首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scalability is a major demand for high-yield, stable bioprocess systems in animal cell culture-based biopharmaceutical production. Increased yields can be achieved through high-density cell culture, such as in the combination of microcarrier and fluidized bed bioreactor technology. To minimize inocula volume in industrial applications of fluidized bed fermentation systems, it is crucial to increase the bed volume in the reactor during the fermentation process. We tested scale-up strategy for the production of recombinant human arylsulfatase B (ASB) enzyme used in enzyme replacement therapy in patients afflicted with mucopolysaccharidosis type VI (MPS VI). This enzyme was derived from Chinese hamster ovary (CHO) cells cultivated as adherent cell culture on Cytoline macroporous microcarriers (Amersham Biosciences, Uppsala, Sweden) using a Cytopilot Mini fluidized bed bioreactor (FBR; Amersham Biosciences, Vogelbusch, Austria). Both 1:2 expansion (herein referred to as the addition of fresh, not-yet-colonized microcarriers) and 1:6 expansion of the carrier bed were performed successfully; the cells restarted to proliferate for colonizing these newly added carriers; and the stability of the culture was not negatively affected.  相似文献   

2.
Plant tissues are made up of a broad range of proteins with a variety of properties. After extraction, solubilization of a diverse range of plant proteins for efficient proteomic analysis using two-dimensional electrophoresis is a challenging process. We tested the efficiency of 12 solubilization buffers in dissolving acidic and basic proteins extracted from mature seeds of wheat. The buffer containing two chaotropes (urea and thiourea), two detergents (3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propane-sulfonate and N-decyl-N,N-dimethyl-3-ammonio-1-propane-sulfonate), two reducing agents (dithiothreitol and tris (2-carboxyethyl) phosphine hydrochloride) and two types of carrier ampholytes (BioLyte pH 4-6 and pH 3-10) solubilized the most acidic proteins in the pH range between 4 and 7. The buffer made up of urea, thiourea, 3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propane-sulfonate, DeStreak reagent (Amersham Biosciences, Uppsala, Sweden) and immobilized pH gradient buffer, pH 6-11 (Amersham Biosciences) solubilized the most basic proteins in the pH range between 6 and 11. These two buffers produced two-dimensional gels with high resolution, superior quality and maximum number of detectable protein (1425 acidic protein and 897 basic protein) spots.  相似文献   

3.
Novel Antifoulants: Inhibition of Larval Attachment by Proteases   总被引:3,自引:0,他引:3  
We investigated the effect of commercially available enzymes (α-amylase, α-galactosidase, papain, trypsin, and lipase) as well as proteases from deep-sea bacteria on the larval attachment of the bryozoan Bugula neritina L. The 50% effective concentrations (EC50) of the commercial proteases were 10 times lower than those of other enzymes. Crude proteases from six deep-sea Pseudoalteromonas species significantly decreased larval attachment at concentrations of 0.03 to 1 mIU ml−1. The EC50 of the pure protease from the bacterium Pseudoalteromonas issachenkonii UST041101-043 was close to 1 ng ml−1 (0.1 mIU ml−1). The protease and trypsin individually incorporated in a water-soluble paint matrix inhibited biofouling in a field experiment. There are certain correlations between production of proteases by bacterial films and inhibition of larval attachment. None of the bacteria with biofilms that induced attachment of B. neritina produced proteolytic enzymes, whereas most of the bacteria that formed inhibitive biofilms produced proteases. Our investigation demonstrated the potential use of proteolytic enzymes for antifouling defense.  相似文献   

