among species. In order to further examine this jaw hearing hypothesis we tested the head receiving sensitivity and directional hearing of a beluga whale, Delphinapterus leucas. Hearing thresholds were measured using auditory evoked potentials (AEPs). The subject proved to have highly directional hearing for far-field click stimuli similar to that of bottlenose dolphins and more directional than the harbor porpoise. For near-field jawphone stimulation, the beluga's lowest thresholds were found when click stimuli were presented at the rostrum tip (76 dB re: 1 μPa) although thresholds from the pan bone region stimulation were only 2–3 dB higher. Stimulation at and behind the external auditory meatus were elevated by nearly 20 dB. Stimuli presented at the surface of the melon did not generate detectable AEP responses, although sound levels of up to 142 dB were employed. Latencies of responses were generally shortest for meatal stimulation and increased with distance. Results support a shaded receiver model for odontocete hearing but how received sounds are filtered and shaded may depend on species. We also suggest that odontocete hearing thresholds are not necessarily lowest through the pan bone region. Rather, hearing pathway variations appear to exist among odontocete species and are at least partially dependent on head morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号