首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies in Jurkat cells have shown that combined stimulation through the TCR and CD28 is required for activation of c-Jun N-terminal kinase (JNK), suggesting that JNK activity may mediate the costimulatory function of CD28. To examine the role of JNK signaling in CD28 costimulation in normal T cells, murine T cell clones and CD28(+/+) or CD28(-/-) TCR transgenic T cells were used. Although ligation with anti-CD28 mAb augmented JNK activation in Th1 and Th2 clones stimulated with low concentrations of anti-CD3 mAb, higher concentrations of anti-CD3 mAb alone were sufficient for JNK activation even in the absence of anti-CD28. JNK activity was comparably induced in both CD28(+/+) and CD28(-/-) 2C/recombinase-activating gene 2(RAG2)(-/-) T cells stimulated with anti-CD3 mAb alone, and with L(d)/peptide dimers, a direct alphabeta TCR ligand. Moreover, JNK activation was also detected in 2C/RAG2(-/-) T cells stimulated with P815 cells that express the relevant alloantigen L(d) whether or not B7-1 was coexpressed. However, IL-2 production by both Th1 clones and CD28(+/+) 2C/RAG2(-/-) T cells was detected only upon TCR and CD28 coengagement. Thus, CD28 coligation is not necessary, and stimulation through the TCR is sufficient, for JNK activation in normal murine T cells. The concept that JNK mediates the costimulatory function of CD28 needs to be reconsidered.  相似文献   

2.
Dual role of the CD44 molecule in T cell adhesion and activation   总被引:46,自引:0,他引:46  
Studies of T cell adhesion and activation reveal two new functions of the CD44 molecule, a molecule now recognized to be identical to three molecules of functional interest: Pgp-1, Hermes, and extracellular matrix receptor type III (ECMRIII). By screening for mAb which inhibit T cell adhesion to E, we have identified a functionally unique CD44-specific mAb, NIH44-1, which partially inhibits T cell rosetting by binding to CD44 on the E. NIH44-1, which immunoprecipitates a protein of 85 to 110 kDa with broad tissue distribution, was determined to be specific for CD44 based on comparison of its tissue distribution with multiple CD44-specific reference mAb and sequential immunoprecipitation with such mAb. Anticipating a role for many adhesion molecules in signal transduction, we studied the effect of CD44 mAb on T cell activation and observed that CD44 mAb dramatically augments T cell proliferation induced by CD3- and CD2-receptor-mediated activation. The augmentation of the response to immobilized CD3 mAb by exhaustively monocyte-depleted T cells indicates that augmentation can be mediated by binding to the T cell. Thus, our studies demonstrate specific new roles for CD44 in T cell adhesion and activation. Furthermore, we suggest that: 1) CD44 has a role in adhesion of cells of multiple lineages; and 2) CD44 may participate in adhesion not (only) by functioning as an adhesion receptor but rather by serving as an anchorage site for other adhesion molecules.  相似文献   

3.
4.
The inability to reproducibly induce robust and durable transplant tolerance using CD28-B7 pathway blockade is in part related to the persistence of alloreactive effector/memory CD8(+) T cells that are less dependent on this pathway for their cellular activation. We studied the role of the novel T cell costimulatory pathway, CD27-CD70, in alloimmunity in the presence and absence of CD28-B7 signaling. CD70 blockade prolonged survival of fully mismatched vascularized cardiac allografts in wild-type murine recipients, and in CD28-deficient mice induced long-term survival while significantly preventing the development of chronic allograft vasculopathy. CD70 blockade had little effect on CD4(+) T cell function but prevented CD8(+) T cell-mediated rejection, inhibited the proliferation and activation of effector CD8(+) T cells, and diminished the expansion of effector and memory CD8(+) T cells in vivo. Thus, the CD27-CD70 pathway is critical for CD28-independent effector/memory CD8(+) alloreactive T cell activation in vivo. These novel findings have important implications for the development of transplantation tolerance-inducing strategies in primates and humans, in which CD8(+) T cell depletion is currently mandatory.  相似文献   

