首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bcl-2 family members have been shown to be key mediators of apoptosis as either pro- or anti-apoptotic factors. It is thought that both classes of Bcl-2 family members act at the level of the mitochondria to regulate apoptosis, although the founding anti-apoptotic family member, Bcl-2 is localized to the endoplasmic reticulum (ER), mitochondrial, and nuclear membranes. In order to better understand the effect of Bcl-2 localization on its activity, we have utilized a Bcl-2 mutant that localizes only to the ER membrane, designated Bcl-2Cb5. Bcl-2Cb5 was expressed in MDA-MB-468 cells, which protected against apoptosis induced by the kinase inhibitor, staurosporine. Data presented here show that Bcl-2Cb5 inhibits this process by blocking Bax activation and cytochrome c release. Furthermore, we show that Bcl-2Cb5 can inhibit the activation of a constitutively mitochondrial mutant of Bax, indicating that an intermediate between Bcl-2 on the ER and Bax on the mitochondria must exist. We demonstrate that this intermediate is likely a BH3-only subfamily member. Data presented here show that Bcl-2Cb5 can sequester a constitutively active form of Bad (Bad3A) from the mitochondria and prevent it from activating Bax. These data suggest that Bcl-2 indirectly protects mitochondrial membranes from Bax, via BH3-only proteins.  相似文献   

2.
3.
We report here the structure-functional characterization of a novel intronless gene, BRCC2, located on human chromosome 11q24.1. BRCC2 open reading frame (327 bp) codes for an approximately 12-kDa protein (108 amino acids (aa)) localized predominantly in the cytosol and to a lesser extent in the mitochondria. Ectopic expression of BRCC2 cDNA also was found in both the cytosol and mitochondria. Exogenous expression of BRCC2 caused apoptotic cell death in three different cell lines as evidenced by enhanced chromatin condensation, DNA fragmentation, or an enhanced number of cells in the sub-G(1) phase. In human prostate cancer cells (PC-3), BRCC2-induced DNA fragmentation was blocked efficiently by coexpression of the anti-apoptotic molecule, Bcl-X(L). Transient transfection of BRCC2 cDNA into PC-3 cells in the presence of a broad-range caspase inhibitor, Z-VAD-fmk (100 microM, 24 h), abrogated DNA fragmentation. Consistently, BRCC2 expression correlated with the activation of caspase-3 and caspase-9. An N-terminal deletion mutant of BRCC2 (10.2 kDa, Delta1-16 aa) lacking a BH3-like domain (5-12 aa, LPIEGQEI) or BRCC2 containing a mutant BH3-like domain (leucine 5-->glutamate) failed to induce apoptosis, whereas a C-terminal deletion mutant (6.8 kDa, Delta62-108 aa) retained the apoptotic activity comparable to the full-length BRCC2. Finally, the treatment of HeLa cells with doxorubicin or hydrogen peroxide (H(2)O(2)) led to an increase in the mitochondrial (heavy membrane) level of endogenous BRCC2 (doxorubicin (100 ng/ml), 5 h, approximately 2-fold; H(2)O(2) (200 microM), 2 h, approximately 2-fold). These findings demonstrate that BRCC2 functions as a proapoptotic molecule and suggest that BRCC2 induces a caspase-dependent mitochondrial pathway of cell death.  相似文献   

4.
The Bcl-2 family of proteins are key regulators of programmed cell death. A distinct subfamily of BH3-only molecules has been identified, but their exact mechanism of action remains unclear. Here we show that the BH3-only Bcl-2 family members, Dp5/Hrk and Bim, are induced upstream of the Bax checkpoint in neuronal apoptosis in a manner that shows significant dependence on JNK signaling. We also show that Dp5 and other BH3-only proteins kill cerebellar granule neurons in a Bax-dependent manner. These studies demonstrate that BH3-only members do not act independently in their proapoptotic activities but rather require the action of multidomain proapoptotic Bcl-2 family members to produce cell death.  相似文献   

