首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrolysis of GTP is known to accompany microtubule assembly. Here we show that hydrolysis of GTP is also associated with the formation of linear oligomers of tubulin, which are precursors (prenuclei) in microtubule assembly. The hydrolysis of GTP on these linear oligomers inhibits the lateral association of GTP-tubulin that leads to the formation of a bidimensional lattice. Therefore GTP hydrolysis interferes with the nucleation of microtubules. Linear oligomers are also formed in mixtures of GTP-tubulin and GDP-tubulin. The hydrolysis of GTP associated with heterologous interactions between GTP-tubulin and GDP-tubulin in the cooligomer takes place at a threefold faster rate than upon homologous interactions between GTP-tubulins. The implication of these results in a model of vectorial GTP hydrolysis in microtubule assembly is discussed.  相似文献   

2.
P Barbier  C Gregoire  F Devred  M Sarrazin  V Peyrot 《Biochemistry》2001,40(45):13510-13519
Cryptophycin 52 (C52) is a new synthetic compound of the cryptophycin family of antitumor agents that is currently undergoing clinical evaluation for cancer chemotherapy. The cryptophycin class of compounds acts on microtubules. This report details the mechanism by which C52 substoichiometrically inhibits tubulin self-assembly into microtubules. The inhibition data were analyzed through a model described by Perez-Ramirez [Perez-Ramirez, B., Andreu, J. M., Gorbunoff, M. J., and Timasheff, S. N. (1996) Biochemistry 35, 3277-3285]. We thereby determined the values of the apparent binding constant of the tubulin-C52 complex to the end of a growing microtubule (K(i)) and the apparent binding constant of C52 to tubulin (K(b)). The binding of C52 depended on tubulin concentration, and binding induced changes in the sedimentation pattern of tubulin, which indicates that C52 induces the self-association of tubulin and tubulin aggregates other than microtubules. Using analytical ultracentrifugation and electron microscopy, we show that C52 induces tubulin to form ring-shaped oligomers (single rings). We also show that C52 inhibits the formation of double rings from either GTP- or GDP-tubulin. In addition, the advances made by electron crystallography in understanding the structure of the tubulin and the microtubule allowed us to visualize the putative binding site of C52 and to reconstruct C52-induced ring oligomers by molecular modeling.  相似文献   

3.
A growing body of evidence points to an association of prion protein (PrP) with microtubular cytoskeleton. Recently, direct binding of PrP to tubulin has also been found. In this work, using standard light scattering measurements, sedimentation experiments, and electron microscopy, we show for the first time the effect of a direct interaction between these proteins on tubulin polymerization. We demonstrate that full-length recombinant PrP induces a rapid increase in the turbidity of tubulin diluted below the critical concentration for microtubule assembly. This effect requires magnesium ions and is weakened by NaCl. Moreover, the PrP-induced light scattering structures of tubulin are cold-stable. In preparations of diluted tubulin incubated with PrP, electron microscopy revealed the presence of approximately 50 nm disc-shaped structures not reported so far. These unique tubulin oligomers may form large aggregates. The effect of PrP is more pronounced under the conditions promoting microtubule formation. In these tubulin samples, PrP induces formation of the above oligomers associated with short protofilaments and sheets of protofilaments into aggregates. Noticeably, this is accompanied by a significant reduction of the number and length of microtubules. Hence, we postulate that prion protein may act as an inhibitor of microtubule assembly by inducing formation of stable tubulin oligomers.  相似文献   

