首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Proteinases can influence lung inflammation by various mechanisms, including via cleavage and activation of protease-activated receptors (PAR) such as PAR2. In addition, proteinases such as neutrophil and/or Pseudomonas-derived elastase can disarm PAR2 resulting in loss of PAR2 signaling. Currently, the role of PAR2 in host defense against bacterial infection is not known. Using a murine model of acute Pseudomonas aeruginosa pneumonia, we examined differences in the pulmonary inflammatory response between wild-type and PAR2(-/-) mice. Compared with wild-type mice, PAR2(-/-) mice displayed more severe lung inflammation and injury in response to P. aeruginosa infection as indicated by higher bronchoalveolar lavage fluid neutrophil numbers, protein concentration, and TNF-alpha levels. By contrast, IFN-gamma levels were markedly reduced in PAR2(-/-) compared with wild-type mice. Importantly, clearance of P. aeruginosa was diminished in PAR2(-/-) mice. In vitro testing revealed that PAR2(-/-) neutrophils killed significantly less bacteria than wild-type murine neutrophils. Further, both neutrophils and macrophages from PAR2(-/-) mice displayed significantly reduced phagocytic efficiency compared with wild-type phagocytes. Stimulation of PAR2 on macrophages using a PAR2-activating peptide resulted in enhanced phagocytosis directly implicating PAR2 signaling in the phagocytic process. We conclude that genetic deletion of PAR2 is associated with decreased clearance of P. aeruginosa. Our data suggest that a deficiency in IFN-gamma production and impaired bacterial phagocytosis are two potential mechanisms responsible for this defect.  相似文献   

2.
Surfactant protein D (SP-D) plays important roles in innate immunity including the defense against bacteria, fungi, and respiratory viruses. Because SP-D specifically interacts with neutrophils that infiltrate the lung in response to acute inflammation and infection, we examined the hypothesis that the neutrophil-derived serine proteinases (NSPs): neutrophil elastase, proteinase-3, and cathepsin G degrade SP-D. All three human NSPs specifically cleaved recombinant rat and natural human SP-D dodecamers in a time- and dose-dependent manner, which was reciprocally dependent on calcium concentration. The NSPs generated similar, relatively stable, disulfide cross-linked immunoreactive fragments of approximately 35 kDa (reduced), and sequencing of a major catheptic fragment definitively localized the major sites of cleavage to a highly conserved subregion of the carbohydrate recognition domain. Cleavage markedly reduced the ability of SP-D to promote bacterial aggregation and to bind to yeast mannan in vitro. Incubation of SP-D with isolated murine neutrophils led to the generation of similar fragments, and cleavage was inhibited with synthetic and natural serine proteinase inhibitors. In addition, neutrophils genetically deficient in neutrophil elastase and/or cathepsin G were impaired in their ability to degrade SP-D. Using a mouse model of acute bacterial pneumonia, we observed the accumulation of SP-D at sites of neutrophil infiltration coinciding with the appearance of approximately 35-kDa SP-D fragments in bronchoalveolar lavage fluids. Together, our data suggest that neutrophil-derived serine proteinases cleave SP-D at sites of inflammation with potential deleterious effects on its biological functions.  相似文献   

3.
Clearance of neutrophils from inflamed sites is critical for resolution of inflammation, but pathogen-driven neutrophil apoptosis can impair host defenses. We previously showed that pyocyanin, a phenazine toxic metabolite produced by Pseudomonas aeruginosa, accelerates neutrophil apoptosis in vitro. We compared wild-type and pyocyanin-deficient strains of P. aeruginosa in a murine model of acute pneumonia. Intratracheal instillation of either strain of P. aeruginosa caused a rapid increase in bronchoalveolar lavage neutrophil counts up to 18 h after infection. In wild-type infection, neutrophil numbers then declined steadily, whereas neutrophil numbers increased up to 48 h in mice infected with pyocyanin-deficient P. aeruginosa. In keeping with these differences, pyocyanin production was associated with reduced bacterial clearance from the lungs. Neutrophil apoptosis was increased in mice infected with wild-type compared with the phenazine-deficient strain or two further strains that lack pyocyanin production, but produce other phenazines. Concentrations of potent neutrophil chemokines (MIP-2, KC) and cytokines (IL-6, IL-1beta) were significantly lower in wild-type compared with phenazine-deficient strain-infected mice at 18 h. We conclude that pyocyanin production by P. aeruginosa suppresses the acute inflammatory response by pathogen-driven acceleration of neutrophil apoptosis and by reducing local inflammation, and that this is advantageous for bacterial survival.  相似文献   