5.
The anthracyclin doxorubicin (DXR) is a major antitumor agent known to cause cellular damage via a number of mechanisms including free radical formation and inhibition of topoisomerase II. It is not clear, however, how the subsequent lesions may lead to the apoptotic death of the cell. We have here examined the effects of DXR on activation of pro-apoptotic members of the Bcl-2 family, all of which are connected to the mitochondrial events of apoptosis. In two human cell lines (lymphoma and myeloma), clinically relevant concentrations of DXR were found to induce apoptosis, first observed after 24 h of treatment. Apoptosis correlated with modulation of Bak and Bax to their active conformations. bax- as well as bak-deficient mouse embryo fibroblasts were resistant to DXR compared with wild-type mouse embryo fibroblasts further supporting a role for these proteins as main DXR-induced apoptosis regulators. Furthermore, using immunocytochemistry as well as chemical blocking of putative apical pathways we could demonstrate that Bak is activated prior to Bax. In the human cell lines, DXR was furthermore found to induce high protein levels of Bik, another BH3-only protein. DXR-induced apoptosis was completely blocked in Bcl-2-overexpressing U266 cells. Interestingly, in Bcl-2-transfected cells Bak activation was also blocked, while Bax was still partially active in agreement with differential regulation of these two proteins. Furthermore, co-incubation of the phosphatidylinositol 3-kinase (PI3K)-inhibitor LY294002 potentiated the apoptotic response to DXR. This enhanced apoptosis was preceded by enhanced Bak and Bax activation, and both responses as well as apoptosis were blocked in transfectants overexpressing Bcl-2. In summary, several pieces of evidence suggest that DXR induces apoptosis through a sequential and differential activation of Bak and Bax.  相似文献   

6.
7.
Osteoclasts (OCs) undergo rapid apoptosis without trophic factors, such as macrophage colony-stimulating factor (M-CSF). Their apoptosis was associated with a rapid and sustained increase in the pro-apoptotic BH3-only Bcl-2 family member Bim. This was caused by the reduced ubiquitylation and proteasomal degradation of Bim that is mediated by c-Cbl. Although the number of OCs was increased in the skeletal tissues of bim-/- mice, the mice exhibited mild osteosclerosis due to reduced bone resorption. OCs differentiated from bone marrow cells of bim-/- animals showed a marked prolongation of survival in the absence of M-CSF, compared with bim+/+ OCs, but the bone-resorbing activity of bim-/- OCs was significantly reduced. Overexpression of a degradation-resistant lysine-free Bim mutant in bim-/- cells abrogated the anti-apoptotic effect of M-CSF, while wild-type Bim did not. These results demonstrate that ubiquitylation-dependent regulation of Bim levels is critical for controlling apoptosis and activation of OCs.  相似文献   

8.
Bcl-2/adenovirus E1B 19-kDa interacting protein 1 (BNIP1), which is predominantly localized to the endoplasmic reticulum (ER), is a pro-apoptotic Bcl-2 homology domain 3 (BH3)-only protein. Here, we show that the expression of BNIP1 induced not only a highly interconnected ER network but also mitochondrial fragmentation in a BH3 domain-dependent manner. Functional analysis demonstrated that BNIP1 expression increased dynamin-related protein 1 (Drp1) expression followed by the mitochondrial translocation of Drp1 and subsequent mitochondrial fission. Both BNIP1-induced mitochondrial fission and the translocation of Drp1 were abrogated by Bcl-2 overexpression. These results collectively indicate that ER-specific BNIP1 plays an important role in mitochondrial dynamics by modulating the mitochondrial fission protein Drp1 in a BH3 domain-dependent fashion.  相似文献   

9.
All BH3-only proteins, key initiators of programmed cell death, interact tightly with multiple binding partners and have sequences of low complexity, properties that are the hallmark of intrinsically unstructured proteins (IUPs). We show, using spectroscopic methods, that the BH3-only proteins Bim, Bad and Bmf are unstructured in the absence of binding partners. Detailed sequence analyses are consistent with this observation and suggest that most BH3-only proteins are unstructured. When Bim binds and inactivates prosurvival proteins, most residues remain disordered, only the BH3 element becomes structured, and the short alpha-helical molecular recognition element can be considered to behave as a 'bead on a string'. Coupled folding and binding is typical of many IUPs that have important signaling roles, such as BH3-only proteins, as the inherent structural plasticity favors interaction with multiple targets. This understanding offers promise for the development of BH3 mimetics, as multiple modes of binding are tolerated.  相似文献   