4.
Microtubule growth proceeds through the endwise addition of nucleotide-bound tubulin dimers. The microtubule wall is composed of GDP-tubulin subunits, which are thought to come exclusively from the incorporation of GTP-tubulin complexes at microtubule ends followed by GTP hydrolysis within the polymer. The possibility of a direct GDP-tubulin incorporation into growing polymers is regarded as hardly compatible with recent structural data. Here, we have examined GTP-tubulin and GDP-tubulin incorporation into polymerizing microtubules using a minimal assembly system comprised of nucleotide-bound tubulin dimers, in the absence of free nucleotide. We find that GDP-tubulin complexes can efficiently co-polymerize with GTP-tubulin complexes during microtubule assembly. GDP-tubulin incorporation into microtubules occurs with similar efficiency during bulk microtubule assembly as during microtubule growth from seeds or centrosomes. Microtubules formed from GTP-tubulin/GDP-tubulin mixtures display altered microtubule dynamics, in particular a decreased shrinkage rate, apparently due to intrinsic modifications of the polymer disassembly properties. Thus, although microtubules polymerized from GTP-tubulin/GDP-tubulin mixtures or from homogeneous GTP-tubulin solutions are both composed of GDP-tubulin subunits, they have different dynamic properties, and this may reveal a novel form of microtubule “structural plasticity.”  相似文献   

5.
The kinetic pathway of microtubule depolymerization at 0 degrees C has been examined. Microtubules made of MAP-containing and MAP-free tubulins were depolymerized at 0 degree C in the presence of [3H]GDP or [3H]GTP or of trace amounts of 125I dimeric tubulin. The products of depolymerization were separated on a column, their structures were identified by electron microscopy, and the time course of incorporation of 3H or 125I labels in the different components of the system was determined. Two predominant assembly states of tubulin found in the nonmicrotubule state were alpha-beta dimers and double rings. Kinetic data indicate that ring formation from disassembling microtubules does not occur by direct coiling of protofilaments as previously thought, but disassembling GDP subunits are in very rapid equilibrium with curved oligomers that are kinetic intermediates in the isodesmic assembly of GDP-tubulin. The formation of oligomers and rings from dimers, at concentrations as low as 10 microM, is much faster than nucleotide exchange on alpha-beta-tubulin. Disassembly of double rings, in contrast, is slower than nucleotide exchange on alpha-beta-tubulin, by 1 order of magnitude in the absence of MAPs and 2 orders of magnitude in the presence of MAPs. These results support the model proposed previously to explain spontaneous oscillations in microtubule assembly. They are consistent with the existence of an equilibrium between two conformations of tubulin, "straight", i.e., microtubule forming, and "curved", i.e., ring forming, under the allosteric control of bound nucleotide. The straight conformation requires the presence of two ionizable hydroxyls on the gamma-phosphate in GTP or GDP-Pi.  相似文献   

6.
Chicken erythrocyte tubulin containing a unique beta tubulin variant polymerizes with greater efficiency (lower critical concentration) but at a slower rate than chicken brain tubulin. In a previous study we demonstrated that the low net rate of assembly is partly due to the presence of large oligomers and rings which reduce the initial rate of subunit elongation on microtubule seeds (Murphy, D.B., and Wallis, K.T. (1985) J. Biol. Chem. 260, 12293-12301). In this study we show that erythrocyte tubulin oligomers also retard the rate of microtubule nucleation and the net rate of self-assembly. The inhibitory effect is most likely to be due to the increased stability of erythrocyte tubulin oligomers, including a novel polymer of coiled rings that forms during the rapid phase of microtubule polymerization. The slow rate of dissociation of rings and coils into dimers and small oligomers appears to limit both the nucleation and elongation steps in the self-assembly of erythrocyte microtubules.  相似文献   

7.
BACKGROUND: CLIP-170 is a microtubule binding protein specifically located at microtubule plus ends, where it modulates their dynamic properties and their interactions with intracellular organelles. The mechanism by which CLIP-170 is targeted to microtubule ends remains unclear today, as well as its precise effect on microtubule dynamics. RESULTS: We used the N-terminal part of CLIP-170 (named H2), which contains the microtubule binding domains, to investigate how it modulates in vitro microtubule dynamics and structure. We found that H2 primarily promoted rescues (transitions from shrinkage to growth) of microtubules nucleated from pure tubulin and isolated centrosomes, and stimulated microtubule nucleation. Electron cryomicroscopy revealed that H2 induced the formation of tubulin rings in solution and curved oligomers at the extremities of microtubules in assembly conditions. CONCLUSIONS: These results suggest that CLIP-170 targets specifically at microtubule plus ends by copolymerizing with tubulin and modulates microtubule nucleation, polymerization, and rescues by the same basic mechanism with tubulin oligomers as intermediates.  相似文献   

