首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Powdery mildew is a common disease of field pea, Pisum sativum L., and is caused by the ascomycete fungus Erysiphe pisi. It can cause severe damage in areas where pea is cultivated. Today breeders want to develop new pea lines that are resistant to the disease. To make the breeding process more efficient, it is desirable to find genetic markers for use in a marker-assisted selection (MAS) strategy. In this study, microsatellites (SSR) were used to find markers linked to powdery mildew resistance. The resistant pea cultivar '955180' and the susceptible pea cultivar 'Majoret' were crossed and F2 plants were screened with SSR markers, using bulked segregant analysis. A total of 315 SSR markers were screened out of which five showed linkage to the powdery mildew resistance gene. No single marker was considered optimal for inclusion in a MAS program. Instead, two of the markers can be used in combination, which would result in only 1.6% incorrectly identified plants. Thus SSR markers can be successfully used in marker-assisted selection for powdery mildew resistance breeding in pea.  相似文献   

2.
Powdery mildew is the most widespread disease of pea (Pisum sativum L.) and causes severe economic losses worldwide. Recessively inherited er1 powdery mildew resistance, successfully used for decades in pea breeding programs, has recently been shown to originate from the loss of function of the PsMLO1 gene. Five er1 alleles, each corresponding to a different PsMLO1 null mutation, have been characterized to date in pea germplasm. In order to aid er1 selection, we aimed to identify functional markers which target PsMLO1 polymorphisms directly responsible for the resistant phenotype. Highly informative cleaved amplified polymorphic sequence (CAPS), derived cleaved amplified polymorphic sequence (dCAPS), sequence tagged site (STS) and high-resolution melting (HRM) markers were developed which enable the selection of each of the five er1 alleles. Taken together, the results described here provide a powerful tool for breeders, overcoming limitations of previously reported er1-linked markers due to the occurrence of recombination with the resistance locus and/or the lack of polymorphism between parental genotypes. The HRM marker er1-5/HRM54 reported here, targeting a mutagenesis-induced er1 allele recently described by us, does not require manual processing after PCR amplification, and is therefore suitable for large-scale breeding programs based on high-throughput automated screening.  相似文献   

3.
Microsatellite marker polymorphism and mapping in pea (Pisum sativum L.)   总被引:5,自引:0,他引:5  
This paper aims at providing reliable and cost effective genotyping conditions, level of polymorphism in a range of genotypes and map position of newly developed microsatellite markers in order to promote broad application of these markers as a common set for genetic studies in pea. Optimal PCR conditions were determined for 340 microsatellite markers based on amplification in eight genotypes. Levels of polymorphism were determined for 309 of these markers. Compared to data obtained for other species, levels of polymorphism detected in a panel of eight genotypes were high with a mean number of 3.8 alleles per polymorphic locus and an average PIC value of 0.62, indicating that pea represents a rather polymorphic autogamous species. One of our main objectives was to locate a maximum number of microsatellite markers on the pea genetic map. Data obtained from three different crosses were used to build a composite genetic map of 1,430 cM (Haldane) comprising 239 microsatellite markers. These include 216 anonymous SSRs developed from enriched genomic libraries and 13 SSRs located in genes. The markers are quite evenly distributed throughout the seven linkage groups of the map, with 85% of intervals between the adjacent SSR markers being smaller than 10 cM. There was a good conservation of marker order and linkage group assignment across the three populations. In conclusion, we hope this report will promote wide application of these markers and will allow information obtained by different laboratories worldwide in diverse fields of pea genetics, such as QTL mapping studies and genetic resource surveys, to be easily aligned.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

4.
Two pea (Pisum sativum L.) powdery mildew-resistant mutant lines, S(er1mut1) and F(er1mut2), were previously obtained by experimental chemical mutagenesis with ethylnitrosourea. Identification and subsequent analysis of the genomic sequence of the PsMLO1 gene revealed one single nucleotide mutation in each mutant line that leads to either a transversion or a transition, respectively, resulting in premature stop codons that drastically truncate the protein product of this gene in these two mutant lines. These results confirm the previous findings that PsMLO1 is the powdery mildew resistance gene er1. Only one additional mutation (transition) was observed in the S(er1mut1), downstream of the protein-truncating stop codon. Mutations were not identified in the intron regions of the gene. Specific molecular markers (cleaved amplified polymorphic sequences and sequence-tagged sites) were generated for the protein-truncating mutations, and these provide breeders with very efficient tools for marker-assisted selection when either of the two mutated lines are used in plant breeding programmes.  相似文献   