10.
赵小平  钱关祥 《生命科学》2005,17(5):411-413
Bcl-2家族蛋白质在细胞凋亡的调控机制中起着重要的作用,该家族包括唯BH3结构域的蛋白质(only BH3 domain protein),如Bid、Bik、Puma、Nova、Bmf等。随着凋亡研究的深入,在哺乳动物中现已发现10多种唯BH3结构域的蛋白质,并且在凋亡中发挥重要的作用。本文主要论述唯BH3域蛋白的作用机制及其应用的研究进展。  相似文献   

11.
12.
13.
5-Aminoimidazole-4-carboxamide (AICA) riboside (AICAR) is a nucleoside analogue that is phosphorylated to 5-amino-4-imidazolecarboxamide ribotide (ZMP), which acts as an AMP mimetic and activates AMP-activated protein kinase (AMPK). It has been recently described that AICAR triggers apoptosis in chronic lymphocytic leukemia (CLL) cells, and its mechanism of action is independent of AMPK as well as p53. AICAR-mediated upregulation of the BH3-only proteins BIM and NOXA correlates with apoptosis induction in CLL cells. Here we propose mouse embryonic fibroblasts (MEFs) as a useful model to analyze the mechanism of AICAR-induced apoptosis. ZMP formation was required for AICAR-induced apoptosis, though direct Ampk activation with A-769662 failed to induce apoptosis in MEFs. AICAR potently induced apoptosis in Ampkα1 ?/? /α2 ?/? MEFs, demonstrating an Ampk-independent mechanism of cell death activation. In addition, AICAR acts independently of p53, as MEFs lacking p53 also underwent apoptosis normally. Notably, MEFs lacking Bax and Bak were completely resistant to AICAR-induced apoptosis, confirming the involvement of the mitochondrial pathway in its mechanism of action. Apoptosis was preceded by ZMP-dependent but Ampk-independent modulation of the mRNA levels of different Bcl-2 family members, including Noxa, Bim and Bcl-2. Bim protein levels were accumulated upon AICAR treatment of MEFs, suggesting its role in the apoptotic process. Strikingly, MEFs lacking both Bim and Noxa displayed high resistance to AICAR. These findings support the notion that MEFs are a useful system to further dissect the mechanism of AICAR-induced apoptosis.  相似文献   

14.
Apoptosis is initiated when Bcl-2 and its prosurvival relatives are engaged by proapoptotic BH3-only proteins via interaction of its BH3 domain with a groove on the Bcl-2-like proteins. These interactions have been considered promiscuous, but our analysis of the affinity of eight BH3 peptides for five Bcl-2-like proteins has revealed that the interactions vary over 10,000-fold in affinity, and accordingly, only certain protein pairs associate inside cells. Bim and Puma potently engaged all the prosurvival proteins comparably. Bad, however, bound tightly to Bcl-2, Bcl-xL, and Bcl-w but only weakly to A1 and not to Mcl-1. Strikingly, Noxa bound only Mcl-1 and A1. In accord with their complementary binding, Bad and Noxa cooperated to induce potent killing. The results suggest that apoptosis relies on selective interactions between particular subsets of these proteins and that it should be feasible to discover BH3-mimetic drugs that inactivate specific prosurvival targets.  相似文献   

