首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effects of K-252a, (8R*, 9S*, 11S*)-(-)-9-hydroxy-9-methoxycarbonyl-8-methyl-2,3,9,10-tetrahydro-8, 11-epoxy-1H,8H,11H-2,7b,11a-triazadibenzo[a,g]cycloocta [cde]trinden-1-one, purified from the culture broth of Nocardiopsis sp., on the activity of myosin light chain kinase were investigated. 1) K-252a (1 x 10(-5) M) affected three characteristic properties of chicken gizzard myosin-B, natural actomyosin, to a similar degree: the Ca2+-dependent activity of ATPase, superprecipitation, and the phosphorylation of the myosin light chain. 2) K-252a inhibited the activities of the purified myosin light chain kinase and a Ca2+-independent form of the enzyme which was constructed by cross-linking of myosin light chain kinase and calmodulin using glutaraldehyde. The degrees of inhibition by 3 x 10(-6) M K-252a were 69 and 48% of the control activities with the purified enzyme and the cross-linked complex, respectively. Chlorpromazine (3 x 10(-4) M), a calmodulin antagonist, inhibited the native enzyme, but not the cross-linked one. These results suggested that K-252a inhibited myosin light chain kinase by direct interaction with the enzyme, whereas chlorpromazine suppressed the enzyme activation by interacting with calmodulin. 3) The inhibition by K-252a of the cross-linked kinase was affected by the concentration of ATP, a phosphate donor. The concentration causing 50% inhibition was two orders magnitude lower in the presence of 100 microM ATP than in the presence of 2 mM ATP. 4) Kinetic analyses using [gama-32P]ATP indicated that the inhibitory mode of K-252a was competitive with respect to ATP (Ki = 20 nM). These results suggest that K-252a interacts at the ATP-binding domain of myosin light chain kinase. The direct action of the compound on the enzyme would explain the multivarious inhibition of myosin ATPase, of superprecipitation, and of the contractile response of smooth muscle.  相似文献   

2.
Cardia bifida is an anomaly of the embryonic heart in which the bilateral myocardial rudiments fail to travel to the midline, resulting in the formation of two separate hearts in lateral positions. In zebrafish, eight loci responsible for the cardia bifida phenotype were identified in the large-scale genetic screen. Wortmannin has been reported to be a highly selective inhibitor of phosphoinositide 3-kinase and myosin light chain kinase activity. We provide the first evidence that wortmannin treatment of zebrafish embryos can induce cardia bifida in a dose-dependent manner and that wortmannin alters cardiac development between 6 and 16 h post-fertilization. In addition, we demonstrate that wortmannin induces zebrafish cardia bifida through a mechanism independent of phosphoinositide 3-kinase and myosin light chain kinase. Our findings may provide new insights into the cardiomyocyte function and disfunction.  相似文献   

3.
Recently, one of the authors (K.I.) and other investigators reported that myosin light chain (MLC) of smooth muscle (gizzard, arterial and tracheal) was diphosphorylated by myosin light chain kinase (MLCK) and that diphosphorylated myosin showed a marked increase in the actin-activated myosin ATPase activity in vitro and ex vivo. In this study, we prepared myosin, actin, tropomyosin (human platelet), MLCK (chicken gizzard) and calmodulin (bovine brain) and demonstrated diphosphorylation of MLC of platelet by MLCK in vitro. Our results are as follows. (1) Platelet MLC was diphosphorylated by a relatively high concentration (greater than 20 micrograms/ml) of MLCK in vitro. As a result of diphosphorylation, the actin-activated myosin ATPase activity was increased 3 to 4-fold as compared to the monophosphorylation. (2) Both di- and monophosphorylation reactions showed similar Ca2+, KCl, MgCl2-dependence. Maximal reaction was seen at [Ca2+] greater than 10(-6) M, 60 mM KCl and 2 mM MgCl2. This condition was physiological in activated platelets. (3) Di- and monophosphorylated myosin showed similar Ca2+, KCl-dependence of ATPase activity but distinct MgCl2-dependence. Diphosphorylated myosin showed maximal ATPase activity at 2 mM MgCl2 and monophosphorylated myosin showed a maximum at 10 mM MgCl2. (4) The addition of tropomyosin stimulated actin-activated ATPase activity in both di- and monophosphorylated myosin to the same degree. (5) ML-9, a relatively specific inhibitor of MLCK, inhibited the aggregation of human platelets induced by thrombin ex vivo in a dose-dependent manner. Moreover, this drug also partially inhibited both di- and monophosphorylation reactions and actin-activated ATPase activity. On the other hand, H-7, a synthetic inhibitor of protein kinase C, had little effect on the aggregation of human platelets induced by thrombin ex vivo. From these results, we conclude that diphosphorylation of platelet myosin by MLCK may play an important role in activated platelets in vivo.  相似文献   

