首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1996,133(5):1041-1051
In the accompanying paper by Weil et al. (1996) we show that staurosporine (STS), in the presence of cycloheximide (CHX) to inhibit protein synthesis, induces apoptotic cell death in a large variety of nucleated mammalian cell types, suggesting that all nucleated mammalian cells constitutively express all of the proteins required to undergo programmed cell death (PCD). The reliability of that conclusion depends on the evidence that STS-induced, and (STS + CHS)-induced, cell deaths are bona fide examples of PCD. There is rapidly accumulating evidence that some members of the Ced-3/Interleukin-1 beta converting enzyme (ICE) family of cysteine proteases are part of the basic machinery of PCD. Here we show that Z-Val-Ala-Asp-fluoromethylketone (zVAD-fmk), a cell-permeable, irreversible, tripeptide inhibitor of some of these proteases, suppresses STS-induced and (STS + CHX)-induced cell death in a wide variety of mammalian cell types, including anucleate cytoplasts, providing strong evidence that these are all bona fide examples of PCD. We show that the Ced-3/ICE family member CPP32 becomes activated in STS- induced PCD, and that Bcl-2 inhibits this activation. Most important, we show that, in some cells at least, one or more CPP32-family members, but not ICE itself, is required for STS-induced PCD. Finally, we show that zVAD-fmk suppresses PCD in the interdigital webs in developing mouse paws and blocks the removal of web tissue during digit development, suggesting that this inhibition will be a useful tool for investigating the roles of PCD in various developmental processes.  相似文献   

2.
Apoptotic-like programmed cell death in plants   总被引:2,自引:0,他引:2  
Programmed cell death (PCD) is now accepted as a fundamental cellular process in plants. It is involved in defence, development and response to stress, and our understanding of these processes would be greatly improved through a greater knowledge of the regulation of plant PCD. However, there may be several types of PCD that operate in plants, and PCD research findings can be confusing if they are not assigned to a specific type of PCD. The various cell-death mechanisms need therefore to be carefully described and defined. This review describes one of these plant cell death processes, namely the apoptotic-like PCD (AL-PCD). We begin by examining the hallmark 'apoptotic-like' features (protoplast condensation, DNA degradation) of the cell's destruction that are characteristic of AL-PCD, and include examples of AL-PCD during the plant life cycle. The review explores the possible cellular 'executioners' (caspase-like molecules; mitochondria; de novo protein synthesis) that are responsible for the hallmark features of the cellular destruction. Finally, senescence is used as a case study to show that a rigorous definition of cell-death processes in plant cells can help to resolve arguments that occur in the scientific literature regarding the timing and control of plant cell death.  相似文献   

3.
4.
We recently proposed that most mammalian cells constitutively express all of the proteins required to undergo programmed cell death (PCD) and undergo PCD unless continuously signaled by other cells not to. Although some cells have been shown to work this way, the vast majority of cell types remain to be tested. Here we tested purified fibroblasts isolated from developing or adult rat sciatic nerve, a mixture of cell types isolated from normal or p53-null mouse embryos, an immortalized rat fibroblast cell line, and a number of cancer cell lines. We found the following: 1) All of these cells undergo PCD when cultured at low cell density in the absence of serum and exogenous signaling molecules but can be rescued by serum or specific growth factors, suggesting that they need extracellular signals to avoid PCD. (2) The mixed cell types dissociated from normal mouse embryos can only support one another's survival in culture if they are in aggregates, suggesting that cell survival in embryos may depend on short-range signals. (3) Some cancer cells secrete factors that support their own survival. (4) The survival requirements of a human leukemia cell line change when the cells differentiate. (5) All of the cells studied can undergo PCD in the presence of cycloheximide, suggesting that they constitutively express all of the protein components required to execute the death program.  相似文献   

