首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The mechanism of phosphatidylcholine (PC) degradation stimulated by phorbol myristate acetate (PMA) was investigated in bovine pulmonary artery endothelial cells prelabeled with [methyl-3H]choline ([3H]choline) or [9,10-3H]myristic acid ([3H]myristic acid). Both labels were selectively incorporated into PC, and addition of PMA stimulated comparable losses of 3H from PC in cells prelabeled with [3H]choline or [3H]myristate. In cells prelabeled with [3H]choline, the loss of 3H from PC correlated with a rapid increase in intracellular free [3H]choline. The increase in intracellular [3H]choline stimulated by PMA was not preceded by an increase in any other 3H-labeled PC degradation product. PMA did not stimulate the formation of PC deacylation products in cells prelabeled with [3H]choline. In permeabilized cells prelabeled with [3H]choline, PMA stimulated the formation of [3H]choline but not [3H]phosphocholine. In intact cells prelabeled with [3H]myristate, the loss of 3H from PC induced by PMA correlated with the formation of [3H]phosphatidic acid ([3H]PA) and [3H]diacylglycerol. In the presence of ethanol, PMA stimulated the formation of [3H]phosphatidylethanol ([3H]PEt) at the expense of [3H]PA. The time-course of [3H]PEt formation was similar to the time-course of intracellular [3H]choline formation in cells stimulated with PMA. These data taken together support the notion that PC degradation in endothelial cells stimulated with PMA is mediated principally by phospholipase D. PC breakdown via phospholipase D was not observed in cells treated with phorbol esters incapable of interacting with protein kinase C. Activation of phospholipase D by phorbol esters was inhibited by long-term pretreatment of cells with PMA to down-regulate protein kinase C and by pretreatment of the cells with staurosporine. These data support the notion that activation of phospholipase D by phorbol esters is dependent upon protein kinase C.  相似文献   

2.
Bovine pulmonary artery endothelial cells (BPAEC) were prelabeled with [3H]choline or [3H]myristic acid to selectively label endogenous phosphatidylcholine. BPAEC were stimulated with ATP and bradykinin (BK), and phospholipase D (PLD) activation was detected as a 4-fold increase in [3H]choline in cells prelabeled with [3H]choline or as a 2- to 3-fold increase in [3H]phosphatidylethanol in cells prelabeled with [3H]myristic acid and stimulated in the presence of ethanol. Pretreatment of BPAEC with 0.1 microM phorbol 12-myristate 13-acetate (PMA) for 22 hr completely inhibited agonist-induced PLD activation, whereas prostacyclin synthesis and [3H]phosphoinositide ([3H]PIns) hydrolysis were enhanced in pretreated cells. Long-term PMA treatment thus dissociates agonist-induced PLD activation from [3H]PIns hydrolysis, and agonist-induced prostacyclin synthesis is not dependent upon PLD activation.  相似文献   