4.
Kaempferol, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, was found to inhibit bovine aorta myosin light chain kinase with a Ki of 0.3-0.5 microM. It was found to be competitive with ATP and non-competitive with isolated myosin light chains. The specificity of this inhibitor was studied relative to protein kinase C and cAMP dependent protein kinase (IC50 = 15 microM and 150 microM, respectively). It appears not to interact strongly with calmodulin binding proteins, such as Ca2+-calmodulin dependent phosphodiesterase (IC50 = 45 microM), and had little effect on actin-activated myosin subfragment-1 ATPase activity (IC50 greater than 100 microM) or smooth muscle phosphatase activities (IC50 greater than 100 microM).  相似文献   

5.
Ca2+/calmodulin-dependent myosin light chain kinase phosphorylates the regulatory light chain of myosin. Rabbit skeletal muscle myosin light chain kinase also catalyzes a Ca2+/calmodulin-dependent autophosphorylation with a rapid rate of incorporation of 1 mol of 32P/mol of kinase and a slower rate of incorporation up to 1.52 mol of 32P/mol. Autophosphorylation was inhibited by a peptide substrate that has a low Km value for myosin light chain kinase. Autophosphorylation at both rates was concentration-independent, indicating an intramolecular mechanism. There were no significant changes in catalytic properties toward light chain and MgATP substrates or in calmodulin activation properties upon autophosphorylation. After digestion with V8 protease, phosphopeptides were purified and sequenced. Two phosphorylation sites were identified, Ser 160 and Ser 234, with the former associated with the rapid rate of phosphorylation. Both sites are located amino terminal of the catalytic domain. These results indicate that the extended "tail" region of the enzyme can fold into the active site of the kinase.  相似文献   

6.
Dictyostelium myosin light chain kinase. Purification and characterization   总被引:9,自引:0,他引:9  
A Dictyostelium myosin light chain kinase has been purified approximately 15,000-fold to near homogeneity. The purified kinase is a single polypeptide of approximately 34 kDa that phosphorylates only the 18-kDa Dictyostelium myosin regulatory light chain and itself among substrates tested. The enzyme was purified largely by ammonium sulfate fractionation and hydrophobic (butyl) interaction chromatography. Analysis using polyclonal antibodies raised against the purified 34-kDa protein confirms that this protein is responsible for myosin light chain kinase activity. Protein microsequence of the 34-kDa protein reveals conserved protein kinase sequences. The purified Dictyostelium myosin light chain kinase exhibits a Km for Dictyostelium myosin of 4 microM and a Vmax of 8 nmol/min/mg. Unlike other characterized myosin light chain kinases, this enzyme is not regulated by calcium/calmodulin. Western blot analysis demonstrates that the purified kinase is not a proteolytic fragment that has lost calcium/calmodulin regulation. The Dictyostelium myosin light chain kinase activity is not directly regulated by cyclic nucleotides. However, this kinase undergoes an intramolecular autophosphorylation that activates the enzyme.  相似文献   