4.
In a study screening anaerobic microbes utilizing d-galactitol as a fermentable carbon source, four bacterial strains were isolated from an enrichment culture producing H2, ethanol, butanol, acetic acid, butyric acid, and hexanoic acid. Among these isolates, strain BS-1 produced hexanoic acid as a major metabolic product of anaerobic fermentation with d-galactitol. Strain BS-1 belonged to the genus Clostridium based on phylogenetic analysis using 16S rRNA gene sequences, and the most closely related strain was Clostridium sporosphaeroides DSM 1294T, with 94.4% 16S rRNA gene similarity. In batch cultures, Clostridium sp. BS-1 produced 550 ± 31 mL L−1 of H2, 0.36 ± 0.01 g L−1 of acetic acid, 0.44 ± 0.01 g L−1 of butyric acid, and 0.98 ± 0.03 g L−1 of hexanoic acid in a 4-day cultivation. The production of hexanoic acid increased to 1.22 and 1.73 g L−1 with the addition of 1.5 g L−1 of sodium acetate and 100 mM 2-(N-morpholino)ethanesulfonic acid (MES), respectively. Especially when 1.5 g L−1 of sodium acetate and 100 mM MES were added simultaneously, the production of hexanoic acid increased up to 2.99 g L−1. Without adding sodium acetate, 2.75 g L−1 of hexanoic acid production from d-galactitol was achieved using a coculture of Clostridium sp. BS-1 and one of the isolates, Clostridium sp. BS-7, in the presence of 100 mM MES. In addition, volatile fatty acid (VFA) production by Clostridium sp. BS-1 from d-galactitol and d-glucose was enhanced when a more reduced culture redox potential (CRP) was applied via addition of Na2S·9H2O.  相似文献   

5.
Lee S  Kim J  Shin SG  Hwang S 《Biotechnology letters》2008,30(6):1011-1016
The biokinetics of glucose metabolism were evaluated in Aeromonas hydrophila during growth in an anaerobic biosystem. After approx 34 h growth, A. hydrophila metabolized 5,000 mg glucose l−1 into the end-products ethanol, acetate, succinate and formate. The maximum growth rate, μ m, half saturation coefficients, K s, microbial yield coefficient, Y, cell mass decay rate coefficient, k d, and substrate inhibition coefficient, K si were 0.25 ± 0.03 h−1, 118 ± 31 mg glucose l−1, 0.12 μg DNA mg glucose−1, 0.01 h−1, and 3,108 ± 1,152 mg glucose l−1, respectively. These data were used to predict the performance of a continuous growth system with an influent glucose concentration of 5,000 mg l−1. Results of the analysis suggest that A. hydrophila will metabolize glucose at greater than 95% efficiency when hydraulic retention times (HRTs) exceed 7 h, whereas the culture is at risk of washing out at an HRT of 6.7 h.  相似文献   

6.
The effects of temperature (20, 24 and 28 °C) and irradiance (15 and 40 μmol photon m−2 s−1) on the nitrate and ammonium uptake rates of the subtropical red alga, Laurencia brongniartii, were investigated to prepare for tank cultivation. Nitrate uptake followed saturation kinetics and was faster at higher irradiances and temperatures. In contrast, ammonium uptake was linear over the experimental range and was not affected by an increase in temperature. A parameter, β, was calculated to compare substrate uptake rates of nitrate along the linear portion of the uptake curve with that of ammonium. For nitrate, β was lower at low irradiance and higher at high irradiance (β = 0.007 ± 0.003 and 0.030 ± 0.002 [μmol N L−1 (μmol N gww−1 d)−1], respectively). However, β was 0.023 ± 0.002 and 0.034 ± 0.002 [μmol N L−1 (μmol N gww−1 d−1)−1] for ammonium, suggesting a preference for ammonium over nitrate.  相似文献   

7.
Summary Cells ofCandida shehatae repressed by growth in glucose- or D-xylose-medium produced a facilitated diffusion system that transported glucose (K s±2 mM,V max±2.3 mmoles g−1 h−1),d-xylose (K s±125 mM,V max±22.5 mmoles g−1 h−1) and D-mannose, but neither D-galactose norl-arabinose. Cells derepressed by starvation formed several sugar-proton symports. One proton symport accumulated 3-0-methylglucose about 400-fold and transported glucose (K s±0.12 mM,V max ± 3.2 mmoles g−1 h−1) andd-mannose, a second proton symport transportedd-xylose (K s± 1.0 mM,V max 1.4 mmoles g−1 h−1) andd-galactose, whilel-arabinose apparently used a third proton symport. The stoicheiometry was one proton for each molecule of glucose or D-xylose transported. Substrates of one sugar proton symport inhibited non-competitively the transport of substrates of the other symports. Starvation, while inducing the sugar-proton symports, silenced the facilitated diffusion system with respect to glucose transport but not with respect to the transport of D-xylose, facilitated diffusion functioning simultaneously with thed-xylose-proton symport.  相似文献   

