首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Various parameters of immune suppression are observed in lymphocytes from astronauts during and after a space flight. It is difficult to ascribe this suppression to microgravity effects on immune cells in crew specimens, due to the complex physiological response to space flight and the resultant effect on in vitro immune performance. Use of isolated immune cells in true and modeled microgravity in immune performance tests, suggests a direct effect of microgravity on in vitro cellular function. Specifically, polyclonal activation of T-cells is severely suppressed in true and modeled microgravity. These recent findings suggest a potential suppression of oligoclonal antigen-specific lymphocyte activation in microgravity. We utilized rotating wall vessel (RWV) bioreactors as an analog of microgravity for cell cultures to analyze three models of antigen-specific activation. A mixed-lymphocyte reaction, as a model for a primary immune response, a tetanus toxoid response and a Borrelia burgdorferi response, as models of a secondary immune response, were all suppressed in the RWV bioreactor. Our findings confirm that the suppression of activation observed with polyclonal models also encompasses oligoclonal antigen-specific activation.  相似文献   

2.
Prolonged exposure of humans and experimental animals to the altered gravitational conditions of space flight has adverse effects on the lymphoid and erythroid hematopoietic systems. Although some information is available regarding the cellular and molecular changes in lymphocytes exposed to microgravity, little is known about the erythroid cellular changes that may underlie the reduction in erythropoiesis and resultant anemia. We now report a reduction in erythroid growth and a profound inhibition of erythropoietin (Epo)-induced differentiation in a ground-based simulated microgravity model system. Rauscher murine erythroleukemia cells were grown either in tissue culture vessels at 1 x g or in the simulated microgravity environment of the NASA-designed rotating wall vessel (RWV) bioreactor. Logarithmic growth was observed under both conditions; however, the doubling time in simulated microgravity was only one-half of that seen at 1 x g. No difference in apoptosis was detected. Induction with Epo at the initiation of the culture resulted in differentiation of approximately 25% of the cells at 1 x g, consistent with our previous observations. In contrast, induction with Epo at the initiation of simulated microgravity resulted in only one-half of this degree of differentiation. Significantly, the growth of cells in simulated microgravity for 24 h prior to Epo induction inhibited the differentiation almost completely. The results suggest that the NASA RWV bioreactor may serve as a suitable ground-based microgravity simulator to model the cellular and molecular changes in erythroid cells observed in true microgravity.  相似文献   

3.
Summary Microgravity has been implicated to play a role in the observed immune dysfunction of astronauts and cosmonauts after either short-term or long-term space travel. These reports, together with studies describing increased levels of microorganisms in the space cabin environment suggest potential risk for in-flight incidences of infectious diseases. In order to understand the mechanism underlying these immune defects, it is important to have a ground-based model that would reliably mimic the effects of microgravity on antigen-specific immune function. We tested the utility of the rotating wall vessel (RWV) technology developed at NASA as a model system because in the RWV the culture medium and the cells rotate synchronously with the vessel, thereby creating simulated microgravity conditions. We compared the RWV to the conventional tissue culture flask (T-flask), for culturing immune precursor cells with cytotoxic T lymphocyte (CTL) activity against synthetic viral peptides. We observed a significant loss of antigen-specific CTL activity in RWV cultures, but not in those from the T-flask, irrespective of the peptide immunogen used for inducing the primary immune response in different mouse strains. Loss of CTL activity in RWV cultures coincided with a significant reduction in CD8+ cells as well as CD4+ cells and DEC205+ dendritic cells, suggesting adverse effects of RWV culturing on both the effector and accessory cells for the loss of antigen-specific CTL function. These results provide a strong parallel to the reported defects in cell-mediated immunity during space travel and strongly support the utility of the RWV technology as an effective ground-based model for identifying key steps in immune cell dysfunction related to microgravity.  相似文献   