4.
5.
Korkmaz B  Moreau T  Gauthier F 《Biochimie》2008,90(2):227-242
Polymorphonuclear neutrophils form a primary line of defense against bacterial infections using complementary oxidative and non-oxidative pathways to destroy phagocytized pathogens. The three serine proteases elastase, proteinase 3 and cathepsin G, are major components of the neutrophil primary granules that participate in the non-oxidative pathway of intracellular pathogen destruction. Neutrophil activation and degranulation results in the release of these proteases into the extracellular medium as proteolytically active enzymes, part of them remaining exposed at the cell surface. Extracellular neutrophil serine proteases also help kill bacteria and are involved in the degradation of extracellular matrix components during acute and chronic inflammation. But they are also important as specific regulators of the immune response, controlling cellular signaling through the processing of chemokines, modulating the cytokine network, and activating specific cell surface receptors. Neutrophil serine proteases are also involved in the pathogenicity of a variety of human diseases. This review focuses on the structural and functional properties of these proteases that may explain their specific biological roles, and facilitate their use as molecular targets for new therapeutic strategies.  相似文献   

6.
The inability of neutrophils to eradicate Pseudomonas aeruginosa within the cystic fibrosis (CF) airway eventually results in chronic infection by the bacteria in nearly 80 percent of patients. Phagocytic killing of P. aeruginosa by CF neutrophils is impaired due to decreased cystic fibrosis transmembrane conductance regulator (CFTR) function and virulence factors acquired by the bacteria. Recently, neutrophil extracellular traps (NETs), extracellular structures composed of neutrophil chromatin complexed with granule contents, were identified as an alternative mechanism of pathogen killing. The hypothesis that NET-mediated killing of P. aeruginosa is impaired in the context of the CF airway was tested. P. aeruginosa induced NET formation by neutrophils from healthy donors in a bacterial density dependent fashion. When maintained in suspension through continuous rotation, P. aeruginosa became physically associated with NETs. Under these conditions, NETs were the predominant mechanism of killing, across a wide range of bacterial densities. Peripheral blood neutrophils isolated from CF patients demonstrated no impairment in NET formation or function against P. aeruginosa. However, isogenic clinical isolates of P. aeruginosa obtained from CF patients early and later in the course of infection demonstrated an acquired capacity to withstand NET-mediated killing in 8 of 9 isolates tested. This resistance correlated with development of the mucoid phenotype, but was not a direct result of the excess alginate production that is characteristic of mucoidy. Together, these results demonstrate that neutrophils can kill P. aeruginosa via NETs, and in vitro this response is most effective under non-stationary conditions with a low ratio of bacteria to neutrophils. NET-mediated killing is independent of CFTR function or bacterial opsonization. Failure of this response in the context of the CF airway may occur, in part, due to an acquired resistance against NET-mediated killing by CF strains of P. aeruginosa.  相似文献   

7.
In order for neutrophils to function effectively in host defense, they have evolved specific attributes including the ability to migrate to the site of inflammation and release an array of toxic products including proteolytic enzymes, reactive oxygen species, and cationic proteins. While these compounds are intended for killing invading pathogens, if released inappropriately, they may also contribute to tissue damage. Such inflammatory tissue injury may be important in the pathogenesis of a variety of clinical disorders including arthritis, ischemia-reperfusion tissue injury, the systemic inflammatory response syndrome (SIRS), and the acute respiratory distress syndrome (ARDS). Despite the importance of neutrophil function in host defense and dysfunction in disease states, much remains unknown about the intracellular signaling pathways regulating neutrophil activity. This review will focus on the signaling molecules regulating leukocyte ‘effector’ functions including receptors, GTP-binding proteins, phospholipases, polyphosphoinositide metabolism, and protein kinases and phosphatases.  相似文献   

