首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A procedure was selected for the simultaneous extraction and purification of abscisic acid (ABA) and indoleacetic acid (IAA). Unnecessary steps were eliminated and an accumulation of aqueous phase was avoided. The superior performance of diethyl ether (compared to ethyl acetate) for bulk purification and the superior resolution provided by 250 millimeter columns packed with 5-micrometer spherical particles of strong anion exchanger and octadecylsilane (C18) greatly facilitated the purification of samples. A fixed-wavelength (254 nanometer) ultraviolet detector and a fluorescence detector connected in series on a high performance liquid chromatograph permitted nondestructive monitoring and measurement of ABA and IAA. Derivatization was not necessary for chromatography or for detection. Isocratic elution with simple mobile phases gave sharp peaks. A few simple precautions minimized losses. Recoveries through the entire procedure averaged about 75% for ABA and about 50% for IAA. Purified ABA and IAA fractions were usually free of interfering contaminants. Identities were confirmed by gas chromatography-mass spectrometry.  相似文献   

2.
A method for the purification and subsequent quantification of indole-3-acetic acid (IAA) and abscisic acid (ABA) from the same sample of highly pigmented green tissue has been developed and tested in several species. Solvent partitioning and high-performance liquid chromatography (HPLC) were used for purification. Separate fractions from HPLC-containing IAA and ABA were analyzed by gas chromatography-mass spectrometry (GC-MS) using selected-ion monitoring (SIM). Isotope dilution was used to correct for incomplete recovery. Results are presented for tissue samples from 11 different species and five different plant organs. The method can be completed, for both IAA and ABA, for two samples in 8 h by an experienced technician. IAA and ABA were the dominant peaks in the gas chromatograms from HPLC-purified samples, and amounts of about 1 ng can be detected. The extract was partitioned into an aqueous solution of pH 9.5, a step suspected of ester hydrolysis. By analyzing samples known to contain esters of IAA and ABA and comparing the results with methods which excluded this step, we have shown that this partitioning does not result in erroneously high values due to ester hydrolysis. A direct comparison of the method with one in which HPLC was not employed indicates that our method measures IAA and ABA in samples in which these compounds are not detectable when HPLC is omitted. Thus, HPLC is an essential purification step for samples where contaminating compounds co-purify with IAA and ABA through the solvent-partitioning steps.  相似文献   

3.
Introduction  – Jasmonic acid (JA), abscisic acid (ABA) and indole‐3‐acetic acid (IAA) are important plant hormones. Plant hormones are difficult to analyse because they occur in small concentrations and other substances in the plant interfere with their detection. Objective  – To develop a new, inexpensive procedure for the rapid extraction and purification of IAA, ABA and JA from various plant species. Methodology  – Samples were prepared by extraction of plant tissues with methanol and ethyl acetate. Then the extracts were further purified and enriched with C18 cartridges. The final extracts were derivatised with diazomethane and then measured by GC‐MS. The results of the new methodology were compared with those of the Creelman and Mullet procedure. Results  – Sequential elution of the assimilates from the C18 cartridges revealed that IAA and ABA eluted in 40% methanol, while JA subsequently eluted in 60% methanol. The new plant hormone extraction and purification procedure produced results that were comparable to those obtained with the Creelman and Mullet's procedure. This new procedure requires only 0.5 g leaf samples to quantify these compounds with high reliability and can simultaneously determine the concentrations of the three plant hormones. Conclusion  – A simple, inexpensive method was developed for determining endogenous IAA, ABA and JA concentrations in plant tissue. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Methodology for the ready analysis of abscisic acid (ABA) in plant tissues based upon application of high-performance liquid chromatography (hplc) has been developed. The method involves isolation of the acid fraction, preparation of the methyl esters with diazomethane, and hplc using a combination procedure of two columns: (1) reversed-phase C18, and (2) porous silica in the absorption mode. Only isocratic elution is required so the method is readily adaptable to laboratories having limited hplc capability. Measured recoveries are 70% and the use of an internal standard allows quantification of ABA levels to 1 ng/g of tissue with minimum absolute detectable levels of ABA of 20 ng. The method is illustrated by analysis of ABA concentration in potato tubers at various times postcutting.  相似文献   