8.
We quantified cover, population densities, size distribution and biomass of zebra mussels along 7 transects in eutrophic Lake Ekoln (Sweden). We also analyzed the elemental (C, N, P) composition of zebra mussel soft tissue and computed their retention rates of N and P their quantitative role in the lake’s nutrient budget. We hypothesized that zebra mussels play an important role in the nutrient budget of the lake and speculate that the successive harvesting of cultured mussels could contribute to the lake’s rate of recovery from cultural eutrophication. At depths exceeding 5 m, mussels covered consistently less than 5% or were absent. Similarly, mean densities were 3,158 ± 2,143 ind m−2 between 2 and 4 m, but rapidly declined at larger depths. Calculated clearance rates averaged 19.4 ± 2.3 km3 y−1, implying the entire lake is filtered every 8–10 days. Concentrations of N and P in mussel soft tissue averaged 100.9 ± 1.5 mg N g−1 DW and 9.3 ± 0.2 mg P g−1 DW. The lake population was estimated to 22.2 ± 2.6 × 1010 mussels, corresponding to a standing stock biomass of 362 ± 42 ton DW, or conservative estimates of 36.6 ± 4.3 ton N and 3.4 ± 0.4 ton P. Assuming a life span of 2–3 years gives a retention estimate of 1.2–1.8 ton P y−1 by mussels, corresponding to 50–77% of the annual P influx from Uppsala sewage treatment plant to the lake. Similarly, annual N-retention by zebra mussels makes up 13–20 ton N y−1, largely equaling the annual N-deposition from atmospheric sources on the lake’s surface. These retention rates correspond to only a few percent of the annual P-load from agricultural sources, but we argue that the quantitative role of zebra mussels in nutrient budgets is much larger if these budgets are adjusted for the bias introduced by coarse estimates of N and P pools that include a large share of refractory P.  相似文献   

9.
Summary Two mammalian cell lines which multiply in vitro in culture medium devoid of serum were investigated for sensitivity to twice crystallized trypsin. The minimum trypsin concentration which showed a concomitant increase in cell numbers and detachment from the surface of the culture vessel in one cell line was 0.01 μg per ml or approximately 10−8 μg per cell. These effects could be neutralized by normal human or calf serum at a dilution of 1∶500. The second cell line, which normally grows in suspension, was unaffected by these concentrations of trypsin.  相似文献   

10.
We followed the diurnal cycles of isoprenoid emissions from Quercus ilex seedlings under drought and after re-watering. We found that Quercus ilex, generally considered a non-isoprene emitter, also emitted isoprene although at low rates. The emission rates of isoprene reached 0.37 ± 0.02 nmol m−2 s−1 in controls, 0.15 ± 0.03 nmol m−2 s−1 under drought and 0.35 ± 0.04 nmol m−2 s−1 after re-watering, while emission rates of monoterpenes reached 11.0 ± 3.0, 7.0 ± 1.0 and 23.0 ± 5.0 nmol m−2 s−1, respectively. Emission rates recovered faster after re-watering than photosynthetic rate and followed diurnal changes in irradiance in controls and under drought, but in leaf temperature after re-watering.  相似文献   