5.
The review presents our research on the influence of novel thiourea compounds on the biological and genetic effect of gamma-rays using in vivo and in vitro systems of pea. Some novel disubstituted thioureas: o-allylthioureidobenzoic acid (ATB); o-phenylthioureidobenzoic acid (PTB); N-allyl-N'-2-pyridylthiourea (A-2-PTU); N-phenyl-N'-2-pyridylthiourea (P-2-PTU) and 1,4-allylthioureidosalicylic acid (ATUS) were examined. Pea (Pisum sativum L.) seeds from five varieties were used. Experiments in vivo and in vitro were carried under laboratory, greenhouse and field conditions. The data revealed the PTB radioprotective effect demonstrated by: reduction of chromosome aberrations by 2 folds; 50% increase of germinating and surviving plants in M1; twice higher frequency of induced mutations in M2 generation relative to irradiation without PTB treatment; decreasing the level of induced radiation suppression leading to favorable effect on the initial stem and root development of pea. ATB radioprotective effect was demonstrated in vitro by: 25-35% stimulation of organogenesis; by 20-50% increase in bud formation; by 25% stimulation of growth. The effect of A-2-PTU and P-2-PTU depended on the irradiation dose. The protective effect of A-2-PTU is more pronounced at lower irradiation dose, while the effect of P-2-PTU is more pronounced at higher irradiation dose. ATUS, opposite to the other compounds, revealed radiosensibilizing effect by: 16-27% increase in lethality caused by gamma-rays leading to lower number of germinating and surviving plants in M1; 50% decrease in the number of induced mutations in M2 generation; limiting the types of induced mutations at the higher irradiation dose. As a result of the experiments useful mutation forms were obtained, characterized with: earliness, lodging and disease resistance; higher productivity.  相似文献   

6.
As a global approach to gain a better understanding of the mechanisms involved in pea resistance to Erysiphe pisi, changes in the leaf proteome of two pea genotypes differing in their resistance phenotype were analyzed by a combination of 2-DE and MALDI-TOF/TOF MS. Leaf proteins from control non-inoculated and inoculated susceptible (Messire) and resistant (JI2480) plants were resolved by 2-DE, with IEF in the 5-8 pH range and SDS-PAGE on 12% gels. CBB-stained gels revealed the existence of quantitative and qualitative differences between extracts from: (i) non-inoculated leaves of both genotypes (77 spots); (ii) inoculated and non-inoculated Messire leaves (19 spots); and (iii) inoculated and non-inoculated JI2480 leaves (12 spots). Some of the differential spots have been identified, after MALDI-TOF/TOF analysis and database searching, as proteins belonging to several functional categories, including photosynthesis and carbon metabolism, energy production, stress and defense, protein synthesis and degradation and signal transduction. Results are discussed in terms of constitutive and induced elements involved in pea resistance against Erysiphe pisi.  相似文献   

7.
Some esterases of the pea (Pisum sativum L.)   总被引:2,自引:0,他引:2  
  相似文献   

8.
A set of twelve CAPS markers was mapped for linkage group III of pea (Pisum sativum L.). New primers were designed to use a polymerase chain reaction to amplify fragments of sequenced pea genes containing at least one large intron. Amplification products were tested for polymorphism across three pea lines (Chi115, Flagman and WL1238) using eleven four-base restriction endonucleases. Nine STS markers for linkage group III from the literature were also tested for polymorphism, and five of these were used in this mapping study as anchor points. All polymorphic loci were located by genetic analysis of the F(2)population from the cross Chi115 x WL1238, and a map of linkage group III consisting of one morphological and twelve CAPS markers was created. The map covers the full length of the chromosome and is about 162 cM long. All the CAPS markers in a set were used to test for polymorphism among 10 additional pea DNA samples extracted from different marker lines and cultivars.  相似文献   

9.
10.
Explants fromPisum sativum shoot cultures and epicotyls were transformed by cocultivation withAgrobacterium tumefaciens vectors carrying plant selectable markers and transformants could be selected on a medium containing kanamycin. Transformants could also be obtained at a low frequency by cocultivating small protoplast-derived colonies. The transformed nature of the calli obtained from selection was confirmed by opine assay and DNA analysis. In addition five cultivars of pea were tested for their response to seven differentAgrobacterium tumefaciens strains. The response pattern coincided largely between the different pea cultivars, being more dependent on the bacterial strain than the cultivar used.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BA 6-benzyladenine - Km kanamycin - NAA -naphthaleneacetic acid - NOS nopaline synthase - NPT neomycin phosphotransferase - OCS octopine synthase  相似文献   