8.
Acute respiratory distress syndrome (ARDS) is a poorly understood condition with greater than 30% mortality. Massive recruitment of neutrophils to the lung occurs in the initial stages of the ARDS. Significant variability in the severity and duration of ARDS-associated pulmonary inflammation could be linked to heterogeneity in the inflammatory capacity of neutrophils. Interferon-stimulated genes (ISGs) are a broad gene family induced by Type I interferons. While ISGs are central to anti-viral immunity, the potential exists for these genes to evoke extensive modification in cellular response in other clinical settings. In this prospective study, we sought to determine if ISG expression in circulating neutrophils from ARDS patients is associated with changes in neutrophil function. Circulating neutrophil RNA was isolated, and hierarchical clustering ranked patients' expression of three ISGs. Neutrophil response to pathogenic bacteria was compared between normal and high ISG-expressing neutrophils. High neutrophil ISG expression was found in 25 of 95 (26%) of ARDS patients and was associated with reduced migration toward interleukin-8, and altered responses to Staphylococcus aureus, but not Pseudomonas aeruginosa, which included decreased p38 MAP kinase phosphorylation, superoxide anion release, interleukin-8 release, and a shift from necrotic to apoptotic cell death. These alterations in response were reflected in a decreased capacity to kill S. aureus, but not P. aeruginosa. Therefore, the ISG expression signature is associated with an altered circulating neutrophil response phenotype in ARDS that may predispose a large subgroup of patients to increased risk of specific bacterial infections.  相似文献   

9.
10.
Serine proteinases from inflammatory cells, including polymorphonuclear neutrophils, are involved in various inflammatory disorders, like pulmonary emphysema and rheumatoid arthritis. Inhibitors of these serine proteinases are potential drug candidates for the treatment of these disorders, since they prevent the unrestricted proteolysis. This study describes a novel specific antistasin-type inhibitor of neutrophil serine proteinases, we called Fahsin. This inhibitor was purified from the Nile leech Limnatis nilotica, sequenced and heterologously expressed using a synthetic gene in the methylotrophic yeast Pichia pastoris, yielding 0.5 g(-l) of the protein in the culture medium. Recombinant Fahsin was purified to homogeneity and characterised by N-terminal amino acid sequencing and mass spectrometry. Inhibition-kinetic analysis showed that recombinant Fahsin is a fast, tight-binding inhibitor of human neutrophil elastase with inhibition constant in the nanomolar range. Furthermore, recombinant Fahsin was, in contrast to various other neutrophil elastase inhibitors, insensitive to chemical oxidation and biological oxidation via myeloperoxidase-generated free oxygen radicals. Thus, Fahsin constitutes a novel member of a still expanding family of naturally occurring inhibitors of serine proteinases with potential therapeutic use for treatment of human diseases.  相似文献   

11.
Neutrophils generate potent microbicidal molecules via the oxygen-dependent pathway, leading to the generation of reactive oxygen intermediates (ROI), and via the non-oxygen dependent pathway, consisting in the release of serine proteinases and metalloproteinases stored in granules. Over the past years, the concept has emerged that both ROI and proteinases can be viewed as mediators able to modulate neutrophil responses as well as the whole inflammatory process. This is well illustrated by the oxidative regulation of proteinase activity showing that oxidants and proteinases acts is concert to optimize the microbicidal activity and to damage host tissues. ROI and proteinases can modify the activity of several proteins involved in the control of inflammatory process. Among them, tumour necrosis factor-alpha and interleukin-8, are elective targets for such a modulation. Moreover, ROI and proteinases are also able to modulate the adhesion process of neutrophils to endothelial cells, which is a critical step in the inflammatory process.  相似文献   

12.
Neutrophil serine proteases are granule-associated enzymes known mainly for their function in the intracellular killing of pathogens. Their extracellular release upon neutrophil activation is traditionally regarded as the primary reason for tissue damage at the sites of inflammation. However, studies over the past several years indicate that neutrophil serine proteases may also be key regulators of the inflammatory response. Neutrophil serine proteases specifically process and release chemokines, cytokines, and growth factors, thus modulating their biological activity. In addition, neutrophil serine proteases activate and shed specific cell surface receptors, which can ultimately prolong or terminate cytokine-induced responses. Moreover, it has been proposed that these proteases can impact cell viability through their caspase-like activity and initiate the adaptive immune response by directly activating lymphocytes. In summary, these studies point to neutrophil serine proteases as versatile mediators that fine-tune the local immune response and identify them as potential targets for therapeutic interventions.  相似文献   

