首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human populations have extraordinary capabilities for generating behavioural diversity without corresponding genetic diversity or change. These capabilities and their consequences can be grouped into three categories: strategic (or cognitive), ecological and cultural-evolutionary. Strategic aspects include: (i) a propensity to employ complex conditional strategies, some certainly genetically evolved but others owing to directed invention or to cultural evolution; (ii) situations in which fitness payoffs (or utilities) are frequency-dependent, so that there is no one best strategy; and (iii) the prevalence of multiple equilibria, with history or minor variations in starting conditions (path dependence) playing a crucial role. Ecological aspects refer to the fact that social behaviour and cultural institutions evolve in diverse niches, producing various adaptive radiations and local adaptations. Although environmental change can drive behavioural change, in humans, it is common for behavioural change (especially technological innovation) to drive environmental change (i.e. niche construction). Evolutionary aspects refer to the fact that human capacities for innovation and cultural transmission lead to diversification and cumulative cultural evolution; critical here is institutional design, in which relatively small shifts in incentive structure can produce very different aggregate outcomes. In effect, institutional design can reshape strategic games, bringing us full circle.  相似文献   

2.
揭示导致生物体形态和结构多样性产生的原因和机制, 是进化生物学研究的重要内容。进化发育生物学的研究表明, 许多复杂的形态结构及其多样性, 都是通过对古老调控网络的修饰或改造来完成的。也就是说, 生物体形态和结构的多样化并不是像以前认为的是由基因编码区的变化造成的, 而更多的是取决于基因的调控进化。作为控制基因表达的关键组分, 基因调控区的顺式调控元件通过与特定反式作用因子结合, 精细调控基因表达的时、空和量。因此, 调控元件的获得、丢失、修饰或者改变都能引起基因表达模式的变化, 是形态和结构多样性产生的主要原因。本文结合近年来国际上在基因的调控进化方面所取得的进展, 总结了真核生物中基因调控的方式和特点, 阐述了调控进化的基本式样, 揭示了调控进化在生物进化(特别是形态和结构多样化)中的作用。  相似文献   

3.
4.
The murine rodents are the most speciose subfamily of mammals. Here the morphology of the spermatozoon, as determined by scanning and transmission electron microscopy of representative species from four Eurasian clades, is described. Much interspecific variability in all components of the spermatozoon was found to occur, although most species have a bilaterally flattened sperm head with a single apical hook of variable length and orientation. Ultrastructural observations indicate that this apical hook invariably contains a nuclear projection as well as a large extension of the subacrosomal cytoskeleton, as a perforatorium rostrally, and a complex asymmetrical acrosomal extension. These spermatozoa also have relatively long tails that are attached to the lower concave surface of the sperm head. Uniquely, in species in the Apodemus clade, the apical hook is orientated caudally. In a few species a highly derived sperm head morphotype that does not contain an apical hook is present. These sperm heads vary in morphology from being globular in two species of Bandicota, to bilaterally flattened and paddle-shaped in Tokudaia and Micromys. In spermatozoa of the latter two genera the subacrosomal cytoskeleton, which is less extensive than in species with a hooked sperm head, forms an apical extension, but that is not the case in Bandicota. In all species where the sperm head lacks an apical hook the acrosome is more symmetrical. The sperm tail is much shorter in these species, with attachment to the head occurring on the ventral surface in Tokudaia and basal in Micromys and the two species of Bandicota. As the sperm head morphotype with a complex apical hook is present in all the major clades of murine rodents, it is likely to be a plesiomorphic character within each of these clades, with the nonhooked sperm heads, which vary greatly in structure between species of the different lineages, probably being independently derived. The ultrastructural organization of the sperm head of Bandicota, but not those of Micromys or Tokudaia, suggest divergence in some of the morphological events associated with sperm-egg interaction at the time of fertilization.  相似文献   

5.
6.
Jeong S  Rebeiz M  Andolfatto P  Werner T  True J  Carroll SB 《Cell》2008,132(5):783-793
Understanding the mechanisms underlying the morphological divergence of species is one of the central goals of evolutionary biology. Here, we analyze the genetic and molecular bases of the divergence of body pigmentation patterns between Drosophila yakuba and its sister species Drosophila santomea. We found that loss of pigmentation in D. santomea involved the selective loss of expression of the tan and yellow pigmentation genes. We demonstrate that tan gene expression was eliminated through the mutational inactivation of one specific tan cis-regulatory element (CRE) whereas the Tan protein sequence remained unchanged. Surprisingly, we identify three independent loss-of-function alleles of the tan CRE in the young D. santomea lineage. We submit that there is sufficient empirical evidence to support the general prediction that functional evolutionary changes at pleiotropic loci will most often involve mutations in their discrete, modular cis-regulatory elements.  相似文献   

