首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the motive forces for F1-ATPase rotation is the conformational change of the catalytically active β subunit due to closing and opening motions caused by ATP binding and hydrolysis, respectively. The closing motion is accomplished in two steps: the hydrogen-bond network around ATP changes and then the entire structure changes via B-helix sliding, as shown in our previous study. Here, we investigated the opening motion induced by ATP hydrolysis using all-atom free-energy simulations, combining the nudged elastic band method and umbrella sampling molecular-dynamics simulations. Because hydrolysis requires residues in the α subunit, the simulations were performed with the αβ dimer. The results indicate that the large-scale opening motion is also achieved by the B-helix sliding (in the reverse direction). However, the sliding mechanism is different from that of ATP binding because sliding is triggered by separation of the hydrolysis products ADP and Pi. We also addressed several important issues: 1), the timing of the product Pi release; 2), the unresolved half-closed β structure; and 3), the ADP release mechanism. These issues are fundamental for motor function; thus, the rotational mechanism of the entire F1-ATPase is also elucidated through this αβ study. During the conformational change, conserved residues among the ATPase proteins play important roles, suggesting that the obtained mechanism may be shared with other ATPase proteins. When combined with our previous studies, these results provide a comprehensive view of the β-subunit conformational change that drives the ATPase.  相似文献   

2.
F1-ATPase (F1) is an ATP-driven rotary motor in which the three catalytic β subunits in the stator ring sequentially induce the unidirectional rotation of the rotary γ subunit. Many lines of evidence have revealed open-to-closed conformational transitions in the β subunit that swing the C-terminal domain inward. This conformational transition causes a C-terminal protruding loop with conserved sequence DELSEED to push the γ subunit. Previous work, where all residues of DELSEED were substituted with glycine to disrupt the specific interaction with γ and introduce conformational flexibility, showed that F1 still rotated, but that the torque was halved, indicating a remarkable impact on torque transmission. In this study, we conducted a stall-and-release experiment on F1 with a glycine-substituted DELSEED loop to investigate the impact of the glycine substitution on torque transmission upon ATP binding and ATP hydrolysis. The mutant F1 showed a significantly reduced angle-dependent change in ATP affinity, whereas there was no change in the equilibrium for ATP hydrolysis. These findings indicate that the DELSEED loop is predominantly responsible for torque transmission upon ATP binding but not for that upon ATP hydrolysis.  相似文献   

3.
F1-ATPase is a powerful rotary molecular motor that can rotate an object several hundred times as large as the motor itself against the viscous friction of water. Forced reverse rotation has been shown to lead to ATP synthesis, implying that the mechanical work against the motor’s high torque can be converted into the chemical energy of ATP. The minimal composition of the motor protein is α3β3γ subunits, where the central rotor subunit γ turns inside a stator cylinder made of alternately arranged α3β3 subunits using the energy derived from ATP hydrolysis. The rotor consists of an axle, a coiled coil of the amino- and carboxyl-terminal α-helices of γ, which deeply penetrates the stator cylinder, and a globular protrusion that juts out from the stator. Previous work has shown that, for a thermophilic F1, significant portions of the axle can be truncated and the motor still rotates a submicron sized bead duplex, indicating generation of up to half the wild-type (WT) torque. Here, we inquire if any specific interactions between the stator and the rest of the rotor are needed for the generation of a sizable torque. We truncated the protruding portion of the rotor and replaced part of the remaining axle residues such that every residue of the rotor has been deleted or replaced in this or previous truncation mutants. This protrusionless construct showed an unloaded rotary speed about a quarter of the WT, and generated one-third to one-half of the WT torque. No residue-specific interactions are needed for this much performance. F1 is so designed that the basic rotor-stator interactions for torque generation and control of catalysis rely solely upon the shape and size of the rotor at very low resolution. Additional tailored interactions augment the torque to allow ATP synthesis under physiological conditions.  相似文献   