13.
Although the inflammatory response is essential for protecting tissues from injury and infection, unrestrained inflammation can cause chronic inflammatory diseases such as arthritis, colitis and asthma. Physiological mechanisms that downregulate inflammation are poorly understood. Potent control might be achieved by regulating early stages in the inflammatory response, such as accumulation of neutrophils at the site of injury, where these cells release chemical mediators that promote inflammatory processes including plasma extravasation, bacteriocide and proteolysis. To access an inflammatory site, neutrophils must first adhere to the vascular endothelium in a process mediated in part by the leukocyte adhesion molecule L-selectin. This adhesion is prevented when L-selectin is shed from the neutrophil membrane. Although shedding of L-selectin is recognized as a potentially important mechanism for regulating neutrophils, its physiological function has not been demonstrated. Shedding of L-selectin may mediate endogenous downregulation of inflammation by limiting neutrophil accumulation at inflammatory sites. Here we show that activation of nociceptive neurons induces shedding of L-selectin from circulating neutrophils in vivo and that this shedding suppresses an ongoing inflammatory response by inhibiting neutrophil accumulation. These findings indicate a previously unknown mechanism for endogenous feedback control of inflammation. Failure of this mechanism could contribute to the etiology of chronic inflammatory disease.  相似文献   

14.
alpha1-Antitrypsin (AAT) is a major circulating serine proteinase inhibitor in humans. The anti-proteinase activity of AAT is inhibited by chemical modification. These include inter- or intramolecular polymerisation, oxidation, complex formation with target proteinases (e.g., neutrophil elastase), and/or cleavage by multi-specific proteinases. In vivo, several modified forms of AAT have been identified which stimulate biological activity in vitro unrelated to inhibition of serine proteinases. In this study we have examined the effects of native and polymerised AAT and C-36 peptide, a proteolytic cleavage product of AAT, on human neutrophil activation, in vitro. We show that the C-36 peptide displays striking concentration-dependent pro-inflammatory effects on human neutrophils, including induction of neutrophil chemotaxis, adhesion, degranulation, and superoxide generation. In contrast to C-36 peptide, native and polymerised AAT at similar and higher concentrations showed no effects on neutrophil activation. These results suggest that cleavage of AAT may not only abolish its proteinase inhibitor activity, but can also generate a powerful pro-inflammatory activator for human neutrophils.  相似文献   

15.
16.
The obligate intracellular bacterium Chlamydia trachomatis is the most common bacterial agent of sexually transmitted disease world-wide. Chlamydia trachomatis primarily infects epithelial cells of the genital tract but the infection may be associated with ascending infection. Infection-associated inflammation can cause tissue damage resulting in female infertility and ectopic pregnancy. The precise mechanism of inflammatory tissue damage is unclear but earlier studies implicate the chlamydial cryptic plasmid as well as responding neutrophils. We here rebuilt the interaction of Chlamydia trachomatis-infected epithelial cells and neutrophils in-vitro. During infection of human (HeLa) or mouse (oviduct) epithelial cells with Chlamydia trachomatis, a soluble factor was produced that attracted neutrophils and prolonged neutrophil survival, independently of Toll-like receptor signaling but dependent on the chlamydial plasmid. A number of cytokines, but most strongly GM-CSF, were secreted at higher amounts from cells infected with plasmid-bearing, compared to plasmid-deficient, bacteria. Blocking GM-CSF removed the secreted pro-survival activity towards neutrophils. A second, neutrophil TNF-stimulatory activity was detected in supernatants, requiring MyD88 or TRIF independently of the plasmid. The results identify two pro-inflammatory activities generated during chlamydial infection of epithelial cells and suggest that the epithelial cell, partly through the chlamydial plasmid, can initiate a myeloid immune response and inflammation.  相似文献   