7.
Myosin light chain kinase binds to actin-containing filaments from cells with a greater affinity than to F-actin. However, it is not known if this binding in cells is regulated by Ca2+/calmodulin as it is with F-actin. Therefore, the binding properties of the kinase to stress fibers were examined in smooth muscle-derived A7r5 cells. Full-length myosin light chain kinase or a truncation mutant lacking residues 2-142 was expressed as chimeras containing green fluorescent protein at the C terminus. In intact cells, the full-length kinase bound to stress fibers, whereas the truncated kinase showed diffuse fluorescence in the cytoplasm. After permeabilization with saponin, the fluorescence from the truncated kinase disappeared, whereas the fluorescence of the full-length kinase was retained on stress fibers. Measurements of fluorescence intensities and fluorescence recovery after photobleaching of the full-length myosin light chain kinase in saponin-permeable cells showed that Ca2+/calmodulin did not dissociate the kinase from these filaments. However, the filament-bound kinase was sufficient for Ca2+-dependent phosphorylation of myosin regulatory light chain and contraction of stress fibers. Thus, dissociation of myosin light chain kinase from actin-containing thin filaments is not necessary for phosphorylation of myosin light chain in thick filaments. We note that the distance between the N terminus and the catalytic core of the kinase is sufficient to span the distance between thin and thick filaments.  相似文献   

8.
Mitosis-specific phosphorylation of myosin light chain kinase   总被引:4,自引:0,他引:4  
Cell cytosol preparations from mitotic HeLa cells exhibit a kinase activity that phosphorylates myosin light chain kinase (MLCK). This MLCK kinase activity is apparently distinct from the known MLCK kinases, including cAMP-dependent protein kinase, cGMP-dependent protein kinase, Ca(2+)-activated phospholipid-dependent protein kinase, or Ca(2+)-calmodulin-dependent protein kinase II, based on the following criteria. First, the MLCK kinase activity of mitotic cells does not respond to a variety of characteristic activators or inhibitors of these known kinases. Second, one- and two-dimensional peptide maps have revealed that the site of phosphorylation by the MLCK kinase of mitotic cells differs from those by these known kinases. The mitotic MLCK kinase phosphorylates MLCK at a threonine residue at a ratio of up to 1 mol of phosphate/mol of chicken gizzard MLCK. The MLCK kinase is mitosis-specific because mitotic cell extracts show much higher phosphorylation activity than nonmitotic cell extracts.  相似文献   

9.
A 5.6-kilobase cDNA clone has been isolated which includes the entire coding region for the myosin light chain kinase from rabbit uterine tissue. This cDNA, expressed in COS cells, encodes a Ca2+/calmodulin-dependent protein kinase with catalytic properties similar to other purified smooth muscle myosin light chain kinases. A module (TLKPVGNIKPAE), repeated sequentially 15 times, has been identified near the N terminus of this smooth muscle kinase. It is not present in chicken gizzard or rabbit skeletal muscle myosin light chain kinases. This repeat module and a subrepeat (K P A/V) are similar in amino acid content to repeated motifs present in other proteins, some of which have been shown to associate with chromatin structures. Immunoblot analysis after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, used to compare myosin light chain kinase present in rabbit, bovine, and chicken smooth and nonmuscle tissues, showed that within each species both tissue types have myosin light chain kinases with indistinguishable molecular masses. These data suggest that myosin light chain kinases present in smooth and nonmuscle tissues are the same protein.  相似文献   