4.
Peripheral lymphoid organs (PLOs), the primary sites of development of adaptive immune responses, display a complex structural organization reflecting separation of cellular subsets (e.g., T and B lymphocytes) and functional compartments which is critical for immune function. The generation of in vitro culture systems capable of recapitulating salient features of PLOs for experimental, biotechnological, and clinical applications would be highly desirable, but has been hampered so far by the complexity of these systems. We have previously developed a three-dimensional bioreactor system for long-term, functional culture of human bone marrow cells on macroporous microspheres in a packed-bed bioreactor with frequent medium change. Here we adapt the same system for culture of human primary cells from PLOs (tonsil) in the absence of specific exogenous growth factors or activators. Cells in this system displayed higher viability over several weeks, and maintain population diversity and cell surface markers largely comparable to primary cells. Light microscopy showed cells organizing in large diverse clusters within the scaffold pores and presence of B cell-enriched areas. Strikingly, these cultures generated a significant number of antibody-producing B cells when challenged with a panel of diverse antigens, as expected from a lymphoid tissue. Thus the three-dimensional tonsil bioreactor culture system may serve as a useful model of PLOs by recapitulating their structural organization and function ex vivo.  相似文献   

5.
To study cell-to-cell interactions in microgravity we examined the functional activity of natural killer cells on board of the ISS. NK cells are the effector cells with direct cytotoxic activity to oncogenic, virus-infected cells and cells with modified differentiation. Ground-based experiments have shown that the examination of target cell lysis after incubation with NK cells is a simple and informative model for studying the influence of microgravity. NK cytotoxicity was measured as the value of non-degradeted labeled myeloblasts (K-562) after 24 hrs exposure with human lymphocytes in suspension. A special device was developed for space flight experiments. Human cultured lymphocytes and labeled K-562 cells were loaded into special syringes and delivered to the Russian segment of the ISS. Cosmonauts prepared co-cultured suspensions during the first day of microgravity, exposed them at 37 degrees C for 24 hrs and then separated H3-labeled cells on special filters. The results of ISS-8 mission showed that human NK cells in vitro remain lysis activity toward target cells in microgravity. The basal level of NK cytotoxicity was low and we did not found significant differences between "control" and "flight" values. Interferon production during the interaction between immune and target cells (ratio 10:1) in microgravity did not differ compared with ground-based control experiments. Ground exposure of the same lymphocyte samples with K-562 cells to 24 hrs clinorotation also did not lead to significant differences. These experiments paved the way for understanding the cell interaction mechanisms in space flight and the obtained results suggest that microgravity does not disrupt the interaction of NK cells with tumor cells.  相似文献   

6.
Microgravity and stress of spaceflights result in immune dysfunction. The role of nutrition, especially nucleotide supplementation, has become an area of intensive research and significant interest in immunomodulation for maintenance of cellular immune responses. The studies presented here evaluate the plausibility of administering nucleotides to obviate immune dysfunction in an Earth-based in vivo analog of microgravity as studied in anti-orthostatic tail suspension (AOS) of mice. Mice were divided into three housing groups: group, isolation, and AOS. Mice were fed either control chow diet (CD), or RNA-, adenine-, or uracil-supplemented CD for the 1-wk duration of the experiments. In AOS mice, supplemental nucleotides significantly increased in vivo lymph node proliferation and ex vivo lymphoproliferation response to alloantigen and mitogens, respectively, and interleukin-2 and interferon-gamma production. A lower corticosterone level was observed in uracil-supplemented CD compared with CD. These results suggest that exogenous nucleotide supplementation, especially uracil, of normal diet is beneficial in the maintenance and restoration of the immune response during the microgravity analog conditions.  相似文献   