11.
Analysis with the polymerase chain reaction showed that the Khlorofill-4 pea Pisum sativum chlorophyll-deficient mutant with reduced stipules has an altered structure of the COCHLEATA (COCH) gene, carrying a new mutant COCH allele. The phenotype of the mutant was described in comparison with another form having reduced stipules (stipules reduced) and the control. Leaves of the coch mutant are smaller and have other proportions than in the control; stipules are absent from leaves of the first nodes and are narrow, bandlike, or spoonlike at later ontogenetic stages. It was concluded that the cell number in the stipule epidermis is reduced in the st and coch mutants compared to the wild type.  相似文献   

12.
Molecular markers were identified in common wheat for the Pm24 locus conferring resistance to different isolates of the powdery mildew pathogen, Erysiphe graminis DM f. sp. tritici (Em. Marchal). Bulked segregant analysis was used to identify amplified fragment length polymorphism (AFLP) markers and microsatellite markers linked to the gene Pm24 in an F2 progeny from the cross Chinese Spring (susceptible)× Chiyacao (resistant). Two AFLP markers XACA/CTA-407 and XACA/CCG-420, and three microsatellite markers Xgwm106, Xgwm337 and Xgwm458, were mapped in coupling phase to the Pm24 locus. The AFLP marker locus XACA/CTA-407 co-segregated with the Pm24 gene, and XACA/CCG-420 mapped 4.5 cM from this gene. Another AFLP marker locus XAAT/CCA-346 co- segregated in repulsion phase with the Pm24 locus. Pm24 was mapped close to the centromere on the short arm of chromosome 1D, contrary to the previously reported location on chromosome 6D. Pm24 segregated independently of gene Pm22, also located on chromosome 1D. An allele of microsatellite locus Xgwm337 located 2.4±1.2 cM from Pm24 was shown to be diagnostic and therefore potentially useful for pyramiding two or more genes for powdery mildew resistance in a single genotype. Received: 25 August 1999 / Accepted: 16 December 1999  相似文献   

13.
The percentage of mitochondrial DNA (mtDNA) present in total DNA isolated from pea tissues was determined using labeled mtDNA in reassociation kinetics reactions. Embryos contained the highest level of mtDNA, equal to 1.5% of total DNA. This value decreased in light- and dark-grown shoots and leaves, and roots. The lowest value found was in dark-grown shoots; their total DNA contained only 0.3% mtDNA. This may be a reflection of increased nuclear ploidy levels without concomitant mtDNA synthesis. It was possible to compare the mtDNA values directly with previous estimates of the amount of chloroplast DNA (ctDNA) per cell because the same preparations of total DNA were used for both analyses. The embryo contained 1.5% of both mtDNA and ctDNA; this equals 410 copies of mtDNA and 1200 copies of ctDNA per diploid cell. Whereas mtDNA levels decreased to 260 copies in leaf cells of pea, the number of copies of ctDNA increased to 10300. In addition, the levels of ctDNA in first leaves of dark-grown and light-transferred pea were determined, and it was found that leaves of plants maintained in the dark had the same percentage of ctDNA as those transferred to the light.Abbreviations ctDNA chloroplast DNA - mtDNA mitochondrial DNA  相似文献   

14.
Linkage analysis was used to determine the genetic map location of er-1, a recessive gene conditioning resistance to powdery mildew, on the Pisum sativum genome. Genetic linkage was demonstrated between er-1 and linkage group 6 markers after analyzing the progeny of two crosses, an F2 population and a set of recombinant inbred lines. The classes of genetic markers surrounding er-1 include RFLP, RAPD and allozyme markers as well as the morphological marker Gty. A RAPD marker tightly linked to er-1 was identified by bulked segregant analysis. After DNA sequence characterization, specific PCR primers were designed to convert this RAPD marker into a sequence characterized amplified region (SCAR).  相似文献   

15.
Summary Polyclonal antibodies against a part of pea (Pisum sativum L.) LOXG protein have been raised to study the pattern of distribution of related lipoxygenases in pea carpels. The antiserum recognized three lipoxygenase polypeptides in carpels. One of them became undetectable 24 hours after fruit development induction, suggesting that it may correspond to the protein derived from loxg cDNA. Immunolocalization experiments showed that lipoxygenase protein was present only in pod tissues: it was abundant in the mesocarp and, from the day of anthesis, in the endocarp layers. Lipoxygenase distribution is regulated throughout development. The association of lipoxygenase with cells in which processes of expansion and growth will potentially take place support a role in pod growth and development.Abbreviations DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - IgG immunoglobulin G - GA3 gibberellic acid - LOX lipoxygenase - PAGE polyacrylamide gel - PVDF polyvinylidene difluoride - SDS sodium dodecyl sulfate - Tris 2-amino-2-hydroxymethyl-1,3-propanediol  相似文献   