5.
CD28 has been shown to play an important role in T cell activation. Among the downstream events associated with CD28 engagement is the reorganization of the cytoskeleton resulting in lipid raft aggregation. In our previous studies we investigated the involvement of lipid rafts in the activation of high avidity CD8+ T lymphocytes, which recognize cells bearing very low levels of peptide antigen, versus low avidity cells, which require high levels of peptide antigen. In these studies we found that high avidity cells were much more sensitive to lipid raft disruption compared to low avidity cells. Given the important role for CD28 in lipid raft reorganization and our previous finding that high avidity cells are extremely dependent on lipid raft integrity, we hypothesized that high avidity cells could not be generated in the absence of CD28. Surprisingly, we have found that the absence of CD28 does not alter the ability to generate high or low avidity CD8+ T cells. In fact high and low avidity lines generated in parallel from CD28-deficient and WT mice exhibited very similar requirements for peptide antigen. We next compared the effect of lipid raft disruption on the activation of high versus low avidity cells from CD28-deficient and WT mice. While high avidity cells generated from WT mice exhibited the expected dependence on lipid raft integrity, high avidity cells from CD28-deficient mice were not affected. These data suggest that the lines generated from the CD28-deficient mice have developed alternative strategies to promote high sensitivity to peptide antigen.  相似文献   

6.
Itk, a member of the Tec family of tyrosine kinases, is critical for TCR signaling, leading to the activation of phospholipase C gamma1. Early biochemical studies performed in tumor cell lines also implicated Itk in CD28 signaling. These data were complemented by functional studies on primary Itk-/- T cells that suggested a negative role for Itk in CD28 signaling. In this report, we describe a thorough analysis of CD28-mediated responses in T cells lacking Itk. Using purified naive CD4+ T cells from Itk-/- mice, we examine a range of responses dependent on CD28 costimulation. We also analyze Akt and glycogen synthase kinase-3beta phosphorylation in response to stimulation of CD28 alone. Overall, these experiments demonstrate that CD28 signaling, as well as CD28-mediated costimulation of TCR signaling, function efficiently in the absence of Itk. These findings indicate that Itk is not essential for CD28 signaling in primary naive CD4+ T cells.  相似文献   

7.
CD1 is an MHC class I-like molecule that has been conserved throughout mammalian evolution. Unlike MHC class I molecules, CD1 can present unique nonprotein antigens to T cells. The murine CD1 locus contains two highly homologous genes, CD1d1 and CD1d2. CD1d1 is essential for the development of a major subset of NK T cells that promptly secrete IL-4 following activation. However, the function of CD1d2 has not yet been demonstrated. In the present study, we examined the expression of CD1d2 in CD1d1-deficient (CD1d1 degrees) mice with the anti-CD1 Ab 3H3. Unlike CD1d1, which is expressed by all lymphocytes, CD1d2 can be detected only on the surface of thymocytes. To determine whether CD1d2 can select a unique subset of NK T cells, we compared the remnant population of NK T cells in CD1d1 degrees and CD1d1, CD1d2-double deficient (CD1d1 degrees CD1d2 degrees) mice. No significant difference in the number of NK T cells and cytokine secretion capacity can be detected between CD1d1 degrees and CD1d1 degrees CD1d2 degrees mice, indicating that CD1d2 cannot substitute for CD1d1 in NK T cell development. The inability of CD1d2 to select NK T cells is not due to the structural constraints of CD1d2 since CD1d2-transfected cells can be recognized by both NK T cell hybridomas and freshly isolated NK T cells. Given the structural similarities, it is possible that the low levels of surface expression and limited tissue distribution of CD1d2 may prevent it from functioning in the selection and expansion of NK T cells.  相似文献   

8.
Tissue homing of activated T cells is typically mediated through their specific integrin and chemokine receptor repertoire. Activation of human primary CD4(+) T cells in the presence of CD46 cross-linking induces the development of a distinct immunomodulatory T cell population characterized by high IL-10/granzyme B production. How these regulatory T cells (Tregs) migrate/home to specific tissue sites is not understood. In this study, we determined the adhesion protein and chemokine receptor expression pattern on human CD3/CD46-activated peripheral blood CD4(+) T cells. CD3/CD46-activated, but not CD3/CD28-activated, T cells up-regulate the integrin alpha(4)beta(7). The interaction of alpha(4)beta(7) with its ligand mucosal addressin cell adhesion molecule 1 (MAdCAM-1) mediates homing or retention of T cells to the intestine. CD3/CD46-activated Tregs adhere to/roll on MAdCAM-1-expressing HeLa cells, similar to T cells isolated from the human lamina propria (LP). This interaction is inhibited by silencing MAdCAM-1 expression in HeLa cells or by the addition of blocking Abs to beta(7). CD46 activation of T cells also induced the expression of the surface-bound cytokine LIGHT and the chemokine receptor CCR9, both marker constitutively expressed by gut LP-resident T cells. In addition, we found that approximately 10% of the CD4(+) T lymphocytes isolated from the LP of patients undergoing bariatric surgery contain T cells that spontaneously secrete a cytokine pattern consistent with that from CD46-activated T cells. These data suggest that CD46-induced Tregs might play a role in intestinal immune homeostasis where they could dampen unwanted effector T cell responses through local IL-10/granzyme B production.  相似文献   