7.
Changes in gravity inhibit lymphocyte locomotion through type I collagen   总被引:2,自引:0,他引:2  
Summary Immunity relies on the circulation of lymphocytes through many different tissues including blood vessels, lymphatic channels, and lymphoid organs. The ability of lymphocytes to traverse the interstitium in both nonlymphoid and lymphoid tissues can be determined in vitro by assaying their capacity to locomote through Type I collagen. In an attempt to characterize potential causes of microgravity-induced immunosuppression, we investigated the effects of simulated microgravity on human lymphocyte function in vitro using a specialized rotating-wall vessel culture system developed at the Johnson Space Center. This very low shear culture system randomizes gravitational vectors and provides an in vitro approximation of microgravity. In the randomized gravity of the rotating-wall vessel culture system, peripheral blood lymphocytes did not locomote through Type I collagen, whereas static cultures supported normal movement. Although cells remained viable during the entire culture period, peripheral blood lymphocytes transferred to unit gravity (static culture) after 6 h in the rotating-wall vessel culture system were slow to recover and locomote into collagen matrix. After 72 h in the rotating-wall vessel culture system and an additional 72 h in static culture, peripheral blood lymphocytes did not recover their ability to locomote. Loss of locomotory activity in rotating-wall vessel cultures appears to be related to changes in the activation state of the lymphocytes and the expression of adhesion molecules. Culture in the rotating-wall vessel system blunted the ability of peripheral blood lymphocytes to respond to polyclonal activation with phytohemagglutinin. Locomotory response remained intact when peripheral blood lymphocytes were activated by anti-CD3 antibody and interleukin-2 prior to introduction into the rotating-wall vessel culture system. Thus, in addition to the systemic stress factors that may affect immunity, isolated lymphocytes respond to gravitational changes by ceasing locomotion through model interstitium. These in vitro investigations suggest that microgravity induces non-stress-related changes in cell function that may be critical to immunity. Preliminary analysis of locomotion in true microgravity revealed a substantial inhibition of cellular movement in Type I collagen. Thus, the rotating-wall vessel culture system provides a model for analyzing the microgravity-induced inhibition of lymphocyte locomotion and the investigation of the mechanisms related to lymphocyte movement.  相似文献   

8.
Human exposure to microgravity is considered the major environmental factor of space flight that affects cells and tissues causing adverse effects to human health. Ground-based gravity-simulation experiments at the cellular and molecular levels have gained some insight into the underlying molecular and cellular alterations induced by microgravity. However, systematic study and detailed molecular mechanisms of the adverse effect of microgravity on living cells are still lacking. The main objective of this study was to apply DNA microarray technology in time-course experiments for genome-wide search of genes whose expression are altered by microgravity, as part of the effort in the identification of major space genes. In this study, we analyzed global gene expression profiles for a human liver cell line exposed to a ground-based modeled microgravity system for 1, 3, and 4 days using the rotary cell culture system (RCCS) and the Agilent 22k human oligo DNA microarrays. We have found that 139 genes' mRNA levels were significantly (P < or = 0.01) altered by the microgravity exposures. Some of these identified genes were further verified by Northern analysis.  相似文献   

9.
随着空间生命科学研究的发展,人们将细胞、组织培养技术与微重力环境相结合产生了组织工程研究的一个新领域——微重力组织工程。模拟微重力条件下细胞培养和组织构建研究表明,微重力环境有利于细胞的三维生长,形成具有功能的组织样结构,培养后的三维组织无论从形态上还是基因表达上都更接近于正常的机体组织。这种微重力对细胞的作用效应,将可能为未来组织工程和再生医学研究提供一条新途径。该文概述了近十年来国内外微重力组织工程相关研究的最新进展。  相似文献   

10.
Ex vivo human immunodeficiency virus type 1 (HIV-1) infection of human lymphoid tissue recapitulates some aspects of in vivo HIV-1 infection, including a severe depletion of CD4(+) T cells and suppression of humoral immune responses to recall antigens or to polyclonal stimuli. These effects are induced by infection with X4 HIV-1 variants, whereas infection with R5 variants results in only mild depletion of CD4(+) T cells and no suppression of immune responses. To study the mechanisms of suppression of immune responses in this ex vivo system, we used aldrithiol-2 (AT-2)-inactivated virions that have functional envelope glycoproteins but are not infectious and do not deplete CD4(+) T cells in human lymphoid tissues ex vivo. Nevertheless, AT-2-inactivated X4 (but not R5) HIV-1 virions, even with only a brief exposure, inhibit antibody responses in human lymphoid tissue ex vivo, similarly to infectious virus. This phenomenon is mediated by soluble immunosuppressive factor(s) secreted by tissue exposed to virus.  相似文献   