4.
《Biophysical journal》2022,121(10):1909-1918
The gp16 ATPase is the constituent subunit of the pentameric dsDNA (double-stranded deoxyribonucleic acid) translocation motor of the Bacillus subtilis Φ29 bacteriophage. Although recent single-molecule studies have provided tantalizing clues about the activity of this motor, the mechanism by which the gp16 subunits couple the energy obtained from the binding and hydrolysis of ATP to the mechanical work of dsDNA translocation remains unknown. To address this need, we have characterized the binding of fluorophore-labeled ATP and ADP to monomeric gp16 using a stopped-flow fluorescence assay. These experiments show that the binding of ATP/ADP occurs through a single-step mechanism with corresponding affinities of 523.8 ± 247.3 nM for ATP and a lower limit of 30 μM for ADP. When analyzed through the lens of changes in free energy of the system, this difference in binding affinities is reasonable for a cyclical process of binding, hydrolysis, and product release. In addition to answering questions about the activity of monomeric gp16, these results are also a necessary step in constructing a model for intersubunit communication within the pentameric gp16 motor.  相似文献   

5.
F1-ATPase (F1) is the rotary motor protein fueled by ATP hydrolysis. Previous studies have suggested that three charged residues are indispensable for catalysis of F1 as follows: the P-loop lysine in the phosphate-binding loop, GXXXXGK(T/S); a glutamic acid that activates water molecules for nucleophilic attack on the γ-phosphate of ATP (general base); and an arginine directly contacting the γ-phosphate (arginine finger). These residues are well conserved among P-loop NTPases. In this study, we investigated the role of these charged residues in catalysis and torque generation by analyzing alanine-substituted mutants in the single-molecule rotation assay. Surprisingly, all mutants continuously drove rotary motion, even though the rotational velocity was at least 100,000 times slower than that of wild type. Thus, although these charged residues contribute to highly efficient catalysis, they are not indispensable to chemo-mechanical energy coupling, and the rotary catalysis mechanism of F1 is far more robust than previously thought.  相似文献   

6.
F1-ATPase is a rotary molecular motor in which the central γ-subunit rotates inside a cylinder made of α3β3-subunits. The rotation is driven by ATP hydrolysis in three catalytic sites on the β-subunits. How many of the three catalytic sites are filled with a nucleotide during the course of rotation is an important yet unsettled question. Here we inquire whether F1 rotates at extremely low ATP concentrations where the site occupancy is expected to be low. We observed under an optical microscope rotation of individual F1 molecules that carried a bead duplex on the γ-subunit. Time-averaged rotation rate was proportional to the ATP concentration down to 200 pM, giving an apparent rate constant for ATP binding of 2 × 107 M−1s−1. A similar rate constant characterized bulk ATP hydrolysis in solution, which obeyed a simple Michaelis-Menten scheme between 6 mM and 60 nM ATP. F1 produced the same torque of ~40 pN·nm at 2 mM, 60 nM, and 2 nM ATP. These results point to one rotary mechanism governing the entire range of nanomolar to millimolar ATP, although a switchover between two mechanisms cannot be dismissed. Below 1 nM ATP, we observed less regular rotations, indicative of the appearance of another reaction scheme.  相似文献   

7.
F1-ATPase is the catalytic complex of rotary nanomotor ATP synthases. Bacterial ATP synthases can be autoinhibited by the C-terminal domain of subunit ϵ, which partially inserts into the enzyme''s central rotor cavity to block functional subunit rotation. Using a kinetic, optical assay of F1·ϵ binding and dissociation, we show that formation of the extended, inhibitory conformation of ϵ (ϵX) initiates after ATP hydrolysis at the catalytic dwell step. Prehydrolysis conditions prevent formation of the ϵX state, and post-hydrolysis conditions stabilize it. We also show that ϵ inhibition and ADP inhibition are distinct, competing processes that can follow the catalytic dwell. We show that the N-terminal domain of ϵ is responsible for initial binding to F1 and provides most of the binding energy. Without the C-terminal domain, partial inhibition by the ϵ N-terminal domain is due to enhanced ADP inhibition. The rapid effects of catalytic site ligands on conformational changes of F1-bound ϵ suggest dynamic conformational and rotational mobility in F1 that is paused near the catalytic dwell position.  相似文献   