3.
Bradykinin is known to activate phospholipase D in PC12 cells. Because bradykinin may also activate protein kinase C in these cells, the possible role of this kinase in mediating the action of bradykinin was investigated. Phospholipase D activity in PC12 cells was assayed by measuring the formation of [3H]phosphatidylethanol in cells prelabeled with [3H]palmitic acid and incubated in the presence of ethanol. The phorbol ester phorbol dibutyrate mimicked the effect of bradykinin on [3H]phosphatidylethanol formation. The protein kinase C inhibitor staurosporine (1 microM) significantly attenuated the effect of phorbol dibutyrate (35-70%) but did not block bradykinin-stimulated [3H]phosphatidylethanol formation. In addition, the effect of phorbol dibutyrate was additive with that of bradykinin. Prolonged treatment of PC12 cells with phorbol dibutyrate (24 h), which depletes cells of protein kinase C, greatly attenuated bradykinin-stimulated [3H]phosphatidylethanol accumulation in intact cells. This treatment caused a 55% decrease in both fluoride-stimulated [3H]phosphatidylethanol production in the intact cell and phospholipase D activity as assessed by an in vitro assay using an exogenous substrate. Therefore, the effect of prolonged phorbol dibutyrate pretreatment on bradykinin-stimulated [3H]phosphatidylethanol production could not be attributed exclusively to the depletion of protein kinase C. Thus, although the data with phorbol ester suggest that activation of protein kinase C leads to an increase in phospholipase D activity, this kinase probably does not play a role in mediating the effect of bradykinin. Finally, although pretreatment with phorbol dibutyrate completely blocked bradykinin-stimulated [3H]phosphatidylethanol production in the intact cell, it only partially (approximately 50%) inhibited bradykinin-stimulated [3H]diacylglycerol formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Cultured fibroblasts (REF52 cells) were employed to investigate phospholipid degradation in response to vasopressin (VP) treatment. There have been few studies in fibroblasts which characterize the pattern and relationship of phosphatidylinositol 4,5-bisphosphate (PIP2) and non-phosphoinositide hydrolysis elicited by VP. Here we demonstrate that VP-induced PIP2 hydrolysis is closely accompanied by phosphatidylcholine (PC) degradation by phospholipase D. Cells prelabeled with [3H]arachidonic acid showed rapid formation and diminution of [3H]diacylglycerol (DG) (5-15s) when treated with VP; this was accompanied by a reduction in polyphosphoinositide radioactivity. Radiolabeled inositol trisphosphate was generated with a similar time frame. In cells prelabeled with [3H]myristic acid, which is predominantly incorporated into cellular PC, VP elicited the generation of [3H]myristoyl phosphatidate (PA) as early as 15 s, in the absence of an increase in labeled DG. In the presence of ethanol the pattern of [3H]myristoyl phosphatidylethanol (PEt) formation coincided with [3H]myristoyl-PA formation in the absence of ethanol. PEt was similarly formed, in response to VP treatment, in cells prelabeled with 1-O-[3H]hexadecyl-2-lyso-sn-glycero-3-phosphocholine. The formation of PC-derived [3H]myristoyl-DG was characterized by a lag period of approximately 1 min, after which DG increased steadily over a 10-min period. Biphasic formation of DG was observed in cells prelabeled with [3H]arachidonic acid, and the formation of [3H]PA occurred in an uninterrupted fashion. Two protein kinase C agonists, phorbol diester and dioctanoylglycerol, elicited the formation of [3H]myristoyl-PEt. The inclusion of staurosporine, a protein kinase C inhibitor, blocked VP-induced [3H]myristoyl-PEt formation by 88%. These data demonstrate that VP elicits the coordinated hydrolysis of PIP2 by phospholipase C and PC hydrolysis by phospholipase D. This event results in the prolonged generation of PA and biphasic formation of DG. From the time courses shown, we hypothesize that the early generation of PA, heretofore ascribed to products of the polyphosphoinositide cycle, are in part derived from PC by phospholipase D.  相似文献   

5.
Phosphoinositide hydrolysis was studied in a washed membrane preparation of 1321N1 astrocytoma cells prelabeled with [3H]inositol. GTP gamma S stimulated the formation of [3H]inositol mono-, bis-, and trisphosphate ([3H]InsP, [3H]InsP2, and [3H]InsP3) with a half-maximal effect on [3H]InsP formation at 5 microM. Carbachol increased the accumulation of [3H]inositol phosphates only in the presence of added guanine nucleotide. Calcium increased [3H]InsP3 accumulation over a range of concentrations (10 nM-3 mM free calcium). When 1321N1 cells were treated with phorbol ester (100 nM 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA)) prior to preparation of the membranes, the maximal [3H]InsP formation induced by GTP gamma S or GTP gamma S plus carbachol was decreased by 50-75%. In contrast, the response to a maximal calcium concentration presumed to activate phospholipase C directly was minimally inhibited (approximately 15%). PMA treatment did not affect muscarinic receptor affinity for carbachol or the effect of GTP on agonist binding. PMA treatment was also without effect on the breakdown of exogenous [3H]InsP3 in homogenates, permeabilized cells, and membranes, indicating that the InsP3-phosphatase was not the site of phorbol ester action. PMA treatment inhibited [3H] InsP3 formation only in membranes and not in cytosol prepared from the same cells, suggesting a membrane site of PMA action. Membranes were also required to demonstrate GTP gamma S-stimulated [3H]InsP3 formation although calcium-stimulated [3H]InsP3 formation was demonstrable in both membranes and cytosol. The addition of purified protein kinase C to the membranes mimicked the effect of PMA treatment to decrease GTP gamma S-stimulated [3H]InsP3 production. These data indicate that the effect of PMA on phosphoinositide metabolism is demonstrable in a cell-free system and that it can be mimicked by protein kinase C. We suggest that the ability of PMA to block GTP gamma S-stimulated formation of [3H]InsP3 results from inhibition of the G protein interaction with phospholipase C.  相似文献   