9.
We developed a new mAb, anti-1A4, which recognizes an epitope on the CD27 molecule distinct from those recognized by several known anti-CD27 mAb. Although it has been suggested that the CD27 molecule is a T cell activation Ag, there was little direct evidence that the structure was involved in the T cell activation process. In this study, we showed that anti-1A4 inhibited anti-CD2, anti-CD3, mitogens, or soluble Ag-induced T cell proliferation as well as PWM-driven B cell IgG synthesis. Interestingly, anti-1A4 inhibited IL-2 secretion without affecting IL-2R expression. In addition, pretreatment of T cells with anti-1A4 inhibited the normally sustained intracellular calcium mobilization seen after triggering of T cells via the CD2 or CD3 pathways. Thus, binding of anti-1A4 to the CD27 molecule appears to induce a negative effect on T cell activation. This may be due to either a direct signal to T cells or the blocking of an interaction between T cells and accessory cells or both. These findings support the notion that the CD27 molecule plays an integral role in the process of T cell activation.  相似文献   

10.
In the present study we evaluated the mechanisms behind the implication of the costimulatory molecule CD28 for the immune response against the intracellular protozoan parasite Trypanosma cruzi. Our results reveal a critical role for CD28 in the activation of both CD4+ and CD8+ T cells and induction of the effector mechanisms that ultimately mediate the control of parasite growth and pathogenesis in infected mice. CD28-deficient (CD28-/-) mice are highly susceptible to T. cruzi infection, presenting higher parasitemia and tissue parasitism, but less inflammatory cell infiltrate in the heart than C57Bl/6 wild-type (WT) mice. All the infected WT mice survived acute infection, whereas 100% of CD28-/- mice succumbed to it. The increased susceptibility of the CD28-/- mice was associated with a dramatic decrease in the production of IFN-gamma by both CD4+ and CD8+ T cells resulting in a diminished capacity to produce nitric oxide (NO) and mediate parasite killing. T cell activation was also profoundly impaired in CD28-/- mice, which presented decreased lymphoproliferative response after the infection compared to WT mice. Together, these data represent the first evidence that CD28 is critical for efficient CD4+ T cell activation in response to T. cruzi infection in mice.  相似文献   

11.
The beta2 integrin LFA-1 (CD11a/CD18) mediates adhesion of lymphocytes to cells expressing ICAM. The strength of this adhesion is regulated by different signals delivered by cytokines and chemokines, and by the TCR in the case of T cells. To determine the receptor-ligand interactions required for adhesion of resting NK cells, Drosophila cells expressing different combinations of ligands of human NK cell receptors were generated. Expression of ICAM-1 alone was sufficient for an adhesion of resting NK cells that was sensitive to inhibitors of src family kinase and of phosphatidylinositol 3-kinase. Binding of resting NK cells to solid-phase ICAM-1 showed similar signaling requirements. A pulse of either IL-2 or IL-15 to resting NK cells resulted in strongly enhanced, actin-dependent adhesion to insect cells expressing ICAM-1 alone. Coexpression of either LFA-3 (CD58) or CD48 with ICAM-1 resulted in strong adhesion by resting NK cells, even in the absence of cytokines. Therefore, receptors for LFA-3 and CD48 on resting NK cells strengthen the adhesion mediated by LFA-1.  相似文献   