8.
A rotary molecular motor that can work at near 100% efficiency   总被引:6,自引:0,他引:6  
A single molecule of F1-ATPase is by itself a rotary motor in which a central gamma-subunit rotates against a surrounding cylinder made of alpha3beta3-subunits. Driven by the three betas that sequentially hydrolyse ATP, the motor rotates in discrete 120 degree steps, as demonstrated in video images of the movement of an actin filament bound, as a marker, to the central gamma-subunit. Over a broad range of load (hydrodynamic friction against the rotating actin filament) and speed, the F1 motor produces a constant torque of ca. 40 pN nm. The work done in a 120 degree step, or the work per ATP molecule, is thus ca. 80 pN nm. In cells, the free energy of ATP hydrolysis is ca. 90 pN nm per ATP molecule, suggesting that the F1 motor can work at near 100% efficiency. We confirmed in vitro that F1 indeed does ca. 80 pN nm of work under the condition where the free energy per ATP is 90 pN nm. The high efficiency may be related to the fully reversible nature of the F1 motor: the ATP synthase, of which F1 is a part, is considered to synthesize ATP from ADP and phosphate by reverse rotation of the F1 motor. Possible mechanisms of F1 rotation are discussed.  相似文献   

9.
Rotation of the γ subunit of the F1-ATPase plays an essential role in energy transduction by F1-ATPase. Hydrolysis of an ATP molecule induces a 120° step rotation that consists of an 80° substep and 40° substep. ATP binding together with ADP release causes the first 80° step rotation. Thus, nucleotide binding is very important for rotation and energy transduction by F1-ATPase. In this study, we introduced a βY341W mutation as an optical probe for nucleotide binding to catalytic sites, and a βE190Q mutation that suppresses the hydrolysis of nucleoside triphosphate (NTP). Using a mutant monomeric βY341W subunit and a mutant α3β3γ subcomplex containing the βY341W mutation with or without an additional βE190Q mutation, we examined the binding of various NTPs (i.e., ATP, GTP, and ITP) and nucleoside diphosphates (NDPs, i.e., ADP, GDP, and IDP). The affinity (1/Kd) of the nucleotides for the isolated β subunit and third catalytic site in the subcomplex was in the order ATP/ADP > GTP/GDP > ITP/IDP. We performed van’t Hoff analyses to obtain the thermodynamic parameters of nucleotide binding. For the isolated β subunit, NDPs and NTPs with the same base moiety exhibited similar ΔH0 and ΔG0 values at 25°C. The binding of nucleotides with different bases to the isolated β subunit resulted in different entropy changes. Interestingly, NDP binding to the α3β(Y341W)3γ subcomplex had similar Kd and ΔG0 values as binding to the isolated β(Y341W) subunit, but the contributions of the enthalpy term and the entropy term were very different. We discuss these results in terms of the change in the tightness of the subunit packing, which reduces the excluded volume between subunits and increases water entropy.  相似文献   