5.
The seasonal change of free abscisic acid (ABA) and indole-3-acetic acid (IAA) and their relationship with the cambial activity in Eucommia ulmoides trees were investigated by ABA and IAA immunolocalization using primary polyclonal and rhodamine-red fluorescing secondary antibodies, ABA and IAA quantification using high performance liquid chromatography (HPLC), and systematic monitoring of vascular cell layers production. ABA and IAA clearly displayed opposite annual distribution patterns. In the active period (AP), both immunolocalization and HPLC detected an abrupt decrease of ABA, reaching its lowest level in the summer. During dormancy, ABA started increasing in the first quiescence (Q1) (autumn), peaked in the rest (winter), and gradually decreased from the onset of the second quiescence (Q2) (the end of winter). IAA showed a reverse pattern to that of ABA: it sharply increased in AP, but noticeably decreased from the commencement of Q1. Longitudinally, the ABA distribution increased apico-basally, contrasting with IAA. Laterally, most of the ABA was located in mature vascular tissues, whereas the IAA essentially occurred in the cambial region. The concomitant IAA-ABA distribution and seasonal changes in vascular tissues greatly correlated with xylem and phloem cell production, and late wood differentiation and maturation. Interestingly, the application of exogenous ABA to quiescent E. ulmoides branches, in a water-culture system, inhibited external IAA action on cambial activity reactivation. These results suggest that, in E. ulmoides, ABA and IAA might probably interact in the cambial region. The annual cambial activity could be influenced by an IAA:ABA ratio; and ABA might play a key role in vascular cambium dormancy in higher plants. The relationship between hormonal changes and the (particular) annual life cycle of E. ulmoides is also discussed.  相似文献   

6.
A procedure for the combined purification of both indolyl-3-aceticacid (IAA) and abscisic acid (ABA) is presented. The procedureis designed to obtain accurate quantifications with minimallosses and within a relatively short time. The prepurification procedure makes optimal use of C18 prepackedcartridges. A purification step by high pressure liquid chromatographyis included and discussed. The quantification of IAA is performed with the 2-methylindolepyroneassay (2-MIP-assay). An alternative way of correcting for aspecificfluorescence is proposed and tested. ABA is analysed by GLC-ECD. The accuracy of the overall method is tested using differentapproaches for both ABA and IAA. Using this method, extractionby homogenization is compared to extraction by diffusion withouthomogenization. Key words: IAA, ABA, Purification  相似文献   

7.
A method for quantifying indole-3-acetic acid (IAA) and its conjugates with the six amino acids, Ala, -Asp, -Ile, -Glu, -Phe and -Val, in rice (Oryza sativa) by using high-performance liquid chromatography coupled with electrospray ionization and tandem mass spectrometry (HPLC-ESI-MS/MS) is described. Samples from the rice plant or callus were treated with 80% acetone in water containing 2.5 mM diethyl dithiocarbamate. Each extract was partially purified in C18 cartridge column for solid-phase extraction (SPE) and subjected to HPLC-ESI-MS/MS without converting the product. The detection limit was 3.8 fmol for IAA, and 0.4-2.9 fmol for the IAA amino acid conjugates. The method was applied to the analysis of IAA and its conjugates in rice seedlings, dehulled rice and calli, using 20-100 mg tissue samples.  相似文献   

8.
A radioimmunoassay for (+)-abscisic acid (ABA) was developed and applied to the analysis of free ABA in extracts of apple (Malus pumila Mill.) and sweet pepper (Capsicum annuum L.) leaves at various stages during extract purification. Conjugates of ABA, were quantified after alkaline hydrolysis. The validity of the radioimmunoassay was tested by comparison of immunoassay estimates of ABA at different levels of extract purity with high-pressure liquid chromatography (HPLC) and combined gas chromatography-mass spectrometry. The antiserum, raised against (+)-ABA, was almost equally sensitive to (-)-ABA. Serum cross-reactivity with the methyl ester of ABA was 160% and with the glycosyl ester of ABA was 34%. Cross-reactivity with protein-ABA conjugates was very slight for C4-conjugated keyholelimpet haemocyanin, but about 1000% for C1-conjugated alkaline phosphatase. Other compounds tested showed extremely low or undetectable cross-reactivities. Further evidence for the specificity of the assay came from the agreement between the results using different assay methods for both apple and pepper extracts, and from the observation that the only zone of immunoreactivity on HPLC elution profiles corresponded with authentic (+)-ABA. The use of polyvinylpyrrolidone in the assay minimised interference by other substances in plant extracts. In pepper, free ABA levels increased rapidly during water stress and recovered to pre-stress levels within two days after rewatering. Levels of ABA conjugates were significantly lowr than free ABA in unstressed plants, and also increased rapidly with stress, although not to the same extent as free ABA, and did not recover as rapidly as did free ABA. In apple, levels of free ABA and of ABA conjugates both increased more than twofold over a two-week period of water stress. In contrast to pepper, however, immunoreactivity of the conjugate fraction was increased by hydrolysis, indicating that different ABA conjugates predominate in the two species.Abbreviations ABA abscisic acid - GC-MS combined gas chromatography-mass spectrometry - HPLC high-pressure liquid chromatography - Me-ABA methyl ester of ABA - PVP polyvinylpyrrolidone - RIA radioimmunoassay  相似文献   