11.
By adding a biomass carrier to an activated sludge system, the biomass concentration will increase, and subsequently the organic removal efficiency will be enhanced. In this study, the possibility of using excess sludge from ceramic and tile manufacturing plants as a biomass carrier was investigated. The aim of this study was to determine the effect of using fireclay as a biomass carrier on biomass concentration, organic removal and nitrification efficiency in an activated sludge system. Experiments were conducted by using a bench scale activated sludge system operating in batch and continuous modes. Artificial simulated wastewater was made by using recirculated water in a ceramic manufactutring plant. In the continuous mode, hydraulic detention time in the aeration reactor was 8 and 22 h. In the batch mode, aeration time was 8 and 16 h. Fireclay doses were 500, 1,400 and 2,250 mg l−1, and were added to the reactors in each experiment separately. The reactor with added fireclay was called a Hybrid Biological Reactor (HBR). A reactor without added fireclay was used as a control. Efficiency parameters such as COD, MLVSS and nitrate were measured in the control and HBR reactors according to standard methods. The average concentration of biomass in the HBR reactor was greater than in the control reactor. The total biomass concentration in the HBR reactor (2.25 g l−1 fireclay) in the continuous mode was 3,000 mg l−1 and in the batch mode was 2,400 mg l−1. The attached biomass concentration in the HBR reactor (2.25 g l−1 fireclay) in the continuous mode was 1,500 mg l−1 and in the batch mode was 980 mg l−1. Efficiency for COD removal in the HBR and control reactor was 95 and 55%, respectively. In the HBR reactor, nitrification was enhanced, and the concentration of nitrate was increased by 80%. By increasing the fireclay dose, total and attached biomass was increased. By adding fireclay as a biomass carrier, the efficiency of an activated sludge system to treat wastewater from ceramic manufacturing plants was increased.  相似文献   

12.
Synopsis Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.  相似文献   

13.
A new yeast, isolated from natural osmophilic sources, produces d-arabitol as the main metabolic product from glucose. According to 18S rRNA analysis, the NH-9 strain belongs to the genus Kodamaea. The optimal culture conditions for inducing production of d-arabitol were 37 °C, neutral pH, 220 rpm shaking, and 5% inoculum. The yeast produced 81.2 ± 0.67 g L−1 d-arabitol from 200 g L−1 d-glucose in 72 h with a yield of 0.406 g g−1 glucose and volumetric productivity Q\textP Q_{\text{P}} of 1.128 g L−1 h−1. Semi-continuous repeated-batch fermentation was performed in shaker-flasks to enhance the process of d-arabitol production by Kodamaea ohmeri NH-9 from d-glucose. Under repeated-batch culture conditions, the highest volumetric productivity was 1.380 g L−1 h−1.  相似文献   

14.
The objective of this study was to evaluate the effect of N fertilization and the presence of N2 fixing leguminous trees on soil fluxes of greenhouse gases. For a one year period, we measured soil fluxes of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4), related soil parameters (temperature, water-filled pore space, mineral nitrogen content, N mineralization potential) and litterfall in two highly fertilized (250 kg N ha−1 year−1) coffee cultivation: a monoculture (CM) and a culture shaded by the N2 fixing legume species Inga densiflora (CIn). Nitrogen fertilizer addition significantly influenced N2O emissions with 84% of the annual N2O emitted during the post fertilization periods, and temporarily increased soil respiration and decreased CH4 uptakes. The higher annual N2O emissions from the shaded plantation (5.8 ± 0.3 kg N ha−1 year−1) when compared to that from the monoculture (4.3 ± 0.1 kg N ha−1 year−1) was related to the higher N input through litterfall (246 ± 16 kg N ha−1 year−1) and higher potential soil N mineralization rate (3.7 ± 0.2 mg N kg−1 d.w. d−1) in the shaded cultivation when compared to the monoculture (153 ± 6.8 kg N ha−1 year−1 and 2.2 ± 0.2 mg N kg−1 d.w. d−1). This confirms that the presence of N2 fixing shade trees can increase N2O emissions. Annual CO2 and CH4 fluxes of both systems were similar (8.4 ± 2.6 and 7.5 ± 2.3 t C-CO2 ha−1 year−1, −1.1 ± 1.5 and 3.3 ± 1.1 kg C-CH4 ha−1 year−1, respectively in the CIn and CM plantations) but, unexpectedly increased during the dry season.  相似文献   