10.
The kinesin-2 family motor KIF3A/B works together with dynein to bidirectionally transport intraflagellar particles, melanosomes, and neuronal vesicles. Compared with kinesin-1, kinesin-2 is less processive, and its processivity is more sensitive to load, suggesting that processivity may be controlled by different gating mechanisms. We used stopped-flow and steady-state kinetics experiments, along with single-molecule and multimotor assays to characterize the entire kinetic cycle of a KIF3A homodimer that exhibits motility similar to that of full-length KIF3A/B. Upon first encounter with a microtubule, the motor rapidly exchanges both mADP and mATP. When adenosine 5′-[(β,γ)-imido]triphosphate was used to entrap the motor in a two-head-bound state, exchange kinetics were unchanged, indicating that rearward strain in the two-head-bound state does not alter nucleotide binding to the front head. A similar lack of front head gating was found when intramolecular strain was enhanced by shortening the neck linker domain from 17 to 14 residues. In single-molecule assays in ADP, the motor dissociates at 2.1 s−1, 20-fold slower than the stepping rate, demonstrating the presence of rear head gating. In microtubule pelleting assays, the KDMt is similar in ADP and ATP. The data and accompanying simulations suggest that, rather than KIF3A processivity resulting from strain-dependent regulation of nucleotide binding (front head gating), the motor spends a significant fraction of its hydrolysis cycle in a low affinity state but dissociates only slowly from this state. This work provides a mechanism to explain differences in the load-dependent properties of kinesin-1 and kinesin-2.  相似文献   

11.
Motor enzymes such as F1-ATPase and kinesin utilize energy from ATP for their motion. Molecular motions of these enzymes are critical to their catalytic mechanisms and were analyzed thoroughly using a single molecule observation technique. As a tool to analyze and control the ATP-driven motor enzyme motion, we recently synthesized a photoresponsive ATP analog with a p-tert-butylazobenzene tethered to the 2′ position of the ribose ring. Using cis/trans isomerization of the azobenzene moiety, we achieved a successful reversible photochromic control over a kinesin-microtubule system in an in vitro motility assay. Here we succeeded to control the hydrolytic activity and rotation of the rotary motor enzyme, F1-ATPase, using this photosensitive ATP analog. Subsequent single molecule observations indicated a unique pause occurring at the ATP binding angle position in the presence of cis form of the analog.  相似文献   

12.
Elastic conformational changes of the protein backbone are essential for catalytic activities of enzymes. To follow relative movements within the protein, Förster-type resonance energy transfer (FRET) between two specifically attached fluorophores can be applied. FRET provides a precise ruler between 3 and 8 nm with subnanometer resolution. Corresponding submillisecond time resolution is sufficient to identify conformational changes in FRET time trajectories. Analyzing single enzymes circumvents the need for synchronization of various conformations. FOF1-ATP synthase is a rotary double motor which catalyzes the synthesis of adenosine triphosphate (ATP). A proton-driven 10-stepped rotary FO motor in the Escherichia coli enzyme is connected to a 3-stepped F1 motor, where ATP is synthesized. To operate the double motor with a mismatch of step sizes smoothly, elastic deformations within the rotor parts have been proposed by W. Junge and coworkers. Here we extend a single-molecule FRET approach to observe both rotary motors simultaneously in individual FOF1-ATP synthases at work. We labeled this enzyme with two fluorophores specifically, that is, on the ε- and c-subunits of the two rotors. Alternating laser excitation was used to select the FRET-labeled enzymes. FRET changes indicated associated transient twisting within the rotors of single enzyme molecules during ATP hydrolysis and ATP synthesis. Supported by Monte Carlo simulations of the FRET experiments, these studies reveal that the rotor twisting is greater than 36° and is largely suppressed in the presence of the rotation inhibitor DCCD. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012).  相似文献   