9.
B. H. Brown  S. J. Neill  R. Horgan 《Planta》1986,167(3):421-423
Deuterium-labelled indole-3-acetic acid, abscisic acid and phthalimido-1-aminocyclopropane-1-carboxylic acid were found to separate from the unlabelled compounds on reverse-phase high-performance liquid chromatography (HPLC). A similar separation was found for the methyl esters of these compounds on normal-phase HPLC. Such separations may lead to substantial errors when these compounds are used as internal standards for quantitation by gas chromatography-mass spectrometry/selective ion detection, unless the complete chromatographic peaks are collected.Abbreviations ABA abscisic acid - ACC 1-aminocyclopropane-1-carboxylic acid - IAA indole-3-acetic acid - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - Pht-ACC phthalimido-ACC - SIM selected ion monitoring  相似文献   

10.
A highly selective and sensitive method for the simultaneous analysis of several plant hormones and their metabolites is described. The method combines high-performance liquid chromatography (HPLC) with positive and negative electrospray ionization-tandem mass spectrometry (ESI-MS/MS) to quantify a broad range of chemically and structurally diverse compounds. The addition of deuterium-labeled analogs for these compounds prior to sample extraction permits accurate quantification by multiple reaction monitoring (MRM). Endogenous levels of abscisic acid (ABA), abscisic acid glucose ester (ABA-GE), 7'-hydroxy-abscisic acid (7'-OH-ABA), phaseic acid (PA), dihydrophaseic acid (DPA), indole-3-acetic acid (IAA), indole-3-aspartate (IAAsp), zeatin (Z), zeatin riboside (ZR), isopentenyladenine (2iP), isopentenyladenosine (IPA), and gibberellins (GA)1, GA3, GA4, and GA7 were determined simultaneously in a single run. Detection limits ranged from 0.682 fmol for Z to 1.53 pmol for ABA. The method was applied to the analysis of plant hormones and hormonal metabolites associated with seed dormancy and germination in lettuce (Lactuca sativa L. cv. Grand Rapids), using extracts from only 50 to 100 mg DW of seed. Thermodormancy was induced by incubating seeds at 33 degrees C instead of 23 degrees C. Germinating seeds transiently accumulated high levels of ABA-GE. In contrast, thermodormant seeds transiently accumulated high levels of DPA after 7 days at 33 degrees C. GA1 and GA3 were detected during germination, and levels of GA1 increased during early post-germinative growth. After several days of incubation, thermodormant seeds exhibited a striking transient accumulation of IAA, which did not occur in seeds germinating at 23 degrees C. We conclude that hormone metabolism in thermodormant seeds is surprisingly active and is significantly different from that of germinating seeds.  相似文献   

11.
Abstract. The influence of indol-3yl-acetic acid (IAA) and abscisic acid (ABA) on the capacities of the cytoplasm and vacuole and their effects on unidirectional sodium fluxes across the plasmalemma and the tonoplast of aged red beet storage tissue was investigated. After loading the tissue in a labelled NaCl solution the efflux of radio-activity was measured in unlabelled NaCl. By means of compartmental analysis the capacities and fluxes were determined and compared with those obtained after loading and elution in the presence of IAA or ABA.
It was established that both IAA and ABA affect sodium transport across the principal cell membranes. Both hormones inhibited the efflux across the plasma-lemma, possibly by affecting a Na+ for H+ exchanging system. Efflux across the tonoplast was stimulated by IAA and influx across the same membrane was enhanced by ABA. It was suggested that IAA stimulated a proton pump at this level while the influence of ABA remained difficult to explain.  相似文献   