6.
We have investigated the coupling of muscarinic acetylcholine receptors (mAChR) to phospholipid hydrolysis in a human neuroblastoma cell line, LA-N-2, by measuring the formation of 3H-inositol phosphates (3H-IP) and of [3H]phosphatidylethanol ([3H]PEt) in cells prelabeled with [3H]inositol and [3H]oleic acid. The muscarinic agonist carbachol (CCh) stimulated the phospholipase C (PLC)-mediated formation of 3H-IP in a time- and dose-dependent manner (EC50 = 40-55 microM). In addition, in the presence of ethanol (170-300 mM), CCh elevated levels of [3H]PEt [which is regarded as a specific indicator of phospholipase D (PLD) activity] by three- to sixfold. The effect of CCh on PEt formation also was dose dependent (EC50 = 50 microM). Both effects of CCh were antagonized by atropine, indicating that they were mediated by mAChR. Incubation of LA-N-2 cells with the phorbol ester phorbol 12-myristate 13-acetate (PMA, 0.1 microM; 10 min) increased [3H]PEt levels by up to 10-fold. This effect was inhibited by the protein kinase C (PKC) inhibitor staurosporine (1 microM) or by pretreatment for 24 h with 0.1 microM PMA, by 74% and 65%, respectively. In contrast, the effect of CCh on PEt accumulation was attenuated by only 28% in the presence of staurosporine (1 microM). In summary, these results suggest that, in LA-N-2 neuroblastoma cells, mAChR are coupled both to phosphoinositide-specific PLC and to PLD. PKC is capable of stimulating PLD activity in these cells; however, it is not required for stimulation of the enzyme by mAChR activation.  相似文献   

7.
In order to test if phospholipase D (PLD) activity exists in the rat parotid gland, we took advantage of the fact that, in the presence of ethanol, PLD generates phosphatidylethanol (PEth) via a transphosphatidylation reaction. Lipid extracts of parotid acini prelabelled with [3H]myristic acid were analyzed by thin layer chromatography to determine [3H]phosphatidylethanol ([3H]PEth) formation. Carbamylcholine (1 mM) stimulated [3H]PEth formation in the presence of 2% ethanol, this effect was completely inhibited by atropine (10 microM). PMA (0.1-1 microM) and ionomycine (10 microM) also caused [3H]PEth generation. We conclude that a phospholipase D activity is present in the rat parotid gland and is regulated by muscarinic cholinergic receptors. Protein kinase C and calcium could also modulate this activity. This report provides the first evidence for the existence and receptor-linked regulation of phospholipase D in an exocrine gland, the rat parotid gland.  相似文献   

8.
We have investigated phospholipase D activity in rat brain cortical slices prelabeled with [32P]orthophosphoric acid. In the presence of ethanol (170 mM), norepinephrine stimulated, in a dose-dependent manner (EC50 = 2.2 microM), the accumulation of [32P]phosphatidylethanol as a result of phospholipase D activity. Norepinephrine-stimulated phospholipase D activity was completely inhibited by prazosin, a specific alpha 1-adrenergic antagonist (Ki = 2.8 nM). However, no accumulation of phosphatidylethanol was observed in the presence of the muscarinic agonist carbachol. The Ca2+ ionophore ionomycin and the protein kinase C activator phorbol 12-myristate 13-acetate (PMA) also stimulated [32P]phosphatidylethanol accumulation in cortical slices, in a dose- and time-dependent manner, whereas the inactive phorbol, 4 alpha-phorbol 12,13-didecanoate, did not stimulate phospholipase D activity. Staurosporine and 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine, two potent inhibitors of protein kinase C, inhibited PMA and ionomycin stimulation of phospholipase D activity, but did not affect the response to norepinephrine. Furthermore, the effects of PMA and norepinephrine were additive. Differences between PMA and norepinephrine stimulation of phospholipase D activity were also found with regard to the extracellular Ca2+ requirement and time course of phosphatidylethanol accumulation. No stimulation of phospholipase D activity by norepinephrine was observed in slices from cerebellum, a brain area with a low density of alpha 1-adrenergic receptors, while the effect of PMA was greater in the cerebellum than in cortical or hippocampal slices. These results strongly suggest that activation of phospholipase D in cortical slices by norepinephrine and PMA involve different mechanisms.  相似文献   