5.
Ecdysteroid hormones trigger the programmed cell death (PCD) of a segmental subset of accessory planta retractor (APR) motoneurons at pupation in the moth, Manduca sexta. APRs from abdominal segment four [APR(4)s] survive through the pupal stage, whereas homologous APR(6)s die 24–48 h after pupal ecdysis (PE) (the shedding of the larval cuticle), in response to the prepupal peak of ecdysteroids. Following retrograde labeling with the vital fluorescent dye, DiI, the morphology of APR(4)s and APR(6)s in vivo was examined at PE and 24–48 h later. During this period, APR(4) somata remained large and ovoid while APR(6)s somata became shrunken and rounded. Similar phenotypes were observed when DiI-labeled APRs were cultured at PE and examined 24 h to 1 week later. During initial shrinkage and rounding of APR(6)s, the plasma membrane remained intact but DNA condensation occurred and mitochondrial activity was lost. The requirements for ecdysteroids and new protein synthesis for APR(6) death were tested by culturing cells with ecdysteroids and cycloheximide (CHX). When cultured at PE, the death of APR(6)s was independent of further exposure to ecdysteroids and could not be blocked by CHX. In contrast, APR(6)s cultured ∼24 h earlier required additional exposure to ecdysteroids to die and their death was inhibited by CHX. Thus, the final 24 h of larval life represents an important transition period in the commitment of APR(6)s to undergo PCD, and is of interest for pursuing underlying mechanisms of steroid-induced PCD. © 1998 John Wiley & Sons, Inc. J Neurobiol 35: 300–322, 1998  相似文献   

6.
Programmed cell death (PCD) is a fundamental component of development in virtually all animals. Despite the ubiquity of this phenomenon, little is known about what tells a cell to die, and less still about the physiological and molecular mechanisms that bring about death. One system that has proven to be very amenable for the study of PCD is the intersegmental muscle (ISM) of the tobacco hawkmoth Manduca sexta. These giant muscle cells are used during the eclosion (emergence) behavior of the adult moth, and then die during the subsequent 30 h. This review uses the ISMs as a model system to address questions that are basic to any cell death system, including the following: (1) how do cells know when to die; (2) what physiological changes accompany death; (3) what are the molecular mechanisms that mediate death; and (4) do all cells die by the same process? For the ISMs, the trigger for PCD is a decline in the circulating titer of the insect molting hormone, 20-hydroxyecdysone (20-HE). During cell death there are rapid decreases in both the myofibrillar sensitivity to intracellular calcium and the resulting force of fiber contraction. The ability of the ISMs to under go PCD requires the repression and activation of specific genes. Two of the repressed genes encode actin and myosin. One of the upregulated presumptive cell-death genes encodes polyubiquitin, which appears to play a critical role in the rapid proteolysis that accompanies ISM death. One curious aspect of ISM death is that these cells display none of the features that are characteristic of apoptosis, suggesting that they may die by a fundamentally different mechanism. © 1992 John Wiley & Sons, Inc.  相似文献   

7.
The inhibitor-of-apoptosis (IAP) proteins are a novel family of antiapoptotic proteins that are thought to inhibit cell death via direct inhibition of caspases. Here, we report that human malignant glioma cell lines express XIAP, HIAP-1 and HIAP-2 mRNA and proteins. NAIP was not expressed. IAP proteins were not cleaved during CD95 ligand (CD95L)-induced apoptosis, and loss of IAP protein expression was not responsible for the potentiation of CD95L-induced apoptosis when protein synthesis was inhibited. LN-18 cells are highly sensitive to CD95-mediated apoptosis, whereas LN-229 cells require co-exposure to CD95L and a protein synthesis inhibitor, CHX, to acquire sensitivity to apoptosis. Adenoviral XIAP gene transfer blocked caspase 8 and 3 processing in both cell lines in the absence of CHX. Apoptosis was blocked in the absence and in the presence of CHX. However, XIAP failed to block caspase 8 processing in LN-229 cells in the presence of CHX. There was considerable overlap of the effects of XIAP on caspase processing with those of BCL-2 and the viral caspase inhibitor crm-A. These data define complex regulatory mechanisms for CD95-mediated apoptosis in glioma cells and indicate that there may be a distinct pathway of death receptor-mediated apoptosis that is readily activated when protein synthesis is inhibited. The constitutive expression of natural caspase inhibitors may play a role in the resistance of these cells to apoptotic stimuli that directly target caspases, including radiochemotherapy and immune-mediated tumor cell lysis.  相似文献   