10.
Myofibroblasts generate the contractile force responsible for wound healing and pathological tissue contracture. In this paper the stress-relaxed collagen lattice model was used to study lysophosphatidic acid (LPA)-promoted myofibroblast contraction and the role of the small GTPase Rho and its downstream targets Rho kinase and myosin light chain phosphatase (MLCPPase) in regulating myofibroblast contraction. In addition, the regulation of myofibroblast contraction was compared with that of smooth muscle cells. LPA-promoted myofibroblast contraction was inhibited by the myosin light chain kinase (MLCK) inhibitors KT5926 and ML-7; however, in contrast to that observed in smooth muscle cells, elevation of intracellular calcium alone was not sufficient to promote myofibroblast contraction. These results suggest that Ca(2+)-mediated activation of MLCK, while necessary, is not sufficient to promote myofibroblast contraction. The specific Rho inactivator C3-transferase and the Rho kinase inhibitor Y-27632 inhibited LPA-promoted myofibroblast contraction, suggesting that contraction depends on activation of the Rho/Rho kinase pathway. Calyculin, a type 1 phosphatase inhibitor known to inhibit MLCPPase, could promote myofibroblast contraction in the absence of LPA, as well as restore contraction in the presence of C3-transferase or Y-27632. Together these results support a model whereby Rho/Rho kinase-mediated inhibition of MLCPPase is necessary for LPA-promoted myofibroblast contraction, in contrast to smooth muscle cells in which Ca(2+) activation of MLCK alone is sufficient to promote contraction.  相似文献   

11.
Isolation and properties of platelet myosin light chain kinase.   总被引:8,自引:0,他引:8  
J L Daniel  R S Adelstein 《Biochemistry》1976,15(11):2370-2377
A protein kinase which phosphorylates the 20 000-dalton light chain of platelet myosin has been isolated from human blood platelets and purified approximately 600-fold. Elution of a 7.5% polyacrylamide gel following electrophoresis of the partially purified enzyme yielded a single peak of kinase activity which could be aligned with a protein band on a stained gel. Assuming a globular shape, a native molecular weight of 83 000 (+/- 10%) was determined by gel filtration on Bio-Gel P-200. The kinase requires Mg2+ for activity and is not sensitive to the removal of trace Ca2+. The enzyme purified from human platelets phosphorylates the 20 000-dalton light chain of mouse fibroblast and chicken gizzard myosin, but does not phosphorylate human skeletal and cardiac myosin.  相似文献   

12.
Specific phosphorylation of the human ventricular cardiac myosin regulatory light chain (MYL2) modifies the protein at S15. This modification affects MYL2 secondary structure and modulates the Ca(2+) sensitivity of contraction in cardiac tissue. Smooth muscle myosin light chain kinase (smMLCK) is a ubiquitous kinase prevalent in uterus and present in other contracting tissues including cardiac muscle. The recombinant 130 kDa (short) smMLCK phosphorylated S15 in MYL2 in vitro. Specific modification of S15 was verified using the direct detection of the phospho group on S15 with mass spectrometry. SmMLCK also specifically phosphorylated myosin regulatory light chain S15 in porcine ventricular myosin and chicken gizzard smooth muscle myosin (S20 in smooth muscle) but failed to phosphorylate the myosin regulatory light chain in rabbit skeletal myosin. Phosphorylation kinetics, measured using a novel fluorescence method eliminating the use of radioactive isotopes, indicates similar Michaelis-Menten V(max) and K(M) for regulatory light chain S15 phosphorylation rates in MYL2, porcine ventricular myosin, and chicken gizzard myosin. These data demonstrate that smMLCK is a specific and efficient kinase for the in vitro phosphorylation of MYL2, cardiac, and smooth muscle myosin. Whether smMLCK plays a role in cardiac muscle regulation or response to a disease causing stimulus is unclear but it should be considered a potentially significant kinase in cardiac tissue on the basis of its specificity, kinetics, and tissue expression.  相似文献   