16.
N. Harris  N. J. Chaffey 《Planta》1985,165(2):191-196
Plasmatubules are tubular evaginations of the plasmalemma. They have previously been found at sites where high solute flux between apoplast and symplast occurs for a short period and where wall proliferations of the transfer cell type have not been developed (Harris et al. 1982, Planta 156, 461–465). In this paper we describe the distribution of plasmatubules in transfer cells of the leaf minor veins of Pisum sativum L. Transfer cells are found in these veins associated both with phloem sieve elements and with xylem vessels. Plasmatubules were found, in both types of transfer cell and it is suggested that the specific distribution of the plasmatubules may reflect further membrane amplification within the transfer cell for uptake of solute from apoplast into symplast.  相似文献   

17.
The inheritance and manifestation of fasciation character in three fasciated lines of common pea Pisum sativum L. were investigated. All studied forms are characterized by abnormal enlargement of stem apical meristem leading to distortions in shoot structure. It was estimated that fasciation in mutant Shtambovyi is connected with recessive mutation in gene FAS, which was localized in linkage group III using morphological and molecular markers. It was demonstrated that fasciation in cultivar Rosacrone and line Lupinoid is caused by recessive mutation of the same gene (FA). The peculiar architecture of inflorescence in the Lupinoid line is a result of interaction of two recessive mutations (det fa). Investigation of interaction of mutations fa and fas revealed that genes FA and FAS control consequential stages of apical meristem specialization. Data on incomplete penetrance and varying expressivity were confirmed for the mutant allele fa studied.  相似文献   

18.
Large numbers of viable protoplasts of pea (Pisum sativum) and grass pea (Lathyrus sativus) were efficiently and reproducibly obtained and, for the first time, fused. Different procedures for fusion were compared, based either on electrofusion (750, 1000, 1250 or 1500 V cm(-1)), or on the use of macro or micromethods with a polyethylene glycol (PEG 6000 or PEG 1540), or a glycine/high pH solution. Over 10% of viable heterokaryons were obtained, with PEG as the most efficient and reproducible agent for protoplast fusion (>20% of viable heterokaryons). Both the division of heterokaryons and the formation of small calluses were observed.  相似文献   

19.
Summary Three isoenzyme systems (amylase, esterase and glutamate oxaloacetate transaminase) were examined in seeds of pea (Pisum sativum L.) and shown to give clear variation in their band patterns on gel electrophoresis between different lines. The inheritance of these isoenzyme systems, and the location of their genes on the pea genome was investigated. Reciprocal crosses were made between lines, F2 seeds were analysed for segregation in the band patterns of the isoenzymes, and F2 plants were investigated to find linkage between the genes for these isoenzymes and genes for selected morphological markers. The results obtained showed that each of the investigated isoenzyme systems is genetically controlled by co-dominant alleles at a single locus. The gene for amylase was found to be on chromosome 2, linked to the loci k and wb (wb ... 9 ... k ... 25 ... Amy). The gene for esterase was found to be linked with the gene Br (chromosome 4) but the exact location is uncertain because of the lack of the morphological markers involved in the cross. The gene for glutamate oxaloacetate transaminase was found to be on chromosome 1 and linked with the loci a and d (a... 24... Got... 41 ... d).  相似文献   

20.
The cucumber lines, S94 (Northern China open-field type, powdery mildew (PM) susceptible) and S06 (European greenhouse type, PM resistant), and their F6:7 populations were used to investigate PM re-sistance under seedling spray inoculation in 2005/Autumn and 2006/Spring. QTL analysis was under-taken based on a constructed molecular linkage map of the corresponding F6 population using com-posite interval mapping. A total of four QTLs (pm1.1, pm2.1, pm4.1 and pm6.1) for PM resistance were identified and located on LG 1, 2, 4 and 6, respectively, explaining 5.2%-21.0% of the phenotypic variation. Three consistent QTLs (pm1.1, pm2.1 and pm4.1) were detected under the two test conditions. The QTL pm6.1 was only identified in 2005/Autumn. The total phenotypic variation explained by the QTLs was 52.0% and 42.0% in 2005/Autumn and 2006/Spring, respectively. Anchor markers tightly linked to those loci (<5 cM) could lay a basis for both molecular marker-assisted breeding and map-based gene cloning of the PM-resistance gene in cucumber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号