8.
Abstract. Malignant hybrid cells (As3) derived from fusion of rat hepatoma cells (Fu5AH) with mouse teratocarcinoma cells (OTT6050) were injected into genetically marked mouse blastocysts which were subsequently transferred into pseudopregnant surrogate mothers. From a total of 61 fetuses developed, four normally differentiated fetuses at day 18 of gestation showed hybrid cell contributions in their livers and a few other organs of endo-mesodermal origin. The chimeric tissues were briefly cultured in vitro and then further investigated for their protein synthesis using two-dimensional gel electrophoresis. After comparison of the protein patterns obtained from the corresponding normal rat and mouse organs, several rat-specific polypeptides were detected in the cultured chimeric tissues illustrating functional xenogeneic gene expression during in situ differentiation. In addition, some other rat proteins characteristic of the parental hybrid cell line disappeared. The tumorigenicity of the chimeric tissues was tested by subcutaneous transplantation into immunodeficient nude mice. Tumors originating from two of the four chimeric organs differed histologically from those formed by cells of the hybrid As3 line since they also contained muscle-like structures resembling rhabdomyosarcomas. The tumors were analyzed for their protein synthesis and compared with the three malignant cell lines of parental origin. The morphologic differences between the tumors derived from the chimeric organs and those developed from the As3 cell line were also reflected in characteristic differences of their protein synthesis patterns. Our results demonstrate that interspecific rat × mouse hybrid cells, when implanted into early mouse embryos, participate in fetal tissue differentiation and selectively repress certain rat gene products typical of the malignant parental cells as well as functionally reactivate other rat genes presumably required for normal development.  相似文献   

9.
Growth factor-dependent neurons die when they are deproved of their specific growth factor. This “programmed” cell death (PCD) requires macromolecular synthesis and is distinct from necrotic cell death. To investigate the mechanisms involved in neuronal PCD, we have studied the sequence of events that occur when a neuronal cell line (F-11: Mouse neuroblastoma X rat dorsal root ganglia) is deprived of serum in a manner analogous to growth factor deprivation from neurons. Protein synthesis was inhibited within the first 8 h of serum deprivation, while DNA cleavage into nucleosome ladders was prominent by 24 h. The DNA cleavage could be inhibited by cycloheximide, consistent with a requirement for protein synthesis. In contrast, mitochondrial function was not compromised by serum deprivation. Rather, the cells appeared to be metabolically activated after serum removal as shown by an increased reduction of MTT by mitochondrial dehydrogenases and an increase in cellular autofluorescence, which is thought to be due to elevated levels of NADH and flavoproteins. Assessment of cell viability by propidium iodide staining showed no indication of cell death within 24 h. After 48 h of serum deprivation, cells decreased in size and increased propidium iodide uptake. Thus, serum deprivation activates PCD in F-11 cells and may be a useful model to study the intracellular events responsible for PCD. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
Cells of the human promyelocytic HL-60 line, when treated with a variety of antitumor agents in the presence of the protein synthesis inhibitor cycloheximide (CHX), or with CHX alone, rapidly undergo apoptosis (“active cell death”). It is presumed, therefore, that such cells are “primed” to apoptosis in that no new protein synthesis is required for induction of their death. We have studied apoptosis of HL-60 cells triggered by the DNA topoisomerase I inhibitor camptothecin (CAM) in the absence and presence of CHX and apoptosis induced by CHX alone. Two different flcw cytometric methods were used, each allowing us to relate the apoptosis-associated DNA degradation to the cell cycle position. Apoptosis induced by CAM was limited to S phase cells, e.g., at a CAM concentration of 0.15 μM, nearly 90% of the S phase cells underwent apoptosis after 4 h. In contrast, apoptosis triggered by CHX was indiscriminate, affecting all phases of the cycle: ~40% of the cells from each phase the cycle underwent apoptosis at 5 μM CHX concentration. When CAM and CHX were added together, the pattern of apoptosis resembled that of cycloheximide alone, namely, cells in all phases of the cycle in similar proportion were affected. Thus, CHX, while itself inducing apoptosis of a fraction of cells, protected the S phase cells against apoptosis triggered by CAM. Because CHX (5 μM) did not significantly affect the rate of cell progression through S phase, the observed protective effect was most likely directly related to inhibition of protein synthesis, rather than to its possible indirect effect on DNA replication. Furthermore, whereas apoptosis (DNA degradation) triggered by CAM was prevented by the serine protease inhibitor N-tosyl-L-lysylchloromethyl ketone (TLCK), this process was actually potentiated by this inhibitor when induced by CHX. The present data indicate differences in mechanism of apoptosis triggered by CAM (and perhaps other antitumor drugs) as compared with CHX. Apoptosis caused by CHX may be unique in that it may not involve new protein synthesis. These data are compatible with the assumption that the loss of a hypothetical, rapidly turning over suppressor of apoptosis may be the trigger of apoptosis of HL-60 cells treated with CHX, whereas de novo protein synthesis is required when apoptosis is triggered by other agents. © 1993 Wiley-Liss, Inc.  相似文献   