15.
16.
A critical hallmark of cancer cell survival is evasion of apoptosis. This is commonly due to overexpression of anti-apoptotic proteins such as Bcl-2, Bcl-X(L), and Mcl-1, which bind to the BH3 α-helical domain of pro-apoptotic proteins such as Bax, Bak, Bad, and Bim, and inhibit their function. We designed a BH3 α-helical mimetic BH3-M6 that binds to Bcl-X(L) and Mcl-1 and prevents their binding to fluorescently labeled Bak- or Bim-BH3 peptides in vitro. Using several approaches, we demonstrate that BH3-M6 is a pan-Bcl-2 antagonist that inhibits the binding of Bcl-X(L), Bcl-2, and Mcl-1 to multi-domain Bax or Bak, or BH3-only Bim or Bad in cell-free systems and in intact human cancer cells, freeing up pro-apoptotic proteins to induce apoptosis. BH3-M6 disruption of these protein-protein interactions is associated with cytochrome c release from mitochondria, caspase-3 activation and PARP cleavage. Using caspase inhibitors and Bax and Bak siRNAs, we demonstrate that BH3-M6-induced apoptosis is caspase- and Bax-, but not Bak-dependent. Furthermore, BH3-M6 disrupts Bcl-X(L)/Bim, Bcl-2/Bim, and Mcl-1/Bim protein-protein interactions and frees up Bim to induce apoptosis in human cancer cells that depend for tumor survival on the neutralization of Bim with Bcl-X(L), Bcl-2, or Mcl-1. Finally, BH3-M6 sensitizes cells to apoptosis induced by the proteasome inhibitor CEP-1612.  相似文献   

17.
Programmed cell death--also known as apoptosis--has a crucial role in the immune system of mammals and other animals. It removes useless cells and potentially dangerous cells, including lymphocytes, and is involved in killing pathogen-infected or damaged cells. Defects in this process have been found to cause or contribute to diseases of the immune system, including immunodeficiency, autoimmunity, lymphoma and leukaemia. This review describes BH3-only proteins, a pro-apoptotic subgroup of the BCL-2 family, and their role in the development and function of the immune system.  相似文献   

18.
One group of Bcl-2 protein family, which shares only the BH3 domain (BH3-only), is critically involved in the regulation of programmed cell death. Herein we demonstrated a novel human BH3-only protein (designated as Bop) which could induce apoptosis in a BH3 domain-dependent manner. Further analysis indicated that Bop mainly localized to mitochondria and used its BH3 domain to contact the loop regions of voltage dependent anion channel 1 (VDAC1) in the outer mitochondrial membrane. In addition, purified Bop protein induced the loss of mitochondrial transmembrane potential (ΔΨm) and the release of cytochrome c. Furthermore, Bop used its BH3 domain to contact pro-survival Bcl-2 family members (Bcl-2, Bcl-XL, Mcl-1, A1 and Bcl-w), which could inhibit Bop-induced apoptosis. Bop would be constrained by pro-survival Bcl-2 proteins in resting cells, because Bop became released from phosphorylated Bcl-2 induced by microtubule-interfering agent like vincristine (VCR). Indeed, knockdown experiments indicated that Bop was partially required for VCR induced cell death. Finally, Bop might need to function through Bak and Bax, likely by releasing Bak from Bcl-XL sequestration. In conclusion, Bop may be a novel BH3-only factor that can engage with the regulatory network of Bcl-2 family members to process intrinsic apoptotic signaling.  相似文献   

19.
A novel Bax-associating protein, named MAP-1 (Modulator of Apoptosis), has been identified in a yeast two-hybrid screen. MAP-1 contains a BH3-like (BH: Bcl-2 homology) motif and mediates caspase-dependent apoptosis in mammalian cells when overexpressed. MAP-1 homodimerizes and associates with the proapoptotic Bax and the prosurvival Bcl-2 and Bcl-X(L) of the Bcl-2 family in vitro and in vivo in mammalian cells. Mutagenesis analyses revealed that the BH3-like domain in MAP-1 is not required for its association with Bcl-X(L) but is required for association with Bax and for mediating apoptosis. Interestingly, in contrast to other Bax-associating proteins such as Bcl-X(L) and Bid, which require the BH3 and BH1 domains of Bax, respectively, for binding, the binding of MAP-1 to Bax appears to require all three BH domains (BH1, BH2, and BH3) of Bax, because point mutation of the critical amino acid in any one of these domains is sufficient to abolish its binding to MAP-1. These data suggest that MAP-1 mediates apoptosis through a mechanism that involves binding to Bax.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号