12.
Indole-3-acetic acid (IAA) and abscisic acid (ABA) were identified by combined gas chromatography-mass spectrometry (GCMS) in fractions obtained by diffusion and extraction from bark peelings of Sitka spruce. A procedure is described for the quantitative analysis of IAA and ABA levels in the same extract using the GCMS technique of single-ion current monitoring. This procedure was used to measure the diffusible, free, and bound fractions of IAA and ABA in the cambial region of Sitka spruce throughout one year; the range in concentration for these fractions was 0.06–0.30, 0.46–3.85, and 0.04–0.20 g/g oven-dry weight, respectively, for IAA, and 0–0.08, 0.03–2.21, and 0.13–0.66 g/g oven-dry weight, respectively, for ABA. Movement in the cambial region was found to be polar for endogenous IAA and nonpolar for endogenous ABA. Recoveries of [14C]IAA internal standards showed that 73–99.5% of the IAA was lost during purification, and that there could be up to 5-fold differences in recovery between purifications, indicating that IAA loss shold be measured in quantitative analyses.Abbreviations ABA aoscisic acid - GCMS combined gas chromatography-mass spectrometry - IAA indole-3-acetic acid - PVP polyvinylpyrrolidone - SICM single ion current monitoring - TMS trimethylsilyl  相似文献   

13.
A three-phase partitioning method to separate indolyl-3-acetic acid (IAA) and abscisic acid (ABA) from a crude plant extract was developed and evaluated. The aqueous phase at pH 2.7 of a methanolic plant extract constituted the 1st phase, from which IAA and ABA were transferred via diethyl ether, the 2nd phase, to a 3rd phase consisting of an alkaline buffer, enclosed in a dialysis tube. Partitioning of the free forms of the two hormones among the three phases in one container were carried out simultaneously and efficiently. The method also proved to be satisfactory when used as a combined step for both extraction and partitioning, at which the plant homogenate in buffer at pH 2.7 constituted the 1st phase. The content of IAA and ABA in kernels of Zea mays and in hypocotyls of Beta vulgaris were tested with the new method. The method presented is reliable and time-saving, and the demand for chemicals is less than for most of the conventional procedures used.  相似文献   

14.
A simple, rapid and specific method for analysis of mefenamic acid (I) in serum by a sensitive high-performance liquid chromatography is described. Only 70 microl of serum and a little sample work-up is required. A simple procedure of extraction by dichloromethane followed by evaporation to dryness under gentle stream of nitrogen and dissolving the dried residue in mobile phase was used. The mefenamic acid peak was separated from endogenous peaks on a C(8) column by a mobile phase of acetonitrile-water (50:50, v/v, pH 3). Mefenamic acid and internal standard (IS) (diclofenac) were eluted at 7.4 and 5.4 min, respectively. The limit of quantitation of mefenamic acid in serum was 25 ng/ml at 280 nm. The method was linear over the range of 25-2000 ng/ml with r(2) of 0.998. Mean recovery for mefenamic acid was 110%.  相似文献   

15.
Osmotic stress and endogenous hormone levels may have a role in shoot organogenesis, but a systematic study has not yet to investigate the links. We evaluated the changes of the endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA) levels in rice (Oryza sativa L. cv. Tainan 5) callus during shoot organogenesis induced by exogenous plant growth regulator treatments or under osmotic stress. Non-regenerable callus showed low levels of endogenous ABA and IAA, with no fluctuation in level during the period evaluated. The addition of 100 μM ABA or 2 mM anthranilic acid (IAA precursor) into Murashige and Skoog basal induction medium containing 10 μM 2,4-D enhanced the regeneration frequency slightly, to 5 and 35%, respectively, and their total cellular ABA or IAA levels were increased significantly, correspondingly to the treatments. However, the regeneration frequency was greatly increased to 80% after treatment with 0.6 M sorbitol or 100 μM ABA and 2 mM anthranilic acid combined. Both treatments produced high levels of total cellular ABA and IAA at the callus stage, which was quickly decreased on the first day after transfer to regeneration medium. Thus, osmotic stress-induced simultaneous accumulation of endogenous ABA and IAA is involved in shoot regeneration in rice callus.  相似文献   

16.
A fast, simple, and a reliable high-performance liquid chromatography linked with electrochemical detector (HPLC-ECD) method for the assessment of lipoic acid (LA) and dihydrolipoic acid (DHLA) in plasma was developed using naproxen sodium as an internal standard (IS) and validated according to standard guidelines. Extraction of both analytes and IS from plasma (250 μl) was carried out with a single step liquid-liquid extraction applying dichloromethane. The separated organic layer was dried under stream of nitrogen at 40°C and the residue was reconstituted with the mobile phase. Complete separation of both compounds and IS at 30°C on Discovery HS C18 RP column (250 mm × 4.6 mm, 5 μm) was achieved in 9 min using acetonitrile: 0.05 M phosphate buffer (pH 2.4 adjusted with phosphoric acid) (52:48, v/v) as a mobile phase pumped at flow rate of 1.5 ml min(-1) using electrochemical detector in DC mode at the detector potential of 1.0 V. The limit of detection and limit of quantification for lipoic acid were 500 pg/ml and 3 ng/ml, and for dihydrolipoic acid were 3 ng/ml and 10 ng/ml, respectively. The absolute recoveries of lipoic acid and dihydrolipoic acid determined on three nominal concentrations were in the range of 93.40-97.06, and 93.00-97.10, respectively. Similarly coefficient of variations (% CV) for both intra-day and inter-day were between 0.829 and 3.097% for lipoic acid and between 1.620 and 5.681% for dihydrolipoic acid, respectively. This validated method was applied for the analysis of lipoic acid/dihydrolipoic acid in the plasma of human volunteers and will be used for the quantification of these compounds in patients with oxidative stress induced pathologies.  相似文献   