13.
F1-ATPase is a rotary molecular motor in which the γ-subunit rotates against the α3β3 cylinder. The unitary γ-rotation is a 120° step comprising 80 and 40° substeps, each of these initiated by ATP binding and ADP release and by ATP hydrolysis and inorganic phosphate release, respectively. In our previous study on γ-rotation at low temperatures, a highly temperature-sensitive (TS) reaction step of F1-ATPase from thermophilic Bacillus PS3 was found below 9 °C as an intervening pause before the 80° substep at the same angle for ATP binding and ADP release. However, it remains unclear as to which reaction step the TS reaction corresponds. In this study, we found that the mutant F1(βE190D) from thermophilic Bacillus PS3 showed a clear pause of the TS reaction below 18 °C. In an attempt to identify the catalytic state of the TS reaction, the rotation of the hybrid F1, carrying a single copy of βE190D, was observed at 18 °C. The hybrid F1 showed a pause of the TS reaction at the same angle as for the ATP binding of the incorporated βE190D, although kinetic analysis revealed that the TS reaction is not the ATP binding step. These findings suggest that the TS reaction is a structural rearrangement of β before or after ATP binding.F1-ATPase (F1)2 is an ATP-driven rotary motor protein. The subunit composition of the bacterial F1-ATPase is α3β3γδϵ, and the minimum complex of F1-ATPase as a rotary motor is α3β3γ subcomplex. This motor protein forms the FoF1-ATP synthase complex by binding to another rotary motor, namely, Fo, which is driven by the proton flux resulting from the proton motive force across the membranes (14). Under physiological conditions, where the proton motive force is sufficiently large, Fo forcibly rotates F1-ATPase in the reverse direction of F1-ATPase, leading the reverse reaction of ATP hydrolysis, i.e. ATP synthesis from ADP and inorganic phosphate (Pi). When the proton motive force diminishes or F1 is isolated from Fo, F1-ATPase hydrolyzes ATP to rotate the γ-subunit against the α3β3 stator ring in the counterclockwise direction as viewed from the Fo side (5). The catalytic sites are located at the interface of the α- and β-subunits, predominantly on the β-subunit (6). Each β-subunit carries out a single turnover of ATP hydrolysis during the γ-rotation of 360° following the common catalytic reaction pathway, whereas they are 120° different in the catalytic phase. In this manner, the three β-subunits undergo different reaction steps of ATP hydrolysis upon each rotational step. The rotary motion of the γ-subunit has been demonstrated by biochemical (7) and spectroscopic methods (8) and directly proved in single-molecule observation studies (5).Since the establishment of the single-molecule rotation assay, the chemomechanical coupling scheme of F1 has been studied extensively by resolving the rotation into discrete steps. The stepping rotation was first observed under an ATP-limiting condition where F1 makes discrete 120° steps upon ATP binding (9). Then, high speed imaging of the rotation with a small probe of low friction was performed, which revealed that the 120° step comprises 80 and 40° substeps, each initiated by ATP binding, and two unknown consecutive reactions, respectively (10). This finding necessitated the identification of the two reactions that trigger the 40° substep. Hence, the rotation assay was performed using a mutant, namely F1(βE190D), and a slowly hydrolyzed ATP analog, namely ATPγS (11). Glutamate 190 of the β-subunit of F1, derived from thermophilic Bacillus PS3 and the corresponding glutamates from other F1-ATPases (Glu-181 of F1 from Escherichia coli and Glu-188 of F1 from bovine mitochondria), has been identified as one of the most critical catalytic residues for ATP hydrolysis (6, 1215). When this glutamate was substituted with aspartic acid, which has a shorter side chain than that of glutamate, the ATP cleavage step of F1 was drastically slowed. In the rotation assay, this mutant showed a distinct long pause before the 40° substep. ATPγS also caused a long pause before the 40° substep. These observations established that the 40° substep is initiated by hydrolysis. Accordingly, the pause angles before the 80 and 40° substeps are referred to as to the binding angle and the catalytic angle, respectively. Then, the rotation assay was performed in the presence of a high amount of Pi in the solution. It was shown that Pi rebinding caused the long pause at the catalytic angle, suggesting that Pi is released before the 40° substep (16).However, the reaction scheme of F1 cannot be established by simply assigning each reaction step to either the binding angle or the catalytic angle, because each reaction step must be assigned to one of the three binding or catalytic angles when considering the 360° cyclic reaction scheme of each β-subunit. Direct information about the timing of ADP release was obtained by simultaneous imaging of fluorescently labeled nucleotides and γ rotation, which showed that each β retains ADP until the γ rotates 240° after binding of the nucleotide as ATP and releases ADP between 240 and 320° (16, 17). Another powerful approach is the use of a hybrid F1 carrying a mutant β that causes a characteristic pause during the rotation. In a previous study, the hybrid F1 carrying a single copy of β(E190D), α3β2β(E190D)γ, showed a distinct pause caused by the slow hydrolysis of β(E190D) at +200° from the ATP binding angle of the mutant β (18). From this observation, it was confirmed that each β executes the chemical cleavage of the bound ATP at +200° from the angle where the ATP binds to β. The asymmetric feature of the pause of the hybrid F1 was also utilized in other experiments as a marker in the rotational trajectory to correlate the rotational angle and the conformational state of β (19) or to determine the state of F1 in the crystal structures as the pausing state at catalytic angle (20).Recently, we have found a new reaction intermediate of F1 rotation as a clear intervening pause before the 80° substep in the rotation assay below 9 °C (21). Furuike et al. (22) also observed the TS reaction in a high speed imaging experiment. The rate constant of this reaction was remarkably sensitive to temperature, giving a Q10 factor around 19. When ADP was added to solution, the pause before the 80° substep was prolonged, whereas the solution Pi caused a longer pause before the 40° substep (21). Although this result can be explained by assuming that the temperature-sensitive (TS) reaction is ADP release, it was not decisive for the identification of the TS reaction.In this study, we found that the mutant F1(βE190D) also exhibits the distinct pause of the TS reaction but at a higher temperature than for the wild-type F1, i.e. at 18 °C. This feature was advantageous in identifying the angle position of the TS reaction in the catalytic cycle for each β-subunit coupled with the 360° rotation. Taking advantage of the feature of the hybrid F1, we analyzed the rotational behavior of the hybrid F1 at 18 °C in order to assign the angle position of the TS reaction in the catalytic cycle of the 360° rotation, and we have shown that the TS reaction is not directly involved in the ADP release but in some conformational rearrangement before or after ATP binding step.  相似文献   