9.
Endothelin Stimulates Phospholipase D in Striatal Astrocytes   总被引:1,自引:1,他引:0  
Abstract: In primary cultures of mouse striatal astrocytes prelabeled with [3H]myristic acid, endothelin (ET)-1 induced a time-dependent formation of [3H]phosphatidic acid and [3H]diacylglycerol. In the presence of ethanol, a production of [3H]phosphatidylethanol was observed, indicating the activation of a phospholipase D (PLD). ET-1 and ET-3 were equipotent in stimulating PLD activity (EC50 = 2–5 n M ). Pretreatment of the cells with pertussis toxin partially abolished the effect of ET-1, indicating the involvement of a Gi/Go protein. Inhibition of protein kinase C by Ro 31-8220 or down-regulation of the kinase by a long-time treatment with phorbol 12-myristate 13-acetate (PMA) totally abolished the ET-1-induced stimulation of PLD. In contrast, a cyclic AMP-dependent process is not involved in the activation of PLD, because the ET-1-evoked formation of [3H]phosphatidylethanol was not affected when cells were coincubated with either isoproterenol, 8-bromo-cyclic AMP, or forskolin. Acute treatment with PMA also stimulated PLD through a protein kinase C-dependent process. However, the ET-1 and PMA responses were additive. Furthermore, the ET-1-evoked response, contrary to that of PMA, totally depended on the presence of extracellular calcium. These results suggest that at least two distinct mechanisms are involved in the control of PLD activity in striatal astrocytes. Finally, ET-1, ET-3, and PMA also stimulated PLD in astrocytes from the mesencephalon, the cerebral cortex, and the hippocampus.  相似文献   

10.
In PC12 pheochromocytoma cells whose phospholipids had been prelabelled with [3H]palmitic acid, bradykinin increased the production of [3H]phosphatidic acid. The increase in [3H]phosphatidic acid occurred within 1-2 min. before the majority of the increase in [3H]diacylglycerol. When the phospholipids were prelabeled with [3H]choline, bradykinin increased the intracellular release of [3H]choline. The production of phosphatidic acid and choline suggests that bradykinin was increasing the activity of phospholipase D. Transphosphatidylation is a unique property of phospholipase D. In cells labeled with [3H]palmitic acid, bradykinin stimulated the transfer of phosphatidyl groups to both ethanol and propanol to form [3H]phosphatidylethanol and [3H]phosphatidylpropanol, respectively. The effect of bradykinin on [3H]phosphatidic acid and [3H]phosphatidylethanol formation was partially dependent on extracellular Ca2+. In cells treated with nerve growth factor, carbachol also increased [3H]phosphatidylethanol formation. To investigate the substrate specificity of phospholipase D, cells were labeled with [14C]stearic acid and [3H]palmitic acid, and then incubated with ethanol in the absence or presence of bradykinin. The 14C/3H ratio of the phosphatidylethanol that accumulated in response to bradykinin was almost identical to the 14C/3H ratio of phosphatidylcholine. The 14C/3H ratio in phosphatidic acid and diacylglycerol was higher than the ratio in phosphatidylcholine. These data provide additional support for the idea that bradykinin activates a phospholipase D that is active against phosphatidylcholine. The hydrolysis of phosphatidylcholine by phospholipase D accounts for only a portion of the phosphatidic acid and diacylglycerol that accumulates in bradykinin-stimulated cells: bradykinin evidently stimulates several pathways of phospholipid metabolism in PC12 cells.  相似文献   