8.
Incorporation of GDP-tubulin during elongation of microtubules in vitro   总被引:1,自引:0,他引:1  
Removal of GDP from tubulin E-site is not obligatory for the in vitro assembly of microtubule protein in 0.5 mM GMPPCP. This assembly, which is significantly enhanced by glycerol, produces microtubules of normal morphology and with normal composition of microtubule-associated proteins (MAPs). [3H]-GDP initially present at the E-site is shown to be incorporated directly into microtubules during assembly; this incorporation, maximally 60% of the assembled polymer, is dependent upon MAPs. These results are consistent with oligomeric species composed principally of GDP-tubulin plus MAPs, being incorporated directly into microtubules. The finding that stoichiometric GTP-tubulin formation is not an essential prerequisite for microtubule assembly may have important implications for the energetics of microtubule formation.  相似文献   

9.
The molecular aspects of the microtubule system is a research area that has developed very rapidly during the past decade. Research on the assembly mechanisms and chemistry of tubulin and the molecular biology of microtubules have advanced our understanding of microtubule formation and its regulation. The emerging view of tubulin is of a macromolecule containing spatially discrete sequences that constitute functionally different domains with respect to self-association, interactions with microtubule associated proteins (MAPs) and specific ligands. Recent studies point to the role of the carboxyl-terminal moiety of tubulin subunits in regulating its assembly into microtubules. These investigations combined with further studies on the spatial relationships between tubulin domains should provide new insights into the detailed structural basis of microtubule assembly.  相似文献   

10.
Interactions of antimitotic peptides and depsipeptides with tubulin   总被引:1,自引:0,他引:1  
Hamel E 《Biopolymers》2002,66(3):142-160
Tubulin is the target for an ever increasing number of structurally unusual peptides and depsipeptides isolated from a wide range of organisms. Since tubulin is the subunit protein of microtubules, the compounds are usually potently toxic to mammalian cells. Without exception, these (depsi)peptides disrupt cellular microtubules and prevent spindle formation. This causes cells to accumulate at the G2/M phase of the cell cycle through inhibition of mitosis. In biochemical assays, the compounds inhibit microtubule assembly from tubulin and suppress microtubule dynamics at low concentrations. Most of the (depsi)peptides inhibit the binding of Catharanthus alkaloids to tubulin in a noncompetitive manner, GTP hydrolysis by tubulin, and nucleotide turnover at the exchangeable GTP site on beta-tubulin. In general, the (depsi)peptides induce the formation of tubulin oligomers of aberrant morphology. In all cases tubulin rings appear to be formed, but these rings differ in diameter, depending on the (depsi)peptide present during their formation.  相似文献   

11.
The stability of microtubules during the cell-cycle is regulated by a number of cellular factors, some of which stabilize microtubules and others that promote breakdown. XKCM1 is a kinesin-like protein that induces microtubule depolymerization and is required for mitotic spindle assembly. We have examined the binding and depolymerization effects of XKCM1 on different tubulin polymers in order to learn about its mechanism of action. Zinc-induced tubulin polymers, characterized by an anti-parallel protofilament arrangement, are depolymerized by XKCM1, indicating that this enzyme acts on a single protofilament. GDP-tubulin rings, which correspond to the low-energy state of tubulin, are stable only under conditions that inhibit XKCM1 depolymerizing activity, but can be stabilized by XKCM1 bound to AMPPNP. Tubulin polymers made of subtilisin-treated tubulin (lacking the tubulin C-terminal tail) are resistant to XKCM1-induced depolymerization, suggesting that the interaction of the acidic tail of tubulin with basic residues in XKCM1 unique to Kin I proteins is required for depolymerization.  相似文献   