14.
A kinetic study of oxidative phosphorylation by pea submitochondrial particles gave two Km values for ADP, one low, the other high. The high value probably reflected a damaged site or a population of leaky mitochondria. Only the high affinity site with a low Km for ADP was involved in ATP synthesis. α,β-Methylene ADP was found to be a competitive inhibitor of ATP synthesis. The inorganic phosphate analog, thiophosphate, decreased the apparent Km of ADP while the rate of the reaction remained approximately the same. Adenyl imidodiphosphate, a specific inhibitor of ATP hydrolysis activity, had little effect on oxidative phosphorylation. A slight decrease in the Km of the high affinity binding site for ADP was noted. Aurovertin was found to be a potent inhibitor of oxidative phosphorylation in pea submitochondrial particles. The Km of the high affinity site was increased 10-fold. Also, the inhibition normally exerted by ADP on ATPase activity was severely reduced by aurovertin. In contrast, increasing the concentration of aurovertin only slightly affected the level of inhibition caused by adenyl imidodiphosphate on ATP hydrolysis.  相似文献   

15.
F-type ATP synthases are rotary nanomotor enzymes involved in cellular energy metabolism in eukaryotes and eubacteria. The ATP synthase from Gram-positive and -negative model bacteria can be autoinhibited by the C-terminal domain of its ϵ subunit (ϵCTD), but the importance of ϵ inhibition in vivo is unclear. Functional rotation is thought to be blocked by insertion of the latter half of the ϵCTD into the central cavity of the catalytic complex (F1). In the inhibited state of the Escherichia coli enzyme, the final segment of ϵCTD is deeply buried but has few specific interactions with other subunits. This region of the ϵCTD is variable or absent in other bacteria that exhibit strong ϵ-inhibition in vitro. Here, genetically deleting the last five residues of the ϵCTD (ϵΔ5) caused a greater defect in respiratory growth than did the complete absence of the ϵCTD. Isolated membranes with ϵΔ5 generated proton-motive force by respiration as effectively as with wild-type ϵ but showed a nearly 3-fold decrease in ATP synthesis rate. In contrast, the ϵΔ5 truncation did not change the intrinsic rate of ATP hydrolysis with membranes. Further, the ϵΔ5 subunit retained high affinity for isolated F1 but reduced the maximal inhibition of F1-ATPase by ϵ from >90% to ∼20%. The results suggest that the ϵCTD has distinct regulatory interactions with F1 when rotary catalysis operates in opposite directions for the hydrolysis or synthesis of ATP.  相似文献   