11.
Bradykinin (BK) and phorbol 12-myristate 13-acetate (PMA) both stimulate the hydrolysis of phosphatidylcholine (PC) in human fibroblasts, resulting in the formation of phosphatidic acid (PA) and diacylglycerol (DG) (Van Blitterswijk, W.J., Hilkmann, H., de Widt, J., and Van der Bend, R.L. (1990) J. Biol. Chem. 266, 10337-10343). Stimulation with BK resulted in the rapid and synchronous formation of [3H]choline and [3H]myristoyl-PA from the correspondingly prelabeled PC, indicative of phospholipase D (PLD) activity. In the presence of ethanol or n-butanol, transphosphatidylation by PLD resulted in the formation of [3H]phosphatidylethanol or - butanol, respectively, at the cost of PA and DG formation. This suggests that PC-derived DG is generated via a PLD/PA phosphohydrolase pathway. A more pronounced but delayed formation of these products was observed by PMA stimulation. The Ca2+ ionophore ionomycin also activated PLD and accelerated (synergized) the response to PMA. Both [3H] choline and [3H]phosphocholine were released into the extracellular medium in a time- and stimulus-dependent fashion, without apparent changes in the high intracellular levels of [3H]phosphocholine. The protein kinase C (PKC) inhibitors staurosporin and 1-O-hexadecyl-2-O-methylglycerol inhibited BK- and PMA-induced activation of PLD. Down-regulation of PKC by long-term pretreatment of cells with phorbol ester caused a dramatic drop in background [3H]choline levels, while subsequent stimulation with BK, ionomycin, or PMA failed to increase these levels and failed to induce transphosphatidylation. From these results we conclude that PLD activation is entirely mediated by (downstream of) PKC. Unexpectedly, however, BK stimulation of these PKC-depleted cells caused a marked generation of DG from PC within 15 s, which was not seen in BK-stimulated control cells, suggesting PC breakdown by a phospholipase C (PLCc). We conclude that cells stimulated with BK generate DG via both the PLCc and the PLD/PA hydrolase pathway, whereas PMA stimulates mainly the latter pathway. BK stimulation of normal cells leads to activation of PKC and, by consequence, to attenuation of the level of PLCc-generated DG and to stimulation of the PLD pathway, whereas the reverse occurs in PKC-down-regulated cells.  相似文献   

12.
We have studied the effects of thrombin (alpha-thrombin) and Ser-Phe-Leu-Leu-Arg-Asn-Pro-Asn-Asp-Lys-Tyr-Glu-Pro-Phe (SFLL), a peptide agonist of the platelet thrombin receptor in cultured human mesangial cells, and find that SFLL can reproduce the biochemical and morphological effects of thrombin. Treatment of mesangial cells with cAMP-elevating agents causes fragmentation of stress fibers, loss of the vitronectin receptor from sites of focal adhesion, and produces a change in shape from a flat to a more arborized configuration. These effects are prevented by both thrombin and SFLL. Thrombin and SFLL also initiate biochemical signaling events in mesangial cells by stimulating the metabolism of phospholipids. Both thrombin and SFLL stimulate release of inositol phosphates from [3H]inositol-labeled cells, elevation of cytosolic calcium, the formation of [3H]myristic acid-labeled diacylglycerol, an increase in the mass of diacylglycerol, 32P incorporation into phospholipids, and release of unesterified [3H]arachidonic acid from cells prelabeled with [3H]arachidonic acid. When present together, the effects of SFLL and thrombin on diacylglycerol formation, arachidonic acid production, and inositol phosphate production were not additive. This suggested that SFLL and thrombin were acting on the same receptor. This was further supported by our observations that cells pretreated with SFLL and subsequently exposed to thrombin (or vice versa) did not show elevated cytosolic calcium. We also show that phospholipase D is activated by demonstrating production of radiolabeled phosphatidylethanol when cells are treated with SFLL in the presence of ethanol. These findings indicate that SFLL can be used to study the receptor-mediated effects of thrombin in mesangial cells, thereby avoiding thrombin's proteolytic actions.  相似文献   

13.
We determined the phospholipase D (PLD) activity in rat vascular smooth muscle cells by the formation of phosphatidylethanol in cells prelabeled with [3H] myristic acid. The enzyme was markedly activated by a phorbol ester (TPA). Down regulation of protein kinase C (PKC) resulted in almost complete inhibition indicating PKC-dependent mechanism of its activation. Depletion of calcium by EGTA and TMB-8 caused 53% inhibition. Chelator-stable association of PKC to membrane by TPA was observed in the absence of extracellular Ca2+. The mitogenic peptide PDGF also caused a marked stimulation of PLD. These results indicate that PLD in vascular smooth muscle cells is stimulated by TPA through the activation of PKC both by calcium-dependent and independent mechanisms.  相似文献   