13.
Isometrically suspended uteri from estrogen-primed rats were stimulated with prostaglandin F2 alpha and then exposed to relaxin. Relaxin-dependent decreases in the ratio of phosphorylated to total myosin light chains (MLC) and in MLC kinase activity, measured in the presence of 0.5 mg/ml of uterine myosin and the absence and presence of Ca2+-calmodulin (CaM), were observed. The time-course and concentration-response of these biochemical effects of relaxin paralleled the hormone-induced inhibition of uterine contractile activity. Relaxin treatment resulted in a change in the requirements of MLC kinase for Ca2+, CaM, and myosin. Titrations of MLC kinase activity showed a shift in K50 values for Ca2+ from 82 to 260 nM and for CaM from 2.2 to 25 nM in extracts from control and relaxin-treated tissues, respectively. The myosin Km values of MLC kinase from control and relaxin-treated tissues were 0.33 and 0.71 mg/ml, respectively. Under optimal assay conditions (100 microM Ca2+, 1 microM CaM, and 1.2 mg/ml of myosin) the activities of MLC kinase in both extracts were identical, regardless of hormone concentration or exposure time. These data suggest that relaxin-treatment results in a change in the affinity of MLC kinase for its substrate and modulator and that relaxin inhibits uterine contractile activity by a mechanism which involves a decrease in MLC kinase activity and, in turn, a decrease in phosphorylation of the 20,000-dalton light chains of myosin.  相似文献   

14.
Changes in myosin and myosin light chain kinase during myogenesis   总被引:1,自引:0,他引:1  
Myosins and myosin light chain kinases have been isolated from a cloned line of myoblasts (L5/A10) as this cell line undergoes differentiation toward adult muscle. At least three myosin isozymes were obtained during this developmental process. Initially a nonmuscle type of myosin was found in the myoblasts. The molecular weights of the myoblast light chains were 20 000 and 15 000. Myosin isolated from early myotubes had light chains with molecular weights of 20 000 and 19 500. Myosin isolated from myotubes which contained sarcomeres had light chains with molecular weights of 23 000, 18 500, and 16 000. This last myosin was similar in light chain complement to adult rat thigh muscle. Two forms of the myosin light chain kinase activity were detected: a calcium-independent kinase in the myoblasts and a calcium-dependent kinase in the myotubes with sarcomeres. No myosin light chain kinase activity was detected in the early myotubes.  相似文献   

15.
M Ikebe 《Biochemistry》1989,28(22):8750-8755
The 20,000-dalton light chain of bovine platelet myosin is phosphorylated at two sites by myosin light chain kinase. The first and second phosphorylation sites are at a serine and a threonine residue, respectively. The location of the phosphorylation sites was determined by using limited proteolysis. The N-terminal sequence of the 17,000-dalton tryptic fragment of platelet myosin 20,000-dalton light chain was found to be identical with that of gizzard 20,000-dalton light chain from Ala-17 to Phe-33. On the basis of these results and the distribution of 32P among the proteolytic fragments, it was concluded that serine-19 and threonine-18 were the two phosphorylation sites. Phosphorylation at the threonine residue markedly increases the actin-activated ATPase activity of myosin. It was found that platelet myosin forms 10S and 6S conformations and its Mg2+-ATPase activity parallels the transition from the 6S to the 10S conformation. The conformational transition was influenced by phosphorylation at both sites, and the phosphorylation at the threonine residue further shifted the equilibrium toward the 6S conformation. The phosphorylation at the threonine residue also induced thick filament formation in the presence of ATP. These results suggest that the phosphorylation at the threonine residue as well as at the serine residue may play an important role in the contractility of nonmuscle cells.  相似文献   

16.
Citron kinase is a Rho-effector protein kinase that is related to Rho-associated kinases of ROCK/ROK/Rho-kinase family. Both ROCK and citron kinase are suggested to play a role in cytokinesis. However, no substrates are known for citron kinase. We found that citron kinase phosphorylated regulatory light chain (MLC) of myosin II at both Ser-19 and Thr-18 in vitro. Unlike ROCK, however, citron kinase did not phosphorylate the myosin binding subunit of myosin phosphatase, indicating that it does not inhibit myosin phosphatase. We found that the expression of the kinase domain of citron kinase resulted in an increase in MLC di-phosphorylation. Furthermore, the kinase domain was able to increase di-phosphorylation and restore stress fiber assembly even when ROCK was inhibited with a specific inhibitor, Y-27632. The expression of full-length citron kinase also increased di-phosphorylation during cytokinesis. These observations suggest that citron kinase phosphorylates MLC to generate di-phosphorylated MLC in vivo. Although both mono- and di-phosphorylated MLC were found in cleavage furrows, di-phosphorylated MLC showed more constrained localization than did mono-phosphorylated MLC. Because citron kinase is localized in cleavage furrows, citron kinase may be involved in regulating di-phosphorylation of MLC during cytokinesis.  相似文献   