17.
The recognition of phosphatidylserine (PS) on the surface of any apoptotic cell is considered to be a key event for its clearance. We challenge this concept by showing that pretreatment of neutrophils with either host or bacterial protease affects their uptake by human monocyte-derived macrophages without having an effect on cell-surface PS presentation. Specifically, whereas preincubation of apoptotic neutrophils with cathepsin G or thrombin significantly inhibited their uptake, gingipains R or clostripain enhanced phagocytosis by macrophages. Moreover, bacterial proteinases sensitized healthy neutrophils for uptake by macrophages, whereas endogenous proteinases were unable to elicit this effect. This stimulation was apparently owing to the combined effect of proteolytic cleavage of an antiphagocytic signal (CD31) and the generation of a novel 'eat-me' signal on the neutrophil surface. These results argue that neutrophil recognition and phagocytosis by macrophages is mediated by a protein ligand whose proteolytic modification could affect the local inflammatory process.  相似文献   

18.
Cathepsin G, elastase, and proteinase 3 are serine proteinases released by activated neutrophils. Cathepsin G can cleave angiotensinogen to release angiotensin II, but this activity has not been previously reported for elastase or proteinase 3. In this study we show that elastase and proteinase 3 can release angiotensin I from angiotensinogen and release angiotensin II from angiotensin I and angiotensinogen. The relative order of potency in releasing angiotensin II by the three proteinases at equivalent concentrations is cathepsin G > elastase > proteinase 3. When all three proteinases are used together, the release of angiotensin II is greater than the sum of the release when each proteinase is used individually. Cathepsin G and elastase can also degrade angiotensin II, reactions which might be important in regulating the activity of angiotensin II. The release and degradation of angiotensin II by the neutrophil proteinases are reactions which could play a role in the local inflammatory response and wound healing.  相似文献   

19.
Clearance of apoptotic neutrophils by alveolar macrophages plays an important role in the resolution phase of lung inflammation. If not cleared, apoptotic neutrophils are postulated to release histotoxic granular contents. Since numerous cellular proteins are degraded during apoptosis, we sought to determine whether functional serine proteinases are indeed released by apoptosing neutrophils in vitro. In a coculture system, cytokine-activated neutrophils induced detachment in the human epithelial cell line, A549. This process was CD18- and serine proteinase-dependent. Early apoptotic neutrophils induced significant detachment, but live, senescent, resting neutrophils and terminal, secondary necrotic neutrophils had a different effect. This detachment process was CD18-independent but serine proteinase-dependent. Similarly, detachment occurred with primary human small airway epithelial cells. Notably, epithelial cell detachment correlated with the transition of early apoptotic neutrophils to secondary necrosis and with the accumulation of elastase in the supernatant. The membrane integrity of lung epithelial cells was damaged in advance of significant cell detachment. These observations suggest that not only live activated neutrophils but also apoptosing neutrophils can reveal functional elastase activities. Furthermore, the rapidity of the transition emphasizes the importance of the prompt clearance of apoptotic neutrophils before they progress to secondary necrosis at the site of lung inflammation.C.Y.L. and Y.H.L contributed equally to the work on this project as first authors.  相似文献   

20.
G Salvesen  J J Enghild 《Biochemistry》1990,29(22):5304-5308
The majority of proteinases exist as zymogens whose activation usually results from a single proteolytic event. Two notable exceptions to this generalization are the serine proteinases neutrophil elastase (HNE) and cathepsin G (cat G), proteolytic enzymes of human neutrophils that are apparently fully active in their storage granules. On the basis of amino acid sequences inferred from the gene and cDNAs encoding these enzymes, it is likely that both are synthesized as precursors containing unusual C-terminal and N-terminal peptide extensions absent from the mature proteins. We have used biosynthetic radiolabeling and radiosequencing techniques to identify the kinetics of activation of both proteinases in the promonocyte-like cell line U937. We find that both N- and C-terminal extensions are removed about 90 min after the onset of synthesis, resulting in the activation of the proteinases. HNE and cat G are, therefore, transiently present as zymogens, presumably to protect the biosynthetic machinery of the cell from adventitious proteolysis. Activation results from cleavage following a glutamic acid residue to give an activation specificity opposite to those of almost all other serine proteinase zymogens, but shared, possibly, by the "granzyme" group of related serine proteinases present in the killer granules of cytotoxic T-lymphocytes and rat mast cell proteinase II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号