7.
Stenberg P  Larsson J 《Chromosoma》2011,120(3):213-225
Copy number variation (CNV) in terms of aneuploidies of both entire chromosomes and chromosomal segments is an important evolutionary driving force, but it is inevitably accompanied by potentially problematic variations in gene doses and genomic instability. Thus, a delicate balance must be maintained between mechanisms that compensate for variations in gene doses (and thus allow such genomic variability) and selection against destabilizing CNVs. In Drosophila, three known compensatory mechanisms have evolved: a general segmental aneuploidy-buffering system and two chromosome-specific systems. The two chromosome-specific systems are the male-specific lethal complex, which is important for dosage compensation of the male X chromosome, and Painting of fourth, which stimulates expression of the fourth chromosome. In this review, we discuss the origin and function of buffering and compensation using Drosophila as a model.  相似文献   

8.
9.
The hypothesis that differences in gene regulation have an important role in speciation and adaptation is more than 40 years old. With the advent of new sequencing technologies, we are able to characterize and study gene expression levels and associated regulatory mechanisms in a large number of individuals and species at an unprecedented resolution and scale. We have thus gained new insights into the evolutionary pressures that shape gene expression levels and have developed an appreciation for the relative importance of evolutionary changes in different regulatory genetic and epigenetic mechanisms. The current challenge is to link gene regulatory changes to adaptive evolution of complex phenotypes. Here we mainly focus on comparative studies in primates and how they are complemented by studies in model organisms.  相似文献   

10.
11.
M Sakamoto  M Ruta 《PloS one》2012,7(7):e39752

Background

Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective. Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats.

Methodology/Principal Findings

A new phylogenetic analysis supports the monophyly of saber-toothed cats (Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various saber-toothed tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae, we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats.

Conclusions/Significance

Ancestors of large cats in the ‘Panthera’ lineage tend to occupy, at a much later stage, morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in reconstructing temporal transitions across two-dimensional trait spaces, can be used in ecophenotypical and functional diversity studies, and may reveal novel patterns of morphospace occupation.  相似文献   

12.
Laminins are a family of multidomain glycoproteins that are important contributors to the structure of metazoan extracellular matrices. To investigate the origin and evolution of the laminin family, we characterized the full complement of laminin-related genes in the genome of the sponge, Amphimedon queenslandica. As a representative of the Demospongiae, a group consistently placed within the earliest diverging branch of animals by molecular phylogenies, Amphimedon is uniquely placed to provide insight into early steps in the evolution of metazoan gene families. Five Amphimedon laminin-related genes possess the conserved molecular features, and most of the domains found in bilaterian laminins, but all display domain architectures distinct from those of the canonical laminin chain types known from model bilaterians. This finding prompted us to perform a comparative genomic analysis of laminins and related genes from a choanoflagellate and diverse metazoans and to conduct phylogenetic analyses using the conserved Laminin N-terminal domain in order to explore the relationships between genes with distinct architectures. Laminin-like genes appear to have originated in the holozoan lineage (choanoflagellates + metazoans + several other unicellular opisthokont taxa), with several laminin domains originating later and appearing only in metazoan (animal) or eumetazoan (placozoans + ctenophores + cnidarians + bilaterians) laminins. Typical bilaterian α, β, and γ laminin chain forms arose in the eumetazoan stem and another chain type that is conserved in Amphimedon, the cnidarian, Nematostella vectensis, and the echinoderm, Strongylocentrotus purpuratus, appears to have been lost independently from the placozoan, Trichoplax adhaerens, and from multiple bilaterians. Phylogenetic analysis did not clearly reconstruct relationships between the distinct laminin chain types (with the exception of the α chains) but did reveal how several members of the netrin family were generated independently from within the laminin family by duplication and domain shuffling and by domain loss. Together, our results suggest that gene duplication and loss and domain shuffling and loss all played a role in the evolution of the laminin family and contributed to the generation of lineage-specific diversity in the laminin gene complements of extant metazoans.  相似文献   

13.
Poelwijk FJ  de Vos MG  Tans SJ 《Cell》2011,146(3):462-470
Cellular regulation is believed to evolve in response to environmental variability. However, this has been difficult to test directly. Here, we show that a gene regulation system evolves to the optimal regulatory response when challenged with variable environments. We engineered a genetic module subject to regulation by the lac repressor (LacI) in E.?coli, whose expression is beneficial in one environmental condition and detrimental in another. Measured tradeoffs in fitness between environments predict the competition between regulatory phenotypes. We show that regulatory evolution in adverse environments is delayed at specific boundaries in the phenotype space of the regulatory LacI protein. Once this constraint is relieved by mutation, adaptation proceeds toward the optimum, yielding LacI with an altered allosteric mechanism that enables an opposite response to its regulatory ligand IPTG. Our results indicate that regulatory evolution can be understood in terms of tradeoff optimization theory.  相似文献   