16.
The genome of Chlamydia trachomatis, one of the most prominent human pathogens, contains two structural genes coding for proteins, herein called Npt1Ct and Npt2Ct (nucleoside phosphate transporters 1 and 2 of C. trachomatis), exhibiting 68 and 61% similarity, respectively, to the ATP/ADP transporter from the intracellular bacterium Rickettsia prowazekii at the deduced amino acid level. Hydropathy analysis and sequence alignments suggested that both proteins have 12 transmembrane domains. The putative transporters were expressed as histidine-tagged proteins in Escherichia coli to study their biochemical properties. His10-Npt1Ct catalyzed ATP and ADP transport in an exchange mode. The apparent Km values were 48 (ATP) and 39 (ADP) μM. ATP and ADP transport was specific since AMP, GTP, CTP, UTP, dATP, dCTP, dGTP, and dTTP did not inhibit uptake. In contrast, His10-Npt2Ct transported all four ribonucleoside triphosphates with apparent Km values of 31 μM (GTP), 302 μM (UTP), 528 μM (CTP), and 1,158 μM (ATP). Ribonucleoside di- and monophosphates and deoxyribonucleotides were not substrates. The protonophore m-chlorocarbonylcyanide phenylhydrazone abolished uptake of all nucleoside triphosphates by Npt2Ct. This observation indicated that His10-Npt2Ct acts as a nucleosidetriphosphate/H+ symporter energized by the proton motive force across the Escherichia coli cytoplasmic membrane. We conclude that Npt1Ct provides chlamydiae with energy whereas Npt2Ct catalyzes the net uptake of ribonucleoside triphosphates required for anabolic reactions.  相似文献   

17.
A biochemical and cytochemical study has been made of the distribution of ATPase in mature and differentiating phloem cells of Nicotiana tabacum and of the substrate specificity and effects of fixation on enzyme activity. Homogenates of unfixed leaf midveins and midveins fixed in formaldehyde-glutaraldehyde were assayed for enzyme activity by determining the amount of Pi, liberated per milligram of protein from various substrates in a 30 min period at pH 7.2. In fresh homogenates, hydrolysis of ATP was not significantly different from that of ITP, CTP, and UTP. Hydrolysis of GTP was slightly higher than that of ATP. ATP hydrolysis by fresh homogenates was 17% more extensive than that of ADP, 76% more extensive than that of 5'-AMP, and was inhibited by fluoride and p-chloromercuribenzoate (PCMB). There was little or no hydrolysis of the competitive inhibitors 2'- and 3'-AMP nor with the alternate substrates p-nitrophenylphosphate (PNP) or β-glycerophosphate (β-GP). In homogenates of material fixed in formaldehyde-glutaraldehyde for 1¼ h, ATPase activity was 13% preserved. Hydrolysis of ATP by fixed homogenates was not significantly different from that of ADP, 5'-AMP, ITP, CTP, and GTP. Hydrolysis of UTP was lower. Fluoride and PCMB inhibited fixed ATPase activity. The results of cytochemical localization experiments using a lead phosphate precipitation technique were in agreement with the biochemical results. Similar localization patterns were obtained with the nucleoside triphosphates ATP, CTP, GTP, ITP, and UTP. Activity was also localized with ADP and 5'-AMP but not with the competitive inhibitors 2'- and 3'-AMP, nor with PNP or β-GP. Little or no reaction product was deposited in other controls incubated without substrate or with substrate plus fluoride, PCMB, or N-ethylmaleimide. ATPase activity was demonstrated chiefly at the plasma membrane of mature and differentiating phloem cells and was associated with the P-protein of mature sieve elements. It is suggested that the phloem transport system derives its energy from the demonstrated nucleoside triphosphatase activity.  相似文献   