11.
Dendritic cells (DCs) act as sentinels in peripheral tissues, continuously scavenging for antigens in their immediate surroundings. Their involvement in T cell responses is generally thought to consist of a linear progression of events, starting with capture of antigen in peripheral tissues such as the skin followed by migration to draining lymphoid organs and MHC-restricted presentation of antigen-derived peptide to induce T cell priming. The role of tissue-derived DCs in the direct priming of immune responses has lately been challenged. It now appears that, at least in some instances, a non-migratory subtype of DCs in the secondary lymphoid tissue presents tissue-derived antigen to T cells. Here, we review recent developments in research on DC function in the priming of immune responses.  相似文献   

12.
Considerable evidence suggests that space travelers are immunosuppressed, presumably by microgravity environmental stresses, putting them at risk for adverse effects, such as opportunistic infections, poor wound healing, and cancer. The purpose of this study was to examine the role and mechanisms of nucleotide (NT) supplementation as a countermeasure to obviate immunosuppression during space travel. The in vitro rotary cell culture system, a bioreactor (BIO), was used to simulate the effect of microgravity and to isolate the neuroendocrine effects inherent to in vitro models. The splenocytes from normal mice were cultured in BIO and control tissue culture (TC) flasks with and without phytohemagglutinin (PHA) for mitogen assays. The culture medium was then supplemented with various concentrations of a nucleosides-nucleotides mixture (NS + NT), inosine, and uridine. Cytokines interleukin (IL)-1beta, IL-2, IL-3, tumor necrosis factor-alpha, and interferon (IFN)-gamma were measured from the supernatant by enzyme-linked immunosorbent assay. In the PHA-stimulated cultures the cellular proliferation in the BIO was significantly decreased as compared with the TC flask cells. BIO-cultured cells in the presence of NS + NT maintained mitogen responses similar to the control TC flask cells. The maintenance of the mitogen response in BIO was observed by the supplementation of uridine and not of inosine. These results are in agreement with our earlier results from unit gravity experiments that showed that pyrimidines are more effective in pleiogenic immunoprotection to hosts. Cytokines IL-1beta, IL-2, and IFN-gamma in the BIO supernatants of cells cultured in the presence of NS + NT had a significantly higher response than the control vessel. Thus, supplemental NT, especially pyrimidines, can confer immune protection and enhance cytokine responses during space travel.  相似文献   

13.
We sought to develop a practical and representative model to study the interactions of enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC, respectively) with human intestinal tissue. For this purpose, human intestinal epithelial HCT-8 cells were cultured under low-shear microgravity conditions in a rotating cell culture system. After 10 days, layered cell aggregates, or 'organoids', developed. Three lines of evidence indicated that these organoids exhibited traits characteristic of normal tissue. First, the organoids expressed normal intestinal tissue markers in patterns that suggested greater cellular differentiation in the organoids than conventionally grown monolayers. Second, the organoids produced higher levels of intestinally expressed disaccharidases and alkaline phosphatase on a cell basis than did conventionally cultured monolayers. Third, HCT-8 organoid tissue developed microvilli and desmosomes characteristic of normal tissue, as revealed by electron microscopy. Because the low-shear microgravity condition is proposed by modelling studies to more closely approximate conditions in the intestinal microvilli, we also tested the impact of microgravity of bacterial growth and virulence gene expression. No influence on growth rates was observed but intimin expression by EHEC was elevated during culture in microgravity as compared with normal gravity. That the responses of HCT-8 organoids to infection with wild-type EPEC or EHEC under microgravitational conditions approximated infection of normal tissue was demonstrated by the classical appearance of the resultant attaching and effacing lesions. We concluded that the low shear microgravity environment promoted growth of intestinal cell organoids with greater differentiation than was seen in HCT-8 cells maintained in conventional tissue culture and provided a reduced gravity environment for study of bacterial-host cell interactions.  相似文献   