17.
Phosphorylation of regulatory light chain (LC20) by myosin light chain kinase (MLCK) has been thought to play an important role in both smooth muscle contraction and several functions of vertebrate non-muscle cells. Amiloride, a frequently used Na+/H+ exchange inhibitor, potently inhibited phosphorylation of LC20 by MLCK. The inhibition was non-competitive with respect to myosin but competitive with ATP (Ki = 0.95 microM), suggesting that amiloride may act as an ATP analogue. Amiloride also inhibited the tension development of ether-treated gizzard fibers which were lacking in Na+/H+ antiport, even in the presence of ATP regenerating system. Thus, it must be reminded that amiloride cannot be used as a specific inhibitor of Na+/H+ exchange, and that the inhibition of myosin phosphorylation by amiloride should be taken into consideration in studying the role of Na+/H+ antiport in the cellular function.  相似文献   

18.
The smooth muscle isoform of myosin light chain kinase (MLCK) is a Ca2+-calmodulin-activated kinase that is found in many tissues. It is particularly important for regulating smooth muscle contraction by phosphorylation of myosin. This review summarizes selected aspects of recent biochemical work on MLCK that pertains to its function in smooth muscle. In general, the focus of the review is on new findings, unresolved issues, and areas with the potential for high physiological significance that need further study. The review includes a concise summary of the structure, substrates, and enzyme activity, followed by a discussion of the factors that may limit the effective activity of MLCK in the muscle. The interactions of each of the many domains of MLCK with the proteins of the contractile apparatus, and the multi-domain interactions of MLCK that may control its behaviors in the cell are summarized. Finally, new in vitro approaches to studying the mechanism of phosphorylation of myosin are introduced.  相似文献   

19.
Myosin light chain kinase (MLCK) is a key regulator of various forms of cellular mobility, in particular, endothelial and epithelial permeability. The membrane-penetrative peptide (H-RKKYKYRRK-NH2, L-PIK) is one of the potential MLCK inhibitors for use in humans. Five analogs of L-PIK were synthesized by the solid phase method of peptide synthesis using Fmoc technology. According to 1H NMR, these analogs exhibited increased stability towards degradation in blood plasma. One of the synthesized peptides, L-[MeArg1]PIK, inhibited MLCK activity in vitro, and the inhibition efficacy of L-[MeArg1]PIK was equal to that of L-PIK. The inhibitory effect of the other analogs was lower than that of L-PIK. The L-PIK analog that consisted of D-amino acids was the least active. Thus, we demonstrated the possibility of creating an effective peptide inhibitor of MLCK with increased stability against biodegradation. Such a peptide inhibitor is a promising compound for further pharmacological studies.  相似文献   

20.
A novel myosin light chain kinase (MLCK) cDNA was isolated from a HeLa cell cDNA library. The deduced amino acid sequence was identical to that of a zipper-interacting protein kinase (ZIPK) which mediates apoptosis [Kawai et al. (1998) Mol. Cell. Biol. 18, 1642-1651]. Here we found that HeLa ZIPK phosphorylated the regulatory light chain of myosin II (MRLC) at both serine 19 and threonine 18 in a Ca2+/calmodulin independent manner. Phosphorylation of myosin II by HeLa ZIPK resulted in activation of actin-activated MgATPase activity of myosin II. HeLa ZIPK is the first non-muscle MLCK that phosphorylates MRLC at two sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号