15.
Phytoplankton populations in perennially ice-covered Lake Bonney, Antarctica grow in a unique non-turbulent environment. The absence of turbulence generated by winds or major streams, combined with strong vertical gradients in temperature and nutrients, create vertically stratified environmental conditions that support three discrete phytoplankton populations in the east lobe of this lake. Phytoplankton biomass and photosynthesis were measured in the east lobe of Lake Bonney during the winter-spring transicion (September) to mid-summer (January). During this period, irradiance beneath the ice increased from 0.03 to 1.9 mol quanta m−2 d−1. Chlorophylla concentrations ranged from 0.03 to 3.8 μl−1 within the trophogenic zone (just beneath the permanent ice cover to 20 m) and photosynthesis ranged from below detection to 3.2 μg Cl−1 d−1. Our results indicate: (1) phytoplankton photosynthesis began in late winter (before 9 September, our earliest sampling date); (2) maxima for phytoplankton biomass and production developed sequentially in time from the top to the bottom of the trophogenic zone, following the seasoral increase in irradiance; and (3) the highest photosynthetic efficiencies occurred in early spring, then decreased over the remainder of the phytoplankton growth season. The spring decrease in photosynthetic rates for shallower phytoplankton appeared to be related to nutrient availability, while photosynthesis in the deeper populations was solely lightdependent.  相似文献   

16.
Activity concentrations of the selected radionuclides 40K, 226Ra and 232Th were measured in surface soil samples collected from 38 cities in the southwest region of Nigeria by means of gamma spectroscopy with a high-purity germanium detector. Measured activity concentration values of 40K varied from 34.9 ± 4.4 to 1,358.6 ± 28.5 Bq kg−1 (given on a dry mass (DM) basis) with a mean value of 286.5 ± 308.5 Bq kg−1; that of 226Ra varied from 9.3 ± 3.7 to 198.1 ± 13.8 Bq kg−1 with a mean value of 54.5 Bq kg−1 and a standard deviation of 38.7 Bq kg−1, while that of 232Th varied from 5.4 ± 1.1 to 502.0 ± 16.5 Bq kg−1 with a mean value of 91.1 Bq kg−1 and standard deviation of 100.9 Bq kg−1. The mean activity concentration values obtained for 226Ra and 232Th are greater than the world average values reported by the United Nations Scientific Committee on Effects of Atomic Radiation for areas of normal background radiation. Radiological indices were estimated for the radiation/health hazards of the natural radioactivity of all soil samples. Estimated absorbed dose rates in air varied from 12.42 ± 2.25 to 451.33 ± 19.06 nGy h−1, annual outdoor effective dose rates from 0.015 ± 0.003 to 0.554 ± 0.023 mSv year−1, internal hazard index from 0.10 ± 0.03 to 3.02 ± 0.16, external hazard index from 0.07 ± 0.01 to 2.60 ± 0.11, representative level index from 0.19 ± 0.03 to 6.84 ± 0.29, activity index from 0.09 ± 0.02 to 3.42 ± 0.15, and radium equivalent activity from 26.95 ± 5.04 to 963.15 ± 41.87 Bq kg−1. Only the mean value of the representative level index exceeds the limit for areas of normal background radiation. All other indices show mean values that are lower than the recommended limits.  相似文献   

17.
To gain insight into the metabolic design of the amino acid carrier systems in fish, we injected a bolus of 15N amino acids into the dorsal aorta in mature rainbow trout (Oncorhynchus mykiss). The plasma kinetic parameters including concentration, pool size, rate of disappearance (R d), half-life and turnover rate were determined for 15 amino acids. When corrected for metabolic rate, the R d values obtained for trout for most amino acids were largely comparable to human values, with the exception of glutamine (which was lower) and threonine (which was higher). R d values ranged from 0.9 μmol 100 g−1 h−1 (lysine) to 22.1 μmol 100 g−1 h−1 (threonine) with most values falling between 2 and 6 μmol 100 g−1 h−1. There was a significant correlation between R d and the molar proportion of amino acids in rainbow trout whole body protein hydrolysate. Other kinetic parameters did not correlate significantly with whole body amino acid composition. This indicates that an important design feature of the plasma-free amino acids system involves proportional delivery of amino acids to tissues for protein synthesis.  相似文献   