14.
Although coral reefs are renowned biodiversity hotspots it is not known whether they also promote the evolution of exceptional ecomorphological diversity. We investigated this question by analysing a large functional morphological dataset of trophic characters within Labridae, a highly diverse group of fishes. Using an analysis that accounts for species relationships, the time available for diversification and model uncertainty we show that coral reef species have evolved functional morphological diversity twice as fast as non-reef species. In addition, coral reef species occupy 68.6% more trophic morphospace than non-reef species. Our results suggest that coral reef habitats promote the evolution of both trophic novelty and morphological diversity within fishes. Thus, the preservation of coral reefs is necessary, not only to safeguard current biological diversity but also to conserve the underlying mechanisms that can produce functional diversity in future.  相似文献   

15.
Understanding geographic variation in the species richness and lineage composition of regional biotas is a long‐standing goal in ecology. Why do some evolutionary lineages proliferate while others do not, and how do new colonists fit into an established fauna? Here, we analyze the morphological structure of assemblages of passerine birds in four biogeographic regions to examine the relative influence of colonization history and niche‐based processes on continental communities of passerine birds. Using morphological traits related to habitat choice, foraging technique, and movement, we quantify the morphological spaces occupied by different groups of passerine birds. We further quantify morphological overlap between groups by multivariate discriminant analysis and null model analyses of trait dispersion. Finally, we use subclade disparity through time to assess the temporal component of morphological evolution. We find mixed support for the prediction, based on priority, that first colonizers constrain subsequent colonizers. Indeed, our results show that the assembly of continental communities is idiosyncratic with regards to the diversification of new clades and the filling of morphospace.  相似文献   

16.
The insect antenna and leg are considered homologous structures, likely to have arisen via duplication and divergence from an ancestral limb. Consistent with this, the antenna and leg are derived from primordia with similar developmental potentials. Nonetheless, the adult structures differ in both form and function. In Drosophila, one conspicuous morphological difference is that the antenna has fewer distal segments than the leg. We propose that this is due in part to the variations in the regulation of bric a brac. bric a brac is required for joint formation, and loss of bric a brac function leads to fusion of distal antennal and leg segments, resulting in fewer total segments. Here, we address how bric a brac is regulated to generate the mature expression patterns of two concentric rings in the antenna versus four concentric rings in the leg. We find that bric a brac expression is activated early throughout most of the Distal-less domain in both antenna and leg and subsequently is restricted to the distal portion and into rings. Although bric a brac expression in the antenna and in all four tarsal rings of the leg requires Distal-less, only the proximal three tarsal rings are Spineless-dependent. Thus bric a brac is regulated differentially even within a single appendage type. The restriction of bric a brac expression to the distal portion of the Distal-less domain is a consequence of negative regulation by distinct sets of genes in different limb types. In the leg, the proximal boundary of bric a brac is established by the medial-patterning gene dachshund, but dachshund alone is insufficient to repress bric a brac, and the expression of the two genes overlaps. In the antenna, the proximal boundary of bric a brac is established by an antenna-specifying gene, homothorax, in conjunction with dachshund and spalt, and there is much less overlap between the bric a brac and the dachshund domains. Thus tissue-specific expression of other patterning genes that differentially repress bric a brac accounts for antenna-leg differences in bric a brac pattern. We propose that the limb type-specific variations in expression of bric a brac repressors contribute to morphological variations by controlling distal limb segment number.  相似文献   

17.
Goyal  Pooja  Devi  Ritu  Verma  Bhawana  Hussain  Shahnawaz  Arora  Palak  Tabassum  Rubeena  Gupta  Suphla 《Protoplasma》2023,260(2):331-348
Protoplasma - The recent advancements in sequencing technologies and informatic tools promoted a paradigm shift to decipher the hidden biological mysteries and transformed the biological issues...  相似文献   

18.
The prosoma of spiders bears different gnathal (labrum, chelicerae, pedipalps) and locomotory appendages (legs). In most species these appendages are also used for additional functions, e.g. sensing, mating, and courtship. The opisthosoma is equipped with four pairs of highly specialized appendages. Two pairs of spinnerets are used for silk production and manipulation. The other two pairs of appendages are internalized during development and give rise to a complex respiratory system of book lungs and tracheae. Thus spiders have a number of different appendage types with radically different adult morphologies. Furthermore, all these appendage types display significant additional species specific diversity correlating with a large spectrum of functions of the appendages. Despite this importance of appendage diversity for the evolution of the spiders we know relatively little about the genetic patterning mechanisms producing this diversity of morphology. We review recent advances concerning the developmental genetics of spider appendage diversification, mainly concentrating on open questions and future directions of research. We conclude that the deeper understanding of appendage development and diversity in spiders can contribute significantly not only to evolutionary developmental biology, but also to behavioral biology, speciation research and population genetics, and the study of sexually dimorphic traits.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号