12.
The inducible costimulatory (ICOS) molecule is expressed by activated T cells and has homology to CD28 and CD152. ICOS binds B7h, a molecule expressed by APC with homology to CD80 and CD86. To investigate regulation of ICOS expression and its role in Th responses we developed anti-mouse ICOS mAbs and ICOS-Ig fusion protein. Little ICOS is expressed by freshly isolated mouse T cells, but ICOS is rapidly up-regulated on most CD4(+) and CD8(+) T cells following stimulation of the TCR. Strikingly, ICOS up-regulation is significantly reduced in the absence of CD80 and CD86 and can be restored by CD28 stimulation, suggesting that CD28-CD80/CD86 interactions may optimize ICOS expression. Interestingly, TCR-transgenic T cells differentiated into Th2 expressed significantly more ICOS than cells differentiated into Th1. We used two methods to investigate the role of ICOS in activation of CD4(+) T cells. First, CD4(+) cells were stimulated with beads coated with anti-CD3 and either B7h-Ig fusion protein or control Ig fusion protein. ICOS stimulation enhanced proliferation of CD4(+) cells and production of IFN-gamma, IL-4, and IL-10, but not IL-2. Second, TCR-transgenic CD4(+) T cells were stimulated with peptide and APC in the presence of ICOS-Ig or control Ig. When the ICOS:B7h interaction was blocked by ICOS-Ig, CD4(+) T cells produced more IFN-gamma and less IL-4 and IL-10 than CD4(+) cells differentiated with control Ig. These results demonstrate that ICOS stimulation is important in T cell activation and that ICOS may have a particularly important role in development of Th2 cells.  相似文献   

13.
The role of leukocyte function-associated Ag-1 (LFA-1) (CD11a/CD18) in T cell-endothelial cell (EC) interactions was assessed by utilizing CD11a/CD18-deficient T cell clones generated from a patient with leukocyte adhesion deficiency (LAD). The ability of these clones to bind to and migrate through monolayers of EC in vitro was compared with that of clones generated in a similar manner from normal controls. The LAD clones bound to EC to a similar extent as the controls. The contribution of other cell surface adhesion molecules was assessed with mAb blocking experiments. It was found that part of the EC binding by these CD11a/CD18-deficient clones was mediated by an interaction of very late Ag-4 (VLA-4) with vascular cell adhesion molecule-1 (VCAM-1) on the EC. In contrast to their normal ability to bind to EC, the capacity of the LAD clones to migrate through EC monolayers was significantly less than that of the control clones. This impairment in migration was not related to decreased intrinsic motility. Moreover, neither phorbol ester stimulation of the LAD clones nor IL-1 stimulation of the EC increased the capacity of the clones to migrate through EC monolayers, although binding to EC was augmented by both treatments. Only a minimal percentage of the migration of either control or LAD clones was inhibited by mAb to VLA-4 or VCAM-1. These data demonstrate that LFA-1 plays a central role in the transendothelial migration of T cells. In the absence of LFA-1, T cells retain the ability to bind to EC because of the activity of other receptor/ligand pairs, including VLA-4/VCAM-1. Finally, it is likely that, during both binding and transendothelial migration of T cells, additional cell surface molecules play a role.  相似文献   

14.
Activation of T cells often requires both activation signals delivered by ligation of the TCR and those resulting from costimulatory interactions between certain T cell surface accessory molecules and their respective counter-receptors on APC. CD11a/CD18 complex on T cells modulate the activation of T cells by interacting with its counter-receptors intracellular adhesion molecule (ICAM-1) (CD54) and/or ICAM-2 on the surface of APC. The costimulatory ability of ICAM-1 has been demonstrated. Using a soluble ICAM-2 Ig fusion protein (receptor globulin, Rg) we demonstrate the costimulatory effect of ICAM-2 during the activation of CD4+ T cells. When coimmobilized with anti-TCR-1 mAb ICAM-2 Rg induced vigorous proliferative response of CD4+ T cells. This costimulatory effect of ICAM-2 was dependent on its coimmobilization with mAb directed at the CD3/TCR complex but not those directed at CD2 or CD28. Both resting as well as Ag-primed CD4+ T cells responded to the costimulatory effects of ICAM-2. The addition of mAb directed at the CD11a or CD18 molecules almost completely inhibited the responses to ICAM-2 Rg. These results are consistent with the role of CD11a/CD18 complex as a receptor for ICAM-2 mediating its costimulatory effects. Stimulation of T cells with coimmobilized anti-TCR-1 and ICAM-2 resulted in the induction of IL-2R (CD25), and anti-Tac (CD25) mAb inhibited this response suggesting the contribution of endogenously synthesized IL-2 during this stimulation. These results demonstrate that like its homologue ICAM-1, ICAM-2 also exerts a strong costimulatory effect during the TCR-initiated activation of T cells. The costimulatory effects generated by the CD11a/CD18:ICAM-2 interaction may be critical during the initiation of T cell activation by ICAM-1low APC.  相似文献   