14.
Studies from space flights over the past three decades have demonstrated that basic physiological changes occur in humans during space flight. These changes include cephalic fluid shifts, loss of fluid and electrolytes, loss of muscle mass, space motion sickness, anemia, reduced immune response, and loss of calcium and mineralized bone. The cause of most of these manifestations is not known and until recently, the general approach was to investigate general systemic changes, not basic cellular responses to microgravity. This laboratory has recently studied gene growth and activation of normal osteoblasts (MC3T3-El) during spaceflight. Osteoblast cells were grown on glass coverslips and loaded in the Biorack plunger boxes. The osteoblasts were launched in a serum deprived state, activated in microgravity and collected in microgravity. The osteoblasts were examined for changes in gene expression and signal transduction. Approximately one day after growth activation significant changes were observed in gene expression in 0-G flight samples. Immediate early growth genes/growth factors cox-2, c-myc, bcl2, TGF beta1, bFGF and PCNA showed a significant diminished mRNA induction in microgravity FCS activated cells when compared to ground and 1-G flight controls. Cox-1 was not detected in any of the samples. There were no significant differences in the expression of reference gene mRNA between the ground, 0-G and 1-G samples. The data suggest that quiescent osteoblasts are slower to enter the cell cycle in microgravity and that the lack of gravity itself may be a significant factor in bone loss in spaceflight. Preliminary data from our STS 76 flight experiment support our hypothesis that a basic biological response occurs at the tissue, cellular, and molecular level in 0-G. Here we examine ground-based and space flown data to help us understand the mechanism of bone loss in microgravity.  相似文献   

15.
The aim of this work was to assess whether "modeled microgravity" affects cell response to ionizing radiation, increasing the risk associated with radiation exposure. Lymphoblastoid TK6 cells were irradiated with various doses of gamma rays and incubated for 24 h in a modeled microgravity environment obtained by the Rotating Wall Vessel bioreactor. Cell survival, induction of apoptosis and cell cycle alteration were compared in cells irradiated and then incubated in 1g or modeled microgravity conditions. Modulation of genomic damage induced by ionizing radiation was evaluated on the basis of HPRT mutant frequency and the micronucleus assay. A significant reduction in apoptotic cells was observed in cells incubated in modeled microgravity after gamma irradiation compared with cells maintained in 1g. Moreover, in irradiated cells, fewer G2-phase cells were found in modeled microgravity than in 1g, whereas more G1-phase cells were observed in modeled microgravity than in 1g. Genomic damage induced by ionizing radiation, i.e. frequency of HPRT mutants and micronucleated cells, increased more in cultures incubated in modeled microgravity than in 1g. Our results indicate that modeled microgravity incubation after irradiation affects cell response to ionizing radiation, reducing the level of radiation-induced apoptosis. As a consequence, modeled microgravity increases the frequency of damaged cells that survive after irradiation.  相似文献   

16.
Isolated lymphoid follicles (ILFs) are organized intestinal lymphoid structures whose formation can be induced by luminal stimuli. ILFs have been demonstrated to act as inductive sites for the generation of immune responses directed toward luminal stimuli; however, the phenotype of the immune response initiated within ILFs has largely been uninvestigated. To gain a better understanding of the immune responses initiated within ILFs, we examined phenotypic and functional aspects of the largest cellular component of the murine ILF lymphocyte population, B lymphocytes. We observed that murine ILF B lymphocytes are composed of a relatively homogenous population of follicular B-2 B lymphocytes. Consistent with their proximity to multiple stimuli, ILF B lymphocytes displayed a more activated phenotype compared with their counterparts in the spleen and Peyer's patch (PP). ILF B lymphocytes also expressed higher levels of immunomodulatory B7 and CD28 family members B7X and programmed death-1 compared with their counterparts in the spleen and PP. ILF B lymphocytes preferentially differentiate into IgA-producing plasma cells and produce more IL-4 and IL-10 and less interferon-gamma compared with their counterparts in the spleen. Immunoglobulin repertoire analysis from individual ILFs demonstrated that ILFs contain a polyclonal population of B lymphocytes. These findings indicate that murine ILFs contain a polyclonal population of follicular B-2 B lymphocytes with a phenotype similar to PP B lymphocytes and that, in unchallenged animals, ILFs promote immune responses with a homeostatic phenotype.  相似文献   