14.
The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of receptors were independent of each other. The production of inositol phosphates by nicotinic stimulation required extracellular Ca2+ and was maximal at 0.2 mM Ca2+. Increasing extracellular Ca2+ from 0.22 to 2.2 mM increased the sensitivity of inositol phosphates formation to stimulation by submaximal concentrations of 1,1-dimethyl-4-phenyl-piperazinium iodide (DMPP) but did not enhance the response to muscarine. Elevated K+ also stimulated Ca2+-dependent [3H]inositol phosphate production, presumably by a non-receptor-mediated mechanism. The Ca2+ channel antagonists D600 and nifedipine inhibited the effects of DMPP and elevated K+ to a greater extent than that of muscarine. Ca2+ (0.3-10 microM) directly stimulated the release of inositol phosphates from digitonin-permeabilized cells that had been prelabeled with [3H]inositol. Thus, cholinergic stimulation of bovine adrenal chromaffin cells results in the activation of phospholipase C by distinct muscarinic and nicotinic mechanisms. Nicotinic receptor stimulation and elevated K+ probably increased the accumulation of inositol phosphates through Ca2+ influx and a rise in cytosolic Ca2+. Because Ba2+ caused catecholamine secretion but did not enhance the formation of inositol phosphates, phospholipase C activation is not required for exocytosis. However, diglyceride and myo-inositol 1,4,5-trisphosphate produced during cholinergic stimulation of chromaffin cells may modulate secretion and other cellular processes by activating protein kinase C and/or releasing Ca2+ from intracellular stores.  相似文献   

15.
Agents which elevate cellular cAMP (prostaglandin E2, theophylline, and forskolin) or mimic cAMP action (dibutyryl cAMP) are known to inhibit human neutrophil activation (superoxide generation and secretion) by receptor-linked agonists such as formyl-methionyl-leucyl-phenylalanine (fMLP). Herein, we show that these agents also markedly inhibit fMLP-stimulated diradylglycerol generation (assayed by mass methods). The magnitude of inhibition correlated with the ability of a given agent or combination of agents to elevate cAMP. Both 1,2-diacylglycerol and 1-O-alkyl,2-acyl glycerol generation were affected. Effects on the latter species, as well as a lack of effect on fMLP-stimulated inositol phosphate release, implied that cAMP affected diradylglycerol generation from a source other than phospholipase C-dependent phosphoinositide hydrolysis, since phosphatidylinositols do not contain appreciable quantities of the 1-O-alkyl linkage. In cells in which the phosphatidylcholine pool was prelabeled using 1-O-[3H]octadecyl-2-lyso-sn-glycero-3-phosphocholine, prostaglandin E2 plus theophylline inhibited the fMLP-activated rapid generation of [3H]phosphatidic acid and its subsequent conversion to [3H]diradylglycerol, implying an effect at the level of phospholipase D. In the presence of ethanol, the fMLP-activated transphosphatidylation of [3H]phosphatidylcholine to generate [3H]phosphatidylethanol (a phospholipase D-dependent reaction) was also markedly inhibited. In contrast, when phorbol 12-myristate 13-acetate was used to activate cells, cAMP-related agents had no effect on phospholipase D activity, diradylglycerol generation, or superoxide generation. The data indicate an inhibitory effect of cyclic AMP on receptor-mediated phospholipase D activation at a site proximal to phospholipase D (e.g., the receptor or G protein). These studies provide a new example of "cross-talk" among signal transduction systems.  相似文献   

16.
Dibutyryl-cAMP-differentiated U937 cells incorporate alkyllyso-sn-glycero-3-[32P]phosphocholine (alkyllyso-[32P]GPC) into cellular alkylacyl-sn-glycero-3-phosphocholine (alkylacyl-GPC). Upon stimulation with fMet-Leu-Phe (fMLP), recombinant C5a, or phorbol 12-myristate 13-acetate (PMA), these cells produce alkylacyl-sn-glycero-3-[32P]phosphate (alkylacyl-[32P]GP). In the presence of ethanol (0.5%), alkylacyl-sn-glycero-3-[32P]phosphoethanol (alkylacyl-[32P]GPet) is also formed with a concomitant reduction in alkylacyl-[32P]GP accumulation. Because cellular ATP is not labeled with 32P, alkylacyl-[32P]GP and alkylacyl-[32P]GPet must be formed by phospholipase D (PLD)-catalyzed hydrolysis and transphosphatidylation, respectively. Activation by receptor agonists, but not by PMA, requires extracellular Ca2+ and is augmented by cytochalasin B pretreatment. Upon stimulation, dibutryl cAMP-differentiated U937 cells labeled with alkylacyl-[32P]GPC produce [32P]PO4 but not [32P]phosphocholine. Furthermore, when these cells were labeled in alkylacyl-GPC by incubation with [3H]alkyllyso-GPC and then stimulated, [3H]alkylacyl-glycerol ([3H]alkylacyl-Gro) is produced with a time-course similar to that of [32P]PO4 formation and coincident with the decline in alkylacyl-GP accumulation. These results demonstrate that alkylacyl-GP formed by PLD is dephosphorylated by phosphatidate phosphohydrolase to produce PO4 and alkylacyl-Gro. Upon stimulation with fMLP or C5a, U937 cells labeled in diacyl-sn-glycero-3-phosphocholine (diacyl-GPC) by incubation with [3H]acyllyso-GPC generate [3H]diacyl-GP, [3H]diacyl-GPEt, and [3H]diacyl-Gro with kinetics similar to those for the generation of the [3H]alkyl products. Thus, in differentiated U937 cells stimulated with receptor agonists, both alkylacyl-GPC and diacyl-GPC are sequentially metabolized by PLD and phosphatidate phosphohydrolase.  相似文献   