15.
The leukocyte-specific integrin, LFA-1, plays a critical role in trafficking of T cells to both lymphoid and nonlymphoid tissues. However, the role of LFA-1 in T cell activation in vivo has been less well understood. Although there have been reports describing LFA-1-deficient T cell response defects in vivo, due to impaired migration to lymphoid structures and to sites of effector function in the absence of LFA-1, it has been difficult to assess whether T cells also have a specific activation defect in vivo. We examined the role of LFA-1 in CD4(+) T cell activation in vivo by using a system that allows for segregation of the migration and activation defects through the adoptive transfer of LFA-1-deficient (CD18(-/-)) CD4(+) T cells from DO11.10 Ag-specific TCR transgenic mice into wild-type BALB/c mice. We find that in addition to its role in trafficking to peripheral lymph nodes, LFA-1 is required for optimal CD4(+) T cell priming in vivo upon s.c. immunization. CD18(-/-) DO11.10 CD4(+) T cells primed in the lymph nodes demonstrate defects in IL-2 and IFN-gamma production. In addition, recipient mice adoptively transferred with CD18(-/-) DO11.10 CD4(+) T cells demonstrate a defect in OVA-specific IgG2a production after s.c. immunization. The defect in priming of CD18(-/-) CD4(+) T cells persists even in the presence of proliferating CD18(+/-) CD4(+) T cells and in lymphoid structures to which there is no migration defect. Taken together, these results demonstrate that LFA-1 is required for optimal CD4(+) T cell priming in vivo.  相似文献   

16.
Ag-specific precursor frequency is increasingly being appreciated as an important factor in determining the kinetics, magnitude, and degree of differentiation of T cell responses, and recently was found to play a critical role in determining the relative requirement of CD8(+) T cells for CD28- and CD154-mediated costimulatory signals during transplantation. We addressed the possibility that variations in CD4(+) T cell precursor frequency following transplantation might affect CD4(+) T cell proliferation, effector function, and provision of help for donor-reactive B cell and CD8(+) T cell responses. Using a transgenic model system wherein increasing frequencies of donor-reactive CD4(+) T cells were transferred into skin graft recipients, we observed that a critical CD4(+) T cell threshold precursor frequency was necessary to provide help following blockade of the CD28 and CD154 costimulatory pathways, as measured by increased B cell and CD8(+) T cell responses and precipitation of graft rejection. In contrast to high-frequency CD8(+) T cell responses, this effect was observed even though the proliferative and cytokine responses of Ag-specific CD4(+) T cells were inhibited. Thus, we conclude that an initial high frequency of donor-reactive CD4(+) T cells uncouples T cell proliferative and effector cytokine production from the provision of T cell help.  相似文献   

17.
RasGRP1 and Sos are two Ras-guanyl-nucleotide exchange factors that link TCR signal transduction to Ras and MAPK activation. Recent studies demonstrate positive selection of developing thymocytes is crucially dependent on RasGRP1, whereas negative selection of autoreactive thymocytes appears to be RasGRP1 independent. However, the role of RasGRP1 in T regulatory (Treg) cell development and function is unknown. In this study, we characterized the development and function of CD4(+)CD25(+)Foxp3(+) and CD8(+)CD44(high)CD122(+) Treg lineages in RasGRP1(-/-) mice. Despite impaired CD4 Treg cell development in the thymus, the periphery of RasGRP1(-/-) mice contained significantly increased frequencies of CD4(+)Foxp3(+) Treg cells that possessed a more activated cell surface phenotype. Furthermore, on a per cell basis, CD4(+)Foxp3(+) Treg cells from mutant mice are more suppressive than their wild-type counterparts. Our data also suggest that the lymphopenic environment in the mutant mice plays a dominant role of favored peripheral development of CD4 Treg cells. These studies suggest that whereas RasGRP1 is crucial for the intrathymic development of CD4 Treg cells, it is not required for their peripheral expansion and function. By contrast to CD4(+)CD25(+)Foxp3(+) T cells, intrathymic development of CD8(+)CD44(high)CD122(+) Treg cells is unaffected by the RasGRP1(-/-) mutation. Moreover, RasGRP1(-/-) mice contained greater numbers of CD8(+)CD44(high)CD122(+) T cells in the spleen, relative to wild-type mice. Activated CD8 Treg cells from RasGRP1(-/-) mice retained their ability to synthesize IL-10 and suppress the proliferation of wild-type CD8(+)CD122(-) T cells, albeit at a much lower efficiency than wild-type CD8 Treg cells.  相似文献   