12.
Several types of non-equilibrium phenomena have been observed in microtubule polymerization, including dynamic instability, assembly overshoot and oscillations. They can be interpreted in terms of interactions between tubulin subunits (= alpha, beta heterodimers), microtubules, and a third state, oligomers, which represent intermediates between microtubule disassembly and the regeneration of assembly-competent subunits by GTP. Here we examine the role of oligomers by varying conditions that stabilize or destabilize microtubules and/or oligomers. By varying their ratio one can drive tubulin assembly either into steady-state microtubules or oligomers. These regimens of assembly conditions are separated by a region where microtubules oscillate. The oscillations can be simulated by computer modelling, based on a reaction scheme involving the three states of tubulin and nucleotide exchange on tubulin subunits, but not on microtubules or oligomers.  相似文献   

13.
Baccatin III induces assembly of purified tubulin into long microtubules   总被引:1,自引:0,他引:1  
Chatterjee SK  Barron DM  Vos S  Bane S 《Biochemistry》2001,40(23):6964-6970
Baccatin III is widely considered to be an inactive derivative of Taxol. We have reexamined its effect on in vitro assembly of tubulin under a variety of conditions. We found baccatin III to be active in all circumstances in which Taxol is active: it assembled GTP-tubulin, GDP-tubulin, and microtubule protein into normal microtubules and stabilized these polymers against cold-induced disassembly. The effect of baccatin III on in vitro microtubule assembly was quantitatively assessed through determination of critical concentrations, which can be used to obtain the apparent equilibrium constants for the addition of tubulin subunits to growing microtubules. The apparent equilibrium constants for the growth reaction for baccatin III-induced GTP-tubulin and GDP-tubulin assembly measured at 37 degrees C were 4.2-4.6-fold less than those measured for Taxol-induced GTP-tubulin and GDP-tubulin assembly. These data indicate that the entire Taxol side chain contributes only about -1 kcal/mol to the apparent standard free energy of microtubule growth at 37 degrees C regardless of the nature of the E site nucleotide. These data also support the idea that the majority of the interactions between Taxol and tubulin that affect this equilibrium occur between the baccatin portion of the molecule and the binding site. We have also observed a structural difference in microtubules formed using baccatin III and Taxol. Baccatin III-induced microtubules were routinely much longer than those assembled by Taxol, even when very high concentrations of baccatin III were employed. One interpretation of these data is that baccatin III and Taxol differ in their abilities to nucleate GTP-tubulin. This difference in activity may have bearing on the large disparity in cytotoxicity of the two molecules.  相似文献   

14.
Phosphoproteins of the stathmin family interact with the alphabeta tubulin heterodimer (tubulin) and hence interfere with microtubule dynamics. The structure of the complex of GDP-tubulin with the stathmin-like domain of the neural protein RB3 reveals a head-to-tail assembly of two tubulins with a 91-residue RB3 alpha helix in which each copy of an internal duplicated sequence interacts with a different tubulin. As a result of the relative orientations adopted by tubulins and by their alpha and beta subunits, the tubulin:RB3 complex forms a curved structure. The RB3 helix thus most likely prevents incorporation of tubulin into microtubules by holding it in an assembly with a curvature very similar to that of the depolymerization products of microtubules.  相似文献   

15.
Microtubule binding and tubulin assembly promotion by a series of conformationally restricted paclitaxel (PTX) derivatives was investigated. In these derivatives, the C-4 acetate of the taxane is tethered to the C-3' phenyl at ortho and meta positions with different length linkers. The apparent affinity of these derivatives for GMPCPP-stabilized microtubules was assessed by a competition assay, and their influence on microtubule polymerization was evaluated by measuring the critical concentration of GDP-tubulin in the presence of the respective molecule. In general, taxane derivatives with higher apparent affinity for microtubules induced tubulin assembly more efficiently. Among the derivatives, molecules with the shortest tether display the strongest affinity for microtubules. These derivatives exhibited enhanced microtubule stabilization properties and efficiently induced GDP-tubulin assembly into microtubules at low temperature of 12 degrees C and in the absence of Mg2+ ions in 0.1 M PIPES. Based on molecular dynamics simulations, we propose that the enhanced ability to assemble microtubules by these taxane derivatives is linked to their ability to effectively shape the conformation of the M-loop of tubulin for cross-protofilament interaction.  相似文献   