17.
Human preimplantation embryos and endometrium secrete platelet-activating factor (PAF). The mechanism of phosphatidylcholine (PC) degradation stimulated by PAF was investigated in endometrial explants prelabeled with [methyl-3H]choline or preincubated with [3H]butan-1-ol. Analysis of the water-soluble metabolites of PAF-induced PC hydrolysis in secretory endometrium demonstrated that the stimulated generation of [3H]choline ([3H]Cho) precedes that of [3H]choline phosphate ([3H]ChoP) and [3H]glycerophosphocholine ([3H]GPC). Within 30 sec there was a rapid rise in PAF-induced [3H]Cho generation and by 2 min this had increased to 59.9% +/- 10.6% (p less than 0.02), with no effect upon [3H]ChoP and [3H]GPC during this period. Both [3H]GPC and [3H]ChoP, however, were increased at a later time point. The slower [3H]ChoP generation may suggest that PC-specific phospholipase C activation as well as delayed [3H]GPC rise may be due to PC-specific phospholipase A2 and lysophospholipase activation. Phospholipase D activity was confirmed by the incorporation of high-specific-activity [3H]butan-1-ol into [3H]phosphatidylbutanol ([3H]PBut). The rapid generation of [3H]PBut, which paralleled the rise in intracellular [3H]Cho, strongly suggests that PC breakdown is catalyzed by the phospholipase D pathway. It is proposed that PAF induces PC hydrolysis as a consequence of an early phospholipase D-catalyzed breakdown of PC in human secretory endometrium. This may be an alternative source for prostaglandin synthesis and an important pathway essential for long-term activation of local cellular events at the time of implantation.  相似文献   

18.
We have previously demonstrated that platelet-activating factor (PAF) binds specifically on cell membranes isolated from U937 cells. We now describe biological evidence showing that the effect of PAF on U937 cells is a receptor-mediated event. myo-[3H]Inositol-labeled U937 cells were used to investigate the possible role of phosphoinositide metabolism in these cells after binding of PAF. Formation of inositol phosphates (IP1, IP2, and IP3) in response to PAF was increased two- to threefold more than in vehicle control in U937 cells. The effect of PAF on endogenous protein phosphorylation was also studied by using 32PO4-labeled cells. PAF stimulates the phosphorylation of a 45-kDa protein in a time-dependent and dose-related fashion. Since the phospholipase C-generated diglyceride is an important activator of protein kinase C, the phosphorylated 45-kDa protein could be the substrate of protein kinase C. In this regard, we were able to demonstrate that phorbol ester enhances the phosphorylation of the same 45-kDa protein band. In addition, sphingosine, a protein kinase C inhibitor, inhibits the phosphorylation of the same 45-kDa protein band. Down-regulation of the protein kinase C also inhibits the 45-kDa protein phosphorylation. These results suggest that protein kinase C is involved in the PAF-U937 cell interaction.  相似文献   