17.
Ursolic acid is a hydroxy pentacyclic triterpene, which proved to have sedation, anti-inflammatory, antibacterial, antiulcer and anti-cancer activities. An ultra-performance liquid chromatography/tandem mass spectrometry (UPLC/MS/MS) method with high selectivity, sensitivity and throughput has been established and validated for quantitation of total ursolic acid in human plasma. Plasma samples were pretreated by liquid-liquid extraction with ethyl acetate and were chromatographed by an ACQUITY UPLC BEH C(8) column (100 mm×2.1 mm, I.D., 1.7 μm) using mobile phase consisting of acetonitrile and 10 mM ammonium formate (90:10, v/v) at 0.2 mL/min. The duration of chromatography analysis was 3 min. The multiple reaction monitoring (MRM) was performed at m/z 455.1→455.0 for ursolic acid and m/z 469.3→425.2 for glycyrrhetinic acid (internal standard, IS) in the negative ion mode with electrospray ionization (ESI) source. The assay showed good linearity over the range of 10-5000 ng/mL for ursolic acid in human plasma with a lower limit of quantitation of 10 ng/mL. The mean extraction recovery was 73.2±4.5% and the matrix ion suppression ranged from -11.4% to -5.6%. The intra- and inter-day precisions were less than 7.0% and 7.2%, respectively, and the accuracy was within ±2.0%. Ursolic acid was stable during the analysis and the storage period. The validated method has been successfully applied to a pharmacokinetic study after intravenous infusion of Ursolic Acid Nano-liposomes to healthy volunteers.  相似文献   

18.
M. Schurzmann  V. Hild 《Planta》1980,150(1):32-36
The effect of externally applied indoleacetic acid (IAA) and abscisic acid (ABA) on the growth of roots of Zea mays L. was measured. Donor blocks of agar with IAA or ABA were placed laterally on the roots and root curvature was measured. When IAA was applied to vertical roots, a curvature directed toward the donor block was observed. This curvature corresponded to a growth inhibition at the side of the root where the donor was applied. When IAA was applied to horizontal roots from the upper side, normal geotropic downward bending was delayed or totally inhibited. The extent of retardation and the inhibition of curvature were found to depend on the concentration of IAA in the donor block. ABA neither induced curvature in vertical roots nor inhibited geotropic curvature in horizontal roots; thus the growth of roots was not inhibited by ABA. However, when, instead of donor blocks, root tips or coleoptile tips were placed onto vertical roots, a curvature of the roots was observed.Abbreviations ABA abscisic acid - IAA 3-indoleacetic acid  相似文献   

19.
Quantitative determinations by gas chromatography-mass spectrometry ofindole-3-acetic acid (IAA) and abscisic acid (ABA) in growing leaves ofColeusblumei plants show parallel declines in leaf concentrations of bothhormones,except in leaf number 3 (about three-fourths of full size) where IAA level wasthe lowest of those measured. Expansion of the most recently unfurled leaf tofull size serves, in effect, to dilute both IAA and ABA about 1.7 to 1.Althoughabsolute levels of leaf IAA varied as much as an order of magnitude from onebatch of plants to another, ABA levels were proportional to the IAA level withan overall correlation coefficient of 0.91. Evidence, both correlative andcausal, for the determination of ABA status by IAA—and of IAA status byABA—in leaves and other developing organs is summarized.  相似文献   

20.
Indole-3-acetic acid (IAA) and abscisic acid (ABA) were converted in to pentafluorobenzyl esters by α-bromo-2, 3, 4, 5, 6-pentafluorotoluene at 55℃. The derivatization took about 90 minutes. The two esters generated were able to be simultaneously determined with electron-capture gas chromatography. The method is simple and sensitive. The minimal test does: 10-14g for IAA and 10-13g for ABA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号