16.
The structural transitions occurring during the assembly and disassembly of pig brain microtubule protein were investigated by time-resolved X-ray scattering using synchrotron radiation. The reactions were introduced by a slow temperature scan (2 deg.C/min) from 0 °C to 37 °C and back. Several structurally distinct states could be resolved during one cycle of assembly/disassembly. During the temperature rise, one observes four main phases: prenucleation events, microtubule nucleation, growth, and postassembly events.Heating from 0 °C to 22 °C results in a biphasic breakdown of rings and other aggregates, while the apparent mean diameter increases from 38 to 41 nm. Parallel time-resolved electron microscopic observations suggest that the initial solution contains several types of aggregates, mostly double concentric and single rings, but also rod-like particles, clusters of rings and other aggregates. All of these tend to break down with increasing temperature. Double concentric rings seem to dissociate into large and small single rings before both types of rings break down into protofilament fragments and tubulin subunits. From the breakdown products, associations of several protofilament fragments are formed, which are important for initiating microtubule nucleation. Assembly of nuclei begins around 22 °C. Microtubule elongation takes place between 25 and 30 °C. They grow mainly by addition of tubulin subunits but not via rings.During the reverse temperature scan, microtubules shorten by the release of subunits and/or small protofilament fragments from their ends. The degree of disassembly is strongly increased below 22 °C. Below about 10 °C rings are reformed, probably from the fragments, but their final number is much less than initially.Conditions that prevent microtubule nucleation such as GDP or Ca2+ also stabilize rings, even at 37 °C. Thus, rings are viewed as storage aggregates of tubulin and microtubule associated proteins, whose breakdown is a prerequisite for microtubule formation, and whose reformation is independent of microtubule breakdown.The midpoints of microtubule growth and breakdown differ by about 12 deg.C so that the system shows hysteresis-like behavior. It is dependent on microtubule formation and is not seen when the temperature is cycled below that required for nucleation. Thus, even during a slow temperature scan, microtubule assembly is kinetically limited by nucleation. By contrast, depolymerization proceeds close to equilibrium.The radius of gyration of the tubulin heterodimers is 3.1 nm. The weight average diameter of rings in cold solutions is 38 nm, that of microtubules is 24.5 nm.At radiation dose rates of about 100 rad/s. radiation damage is of minor importance, as judged by the criterion of polymerizability. Total doses of up to 500,000 rad can be applied.Some concepts of analyzing time-resolved X-ray scattering data are presented. They make use of the fact that the scattering intensities vary continuously both with scattering angle and time. Cross-correlation of different regions of the pattern, and comparison of their temperature derivatives, reveals structural transitions not seen by other techniques.  相似文献   

17.
In this paper we expand upon a previously reported observation of the effects of GDP on microtubule assembly. A ratio of GDP to GTP of ten (1 mm-GDP and 0.1 mm-GTP) is generally sufficient to completely block microtubule assembly, but only limited depolymerization is induced if GDP is added after assembly has reached a plateau in the presence of GTP. When added during polymerization, GDP arrests further elongation, and greater steady-state levels of assembly are obtained the later the time of addition of GDP. To explain this behavior we examined the rates of assembly and disassembly and the apparent critical concentration (C0) of tubulin in the presence of GDP. GDP-tubulin polymerizes very slowly as compared to GTP-tubulin, while depolymerization rates, as determined by dilution, are nearly identical in GTP and GDP. The C0 value calculated from the assembly and disassembly rates in GTP is within experimental error of the C0 value at steady-state determined directly. In the presence of GDP, however, the C0 value calculated from rate measurements is at least 60 times greater than that determined by equilibrium analysis. Our results indicate that the net assembly rate in GDP is not a valid measure of the reaction occurring at steady-state. A limited amount of depolymerization may occur upon addition of GDP to microtubules, and this appears to be due to a decrease in the fraction of protein able to participate in the polymerization reaction. The amount of tubulin “inactivated” by GDP is increased by the removal of microtubule-associated proteins. GDP-tubulin will stabilize existing microtubules, even when its polymerization cannot be demonstrated. These results are inconsistent with present models of microtubule assembly, and a new model involving co-operative interaction of microtubule-associated protein-tubulin oligomers at microtubule ends is proposed.  相似文献   