18.
Cl-36 is an important component of nuclear waste. The concentrations of stable chlorine (Cl) in pig and cow tissues were measured to provide information which can be used to parameterize models of 36Cl transfer into agricultural animals. The concentration of stable Cl in cows’ milk was 1.0 ± 0.2 g L−1, in cow muscle it was 0.7 ± 0.2 g kg−1 wet mass (wm) and in pig muscle 0.4 ± 0.1 g kg−1 wm. The concentration of stable Cl in cow and pig liver was 0.9 ± 0.3 g kg−1 wm, which was about two-fold higher than that in the kidney and lung. Due to homeostatic control, stable Cl concentrations in animal tissues are not related to the amount ingested daily in herbage at intake rates in the normal physiological range of up to 188 g day−1 for cows and up to 40 g day−1 for pigs. Therefore, the commonly used transfer coefficient is not suitable for use in quantifying the transfer of 36Cl to milk and meat. Since the metabolism of stable Cl and 36Cl in an animal’s body is identical, the average equilibrium ratios of 36Cl to stable Cl in the daily ration (36Cl (g kg−1)/Cl (g kg−1)) and animal tissues will be the same. We therefore conclude that the average equilibrium Cl isotopic ratio in the dietary daily intake should be used to predict the contamination of meat and milk with 36Cl.  相似文献   

19.
The morphological, anatomical and physiological variations of leaf traits were analysed during Quercus ilex L. leaf expansion. The leaf water content (LWC), leaf area relative growth rate (RGRl) and leaf dry mass relative growth rate (RGRm) were the highest (76±2 %, 0.413 cm2 cm−2 d−1, 0.709 mg mg−1 d−1, respectively) at the beginning of the leaf expansion process (7 days after bud break). Leaf expansion lasted 84±2 days when air temperature ranged from 13.3±0.8 to 27.6±0.9 °C. The net photosynthetic rate (P N), stomatal conductance (g s), and chlorophyll content per fresh mass (Chl) increased during leaf expansion, having the highest values [12.62±1.64 μmol (CO2) m−2 s−1, 0.090 mol (H2O) m−2 s−1, and 1.03±0.08 mg g−1, respectively] 56 days after bud break. Chl was directly correlated with leaf dry mass (DM) and P N. The thickness of palisade parenchyma contributed to the total leaf thickness (263.1±1.5 μm) by 47 %, spongy layer thickness 38 %, adaxial epidermis and cuticle thickness 9 %, and abaxial epidermis and cuticle thickness 6 %. Variation in leaf size during leaf expansion might be attributed to a combination of cells density and length, and it is confirmed by the significant (p<0.001) correlations among these traits. Q. ilex leaves reached 90 % of their definitive structure before the most severe drought period (beginning of June — end of August). The high leaf mass area (LMA, 15.1±0.6 mg cm−2) at full leaf expansion was indicative of compact leaves (2028±100 cells mm−2). Air temperature increasing might shorten the favourable period for leaf expansion, thus changing the final amount of biomass per unit leaf area of Q. ilex.  相似文献   

20.
Summary. Three models representing different separations of amino acid sources were used to simulate experimental specific radioactivity data and to predict protein fractional synthesis rate (FSR). Data were from a pulse dose of 14C-U Leu given to a non-growing 20 g mouse and a flooding dose of 3H Phe given to a non-growing 200 g rat. Protein synthesis rates estimated using the combined extracellular and intracellular (Ec + Ic) source pool and extracellular and plasma (Ec + Pls) source pool mouse models were 78 and 120% d−1 in liver, 14 and 16% d−1 in brain and 15 and 14% d−1 in muscle. Predicted protein synthesis rates using the Ec + Ic, Ec + Ic + Tr (combined extracellular, intracellular and aminoacyl tRNA source pool) and Ec + Pls rat models were 57, 3.4 and 57% d−1 in gastrocnemius, 58, 71 and 62% d−1 in gut, 8.3, 8.4 and 7.9% d−1 in heart, 32, 23 and 25% d−1 in kidney, 160, 90 and 80% d−1 in liver, 57, 5.5 and 57% d−1 in soleus and 56, 3.4 and 57% d−1 in tibialis. The Ec + Ic + Tr model underestimated protein synthesis rates in mouse tissues (5.0, 27 and 2.5% d−1 for brain, liver and muscle) and rat muscles (3.4, 5.5 and 3.4% d−1 for gastrocnemius, soleus and tibialis). The Ec + Pls model predicted the mouse pulse dose data best and the Ec + Ic model predicted the rat flooding dose data best. Model predictions of FSR imply that identification and separation of the source specific radioactivity is critical to accurately estimate FSR. Received June 11, 2000 Accepted September 26, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号