19.
Stimulation of human polymorphonuclear leukocytes (PMN) may result in the metabolism of phospholipids other than phosphoinositides to generate second-messenger intermediary metabolites. We investigated agonist-induced breakdown of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine (1-O-alkyl-2-acyl-GPC), which constitutes almost half the diradyl-GPC fraction in human PMN (Mueller, H. W., O'Flaherty, J. T., Green, D. G., Samuel, M. P., and Wykle, R. L. (1984) J. Lipid Res. 25: 383-388), in cells prelabeled with 1-O-[3H] alkyl-2-acyl-GPC. We also utilized normal-phase high pressure liquid chromatography to quantitate the accumulation of diradylglycerols (1-O-alkyl-2-acylglycerols and diacylglycerols) in stimulated PMN. Phorbol-12-myristate-13-acetate (PMA), 1-oleoyl-2-acetyl-sn-glycerol-, calcium ionophore A23187-, and f-methionyl-leucyl-phenylalanine (fMLP) stimulation of PMN resulted in a time- and concentration-dependent hydrolysis of 1-O-[3H]alkyl-2-acyl-GPC and the formation of 1-O-[3H]alkyl-2-acyl-phosphatidic acid (PA) and 1-O-[3H]alkyl-2-acylglycerol. In all cases formation of 1-O-[3H]alkyl-2-acyl-PA preceded that of 1-O-[3H]alkyl-2-acylglycerol. The times between addition of stimulus and appearance of 1-O-[3H] alkyl-2-acylglycerol varied for PMA (40 s at 1.6 microM), A23187 (5 min at 5 microM), and fMLP (30 sec at 1 microM). Preincubation of cells with 1 microgram/ml pertussis toxin (PT) inhibited the breakdown of 1-O-[3H]alkyl-2-acyl-GPC in cells stimulated with 1 microM fMLP, indicating a role for a PT-sensitive G protein with this stimulus. Quantitation of diglycerides as diradylglycerobenzoates in PMN stimulated with PMA (10 min), A23187 (10 min), or fMLP demonstrated marked accumulation of both 1-O-alkyl-2-acylglycerols and diacylglycerols. The highest increases over controls were observed for fMLP (33-fold for 1-O-alkyl-2-acylglycerols and 17-fold for diacylglycerols). In stimulated PMN prelabeled with 1-O-[3H]hexadecyl-2-acyl-GPC and 1-O-alkyl-2-acyl-sn-glycero-3-[32P]phosphocholine, the ratio of 3H to 32P in 1-O-alkyl-2-acyl-PA compared to 1-O-alkyl-2-acyl-GPC suggested the involvement of a phospholipase D in the hydrolysis of 1-O-[3H]-alkyl-2-acyl-GPC. Thus, stimulation of human PMN results in the hydrolysis of 1-O-[3H]alkyl-2-acyl-GPC to yield 1-O-[3H] alkyl-2-acyl-PA and 1-O-[3H]alkyl-2-acylglycerol possibly initiated by activation of a phospholipase D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Addition of platelet-activating factor (PAF) to cells doubly labeled with [14C]glycerol plus [3H]arachidonic acid resulted in a transient decrease of [14C]glycerol-labeled phosphatidylinositol (PI) and a transient increase of [14C]glycerol-labeled lysophosphatidylinositol (LPI). [3H]Arachidonate-labeled PI, on the other hand, decreased in a time-dependent manner. The radioactivity in phosphatidylethanolamine, phosphatidylcholine, sphingomyelin, and phosphatidylserine did not change significantly. The 3H/14C ratio decreased in PI in a time-dependent manner, suggesting the involvement of a phospholipase A2 activity. Although PAF also induced a gradual increase of diacylglycerol (DG), the increase of [14C]glycerol-labeled DG paralleled the loss of triacyl [14C]glycerol and the 3H/14C ratio of DG was 16 times smaller than that of PI. Thus, DG seemed not to be derived from PI. In myo- [3H]inositol-prelabeled cells, PAF induced a transient decrease of [3H]phosphatidylinositol-4,5-bis-phosphate (TPI) and [3H]phosphatidylinositol-4-phosphate (DPI) at 1 min. PAF stimulation of cultured hepatocytes prelabeled with 32Pi induced a transient decrease of [32P]polyphosphoinositides at 20 sec to 1 min. [32P]LPI appeared within 10 sec after stimulation and paralleled the loss of [32P]PI. [3H]Inositol triphosphate, [3H]inositol diphosphate, and [3H]inositol phosphate, which increased in a time-dependent manner upon stimulation with adrenaline, did not accumulate with the stimulation due to PAF. These observations indicate that PAF causes degradation of inositol phospholipids via phospholipase A2 and induces a subsequent resynthesis of these phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号