17.
The role of M cells in the protection of mucosal membranes   总被引:8,自引:0,他引:8  
 The mucosa-associated lymphoid tissues continuously take up antigenic matter from the lumen to generate immune responses or to maintain immune tolerance. This antigen sampling is performed by highly specialised epithelial cells, the membranous (M) cells of the dome epithelia. M cells possess a unique ultrastructure and lie in close contact to lymphoid cells. They endocytose soluble and solid substances, including entire microorganisms, at their apical membrane, transport these in vesicles to their basolateral membrane and exocytose them to the intercellular space. This review summarises the structural and functional peculiarities of M cells in different species and at the different sites of lymphoid tissue along the digestive and respiratory tracts. Specialisations of M cells for antigen uptake and transport comprise the composition of their apical membrane and its glycocalyx, a modified cytoskeleton as compared to enterocytes and a pocket-like invagination of the basolateral membrane populated by lymphocytes and macrophages. Besides ultrastructural characteristics, histochemical markers are listed that are currently available for detecting M cells by light microscopy. The origin, differentiation and distribution of M cells and other epithelial cell types of the dome epithelium are outlined. As M cells are used as entry sites by various pathogens and, in the future, might be employed for the oral application of vaccines and drugs, the clinical relevance of M cells in health and disease is discussed. Accepted: 4 August 1997  相似文献   

18.
Simulated microgravity culture system for a 3-D carcinoma tissue model   总被引:7,自引:0,他引:7  
Nakamura K  Kuga H  Morisaki T  Baba E  Sato N  Mizumoto K  Sueishi K  Tanaka M  Katano M 《BioTechniques》2002,33(5):1068-70, 1072, 1074-6
An in vitro organotypic culture model is needed to understand the complexities of carcinoma tissue consisting of carcinoma cells, stromal cells, and extracellular matrices. We developed a new in vitro model of carcinoma tissue using a rotary cell culture system with four disposable vessels (RCCS-4D) that provides a simulated microgravity condition. Solid collagen gels containing human pancreatic carcinoma NOR-P1 cells and fibroblasts or minced human pancreatic carcinoma tissue were cultured under a simulated microgravity condition or a static Ig condition for seven days. NOR-P1 cultures subjected to the simulated microgravity condition showed greater numbers of mitotic, cycling (Ki-67-positive), nuclear factor-kappa B-activating cells, and a lower number of apoptotic cells than were shown by cultures subjected to the static Ig condition. In addition, human pancreatic carcinoma specimens cultured under the simulated microgravity condition maintained the heterogeneous composition and cellular activity (determined by the cycling cell ratio and mitotic index) of the original carcinoma tissue better than static culture conditions. This new 3-D rotary cell culture system with four disposal vessels may be useful for in vitro studies of complex pancreatic carcinoma tissue.  相似文献   

19.
The environmental conditions that could lead to an increased risk for the development of an infection during prolonged space flight include: microgravity, stress, radiation, disturbance of circadian rhythms, and altered nutritional intake. A large body of literature exists on the impairment of the immune system by space flight. With the advent of missions outside the Earth''s magnetic field, the increased risk of adverse effects due to exposure to radiation from a solar particle event (SPE) needs to be considered. Using models of reduced gravity and SPE radiation, we identify that either 2 Gy of radiation or hindlimb suspension alone leads to activation of the innate immune system and the two together are synergistic. The mechanism for the transient systemic immune activation is a reduced ability of the GI tract to contain bacterial products. The identification of mechanisms responsible for immune dysfunction during extended space missions will allow the development of specific countermeasures.  相似文献   

20.
It is well known that transforming growth factor-beta (TGF-beta) strikingly inhibits numerous immune functions in short-term cultures. In this study we investigated the effects of TGF-beta on the immune responses of murine spleen cells in a prolonged period of culture. The addition of exogenous TGF-beta (0.1 ng/ml) inhibited the proliferation of Con A- or LPS-stimulated spleen cells, polyclonal IgM and IgG antibody production, and NK cell activity during 4 days of the initial culture and subsequently enhanced their responses on Day 10. The augmented polyclonal IgM and IgG responses in murine spleen cells induced by LPS and TGF-beta on Day 10 were suppressed by the secondary addition of TGF-beta on Day 6. These results suggest that TGF-beta acts as an immunoregulator in prolonged period responses by immunoactivators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号