18.
F1-ATPase is a rotary molecular motor in which the central γ subunit rotates inside a cylinder made of α3β3 subunits. To clarify how ATP hydrolysis in three catalytic sites cooperate to drive rotation, we measured the site occupancy, the number of catalytic sites occupied by a nucleotide, while assessing the hydrolysis activity under identical conditions. The results show hitherto unsettled timings of ADP and phosphate releases: starting with ATP binding to a catalytic site at an ATP-waiting γ angle defined as 0°, phosphate is released at ∼200°, and ADP is released during quick rotation between 240° and 320° that is initiated by binding of a third ATP. The site occupancy remains two except for a brief moment after the ATP binding, but the third vacant site can bind a medium nucleotide weakly.  相似文献   

19.
V1-ATPase is a rotary motor protein that rotates the central shaft in a counterclockwise direction hydrolyzing ATP. Although the ATP-binding process is suggested to be the most critical reaction step for torque generation in F1-ATPase (the closest relative of V1-ATPase evolutionarily), the role of ATP binding for V1-ATPase in torque generation has remained unclear. In the present study, we performed single-molecule manipulation experiments on V1-ATPase from Thermus thermophilus to investigate how the ATP-binding process is modulated upon rotation of the rotary shaft. When V1-ATPase showed an ATP-waiting pause, it was stalled at a target angle and then released. Based on the response of the V1-ATPase released, the ATP-binding probability was determined at individual stall angles. It was observed that the rate constant of ATP binding (kon) was exponentially accelerated with forward rotation, whereas the rate constant of ATP release (koff) was exponentially reduced. The angle dependence of the koff of V1-ATPase was significantly smaller than that of F1-ATPase, suggesting that the ATP-binding process is not the major torque-generating step in V1-ATPase. When V1-ATPase was stalled at the mean binding angle to restrict rotary Brownian motion, kon was evidently slower than that determined from free rotation, showing the reaction rate enhancement by conformational fluctuation. It was also suggested that shaft of V1-ATPase should be rotated at least 277° in a clockwise direction for efficient release of ATP under ATP-synthesis conditions.  相似文献   

20.
The central shaft of the catalytic core of ATP synthase, the γ subunit consists of a coiled-coil structure of N- and C-terminal α-helices, and a globular domain. The γ subunit of cyanobacterial and chloroplast ATP synthase has a unique 30–40-amino acid insertion within the globular domain. We recently prepared the insertion-removed α3β3γ complex of cyanobacterial ATP synthase (Sunamura, E., Konno, H., Imashimizu-Kobayashi, M., and Hisabori, T. (2010) Plant Cell Physiol. 51, 855–865). Although the insertion is thought to be located in the periphery of the complex and far from catalytic sites, the mutant complex shows a remarkable increase in ATP hydrolysis activity due to a reduced tendency to lapse into ADP inhibition. We postulated that removal of the insertion affects the activity via a conformational change of two central α-helices in γ. To examine this hypothesis, we prepared a mutant complex that can lock the relative position of two central α-helices to each other by way of a disulfide bond formation. The mutant obtained showed a significant change in ATP hydrolysis activity caused by this restriction. The highly active locked complex was insensitive to N-dimethyldodecylamine-N-oxide, suggesting that the complex is resistant to ADP inhibition. In addition, the lock affected ϵ inhibition. In contrast, the change in activity caused by removal of the γ insertion was independent from the conformational restriction of the central axis component. These results imply that the global conformational change of the γ subunit indirectly regulates complex activity by changing both ADP inhibition and ϵ inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号