18.
Dendritic cells (DC) play a central role in immune responses by presenting antigenic peptides to CD4+ T cells through MHCII molecules. Here, we demonstrate a TRIF-GEFH1-RhoB pathway is involved in MHCII surface expression on DC. We show the TRIF (TIR domain-containing adapter inducing IFNbeta)- but not the myeloid differentiation factor 88 (MyD88)-dependent pathway of lipopolysaccharide (LPS)-signaling in DC is crucial for the MHCII surface expression, followed by CD4+ T-cell activation. LPS increased the activity of RhoB, but not of RhoA, Cdc42, or Rac1/2 in a manor dependent on LPS-TRIF- but not LPS-Myd88-signaling. RhoB colocalized with MHCII+ lysosomes in DC. A dominant-negative (DN) form of RhoB (DN-RhoB) or RhoB's RNAi in DC inhibited the LPS-induced MHCII surface expression. Moreover, we found GEFH1 associated with RhoB, and DN-GEFH1 or GEFH1's RNAi suppressed the LPS-mediated RhoB activation and MHCII surface expression. DN-RhoB attenuated the DC's CD4+ T-cell stimulatory activity. Thus, our results provide a molecular mechanism relating how the MHCII surface expression is regulated during the maturation stage of DC. The activation of GEFH1-RhoB through the TRIF-dependent pathway of LPS in DC might be a critical target for controlling the activation of CD4+ T cells.  相似文献   

19.
T cell activation requires co-engagement of the TCR with accessory and costimulatory molecules. However, the exact mechanism of costimulatory function is unknown. Mice lacking CD2 or CD28 show only mild deficits, demonstrating that neither protein is essential for T cell activation. In this paper we have generated mice lacking both CD2 and CD28. T cells from the double-deficient mice have a profound defect in activation by soluble anti-CD3 Ab and Ag, yet remain responsive to immobilized anti-CD3. This suggests that CD2 and CD28 may function together to facilitate interactions of the T cell and APC, allowing for efficient signal transduction through the TCR.  相似文献   

20.
Dendritic cells (DC) are important APCs that play a key role in the induction of an immune response. The signaling molecules that govern early events in DC activation are not well understood. We therefore investigated whether DC express carcinoembryonic Ag-related cell adhesion molecule 1 (CEACAM1, also known as BGP or CD66a), a well-characterized signal-regulating cell-cell adhesion molecule that is expressed on granulocytes, monocytes, and activated T cells and B cells. We found that murine DC express in vitro as well as in vivo both major isoforms of CEACAM1, CEACAM1-L (having a long cytoplasmic domain with immunoreceptor tyrosine-based inhibitory motifs) and CEACAM1-S (having a short cytoplasmic domain lacking phosphorylatable tyrosine residues). Ligation of surface-expressed CEACAM1 on DC with the specific mAb AgB10 triggered release of the chemokines macrophage inflammatory protein 1alpha, macrophage inflammatory protein 2, and monocyte chemoattractant protein 1 and induced migration of granulocytes, monocytes, T cells, and immature DC. Furthermore, the surface expression of the costimulatory molecules CD40, CD54, CD80, and CD86 was increased, indicating that CEACAM1-induced signaling regulates early maturation and activation of dendritic cells. In addition, signaling via CEACAM1 induced release of the cytokines IL-6, IL-12 p40, and IL-12 p70 and facilitated priming of naive MHC II-restricted CD4(+) T cells with a Th1-like effector phenotype. Hence, our results show that CEACAM1 is a signal-transducing receptor that can regulate early maturation and activation of DC, thereby facilitating priming and polarization of T cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号