18.
Microtubule assembly from purified tubulin preparations involves both microtubule nucleation and elongation. Whereas elongation is well documented, microtubule nucleation remains poorly understood because of difficulties in isolating molecular intermediates between tubulin dimers and microtubules. Based on kinetic studies, we have previously proposed that the basic building blocks of microtubule nuclei are persistent tubulin oligomers, present at the onset of tubulin assembly. Here we have tested this model directly by isolating nucleation-competent cross-linked tubulin oligomers. We show that such oligomers are composed of 10-15 laterally associated tubulin dimers. In the presence of added free tubulin dimers, several oligomers combine to form microtubule nuclei competent for elongation. We provide evidence that these nuclei have heterogeneous structures, indicating unexpected flexibility in nucleation pathways. Our results suggest that microtubule nucleation in purified tubulin solution is mechanistically similar to that templated by gamma-tubulin ring complexes with the exception that in the absence of gamma-tubulin complexes the production of productive microtubule seeds from tubulin oligomers involves trial and error and a selection process.  相似文献   

19.
The effect of both antimitotic drugs and nucleotide analogues on the magnesium-induced self-association of purified tubulin into 42S double rings has been examined by sedimentation velocity. In the absence of magnesium, all complexes sedimented as the 5.8S species. The binding of colchicine to tubulin led to a small but consistent (-0.1 to -0.2 kcal/mol) enhancement in the self-association of tubulin alpha-beta dimers. In the absence of nucleotide at the exchangeable site, tubulin retained a weak ability (K2 = 7.5 x 10(3) M-1) to self-associate, which was unchanged by the addition of guanosine or GMP. Analogues with altered P-O-P bonds (GMPPCP, GMPPNP) did not support ring formation at the protein concentrations examined, although GMPPCP supported microtubule assembly. When the exchangeable site was occupied by nucleotides altered on the gamma-phosphate (GTP gamma S, GTP gamma F), rings were formed; tubulin-GTP gamma F formed rings to an extent slightly greater than did tubulin-GTP, and tubulin-GTP gamma S to about the same extent as tubulin-GDP. Both of these analogues are inhibitors of microtubule assembly. These results are consistent with a model [Melki, R., Carlier, M.-F., Pantaloni, D., & Timasheff, S. N. (1989) Biochemistry 28, 9143-9152] in which an equilibrium exists between straight (microtubule-forming) and curved (ring-forming) conformations of tubulin. Furthermore, the present results indicate that the "switch" which controls the nature of the final polymeric product via free energy linkages is the occupancy of the gamma-phosphate binding locus of the exchangeable site by a properly coordinated metal-nucleotide complex.  相似文献   

20.
S Roychowdhury  F Gaskin 《Biochemistry》1986,25(24):7847-7853
Two conflicting interpretations on the role of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) in microtubule protein and tubulin assembly have been previously reported. One study finds that GTP gamma S promotes assembly while another study reports that GTP gamma S is a potent inhibitor of microtubule assembly. We have examined the potential role of Mg2+ to learn if the conflicting interpretations are due to a metal effect. Turbidity, electron microscopy, and nucleotide binding and hydrolysis were used to analyze the effect of the Mg2+ concentration on GTP gamma S-induced assembly of microtubule protein (tubulin + microtubule-associated proteins) in the presence of buffer +/- 30% glycerol and in buffer with GTP added before or after GTP gamma S. GTP gamma S substantially lowers the Mg2+ concentration required to induce cross-linked or clustered rings of tubulin. These cross-linked rings do not assemble well into microtubules, and GTP only partially restores microtubule assembly. However, taxol will promote GTP gamma S-induced cross-linked rings of microtubule protein to assemble into microtubules. The effect of GTP gamma S on microtubule protein assembly in the presence of Zn2+ with and without added Mg2+ suggests that GTP gamma S also effects the formation of Zn2+-induced sheet aggregates. Purified tubulin was used in assembly experiments with Mg2+, Zn2+, and taxol to better understand GTP gamma S interactions with tubulin. The optimal Mg2+ concentration for assembly of tubulin is lower with GTP gamma S than with GTP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号