11.
We have recently shown constitutive IkappaB kinase (IKK) activation and aberrant p52 expression in adult T cell leukemia (ATL) cells that do not express human T cell leukemia virus type I (HTLV-I) Tax, but the mechanism of IKK activation in these cells has remained unknown. Here, we demonstrate distinct regulation of IKK activity in ATL and HTLV-I-transformed T cells in response to protein synthesis inhibition or arsenite treatment. Protein synthesis inhibition for 4 h by cycloheximide (CHX) barely affects IKK activity in Tax-positive HTLV-I-transformed cells, while it diminishes IKK activity in Tax-negative ATL cells. Treatment of ATL cells with a proteasome inhibitor MG132 prior to protein synthesis inhibition reverses the inhibitory effect of CHX, and MG132 alone greatly enhances IKK activity. In addition, treatment of HTLV-I-transformed cells with arsenite for 1 h results in down-regulation of IKK activity without affecting Tax expression, while 8 h of arsenite treatment does not impair IKK activity in ATL cells. These results indicate that a labile protein sensitive to proteasome-dependent degradation governs IKK activation in ATL cells, and suggest a molecular mechanism of IKK activation in ATL cells distinct from that in HTLV-I-transformed T cells.  相似文献   

12.
 The bifunctional protein PCD/DCoH is both a pterin-4α-carbinolamine dehydratase (PCD) involved in the recycling of tetrahydrobiopterin (BH4) and a dimerisation cofactor (DCoH) of the hepatic nuclear factor 1α (HNF-1α). An antiserum raised against rat PCD/DCoH was used to localise the protein in peripheral organs. In liver, all the hepatocytes but not the other cell types are immunoreactive. In kidney, the protein is prevalent in the proximal and distal convoluted tubules. In adrenals, all the cells of the medulla are labelled. Positive nerve cells occur in myenteric ganglia of the whole gastrointestinal tract and in the intestinal submucous ganglia. Many positive endocrine cells are present in the epithelium. The immunoreactivity is either cytoplasmic (hepatocytes, convoluted tubules of the kidney and part of the gastrointestinal endocrine cells) or prominently nuclear (kidney collecting tubules, adrenals, intestinal neural plexuses and part of the gastrointestinal endocrine cells). Our results show that PCD/DCoH is present in cells expressing enzymes that use BH4 as a cofactor and/or HNF-1α. In addition, PCD/DCoH is present in other cells, for example, neurons in the submucosal plexus. This fact and the prominent nuclear immunoreactivity found in all the positive cells derived from the neural crests argue in favour of a new, still unknown function for the protein. Accepted: 18 January 1999  相似文献   

13.
高等植物的PCD研究进展(一)   总被引:18,自引:2,他引:16  
潘建伟  董爱华  朱睦元 《遗传》2000,22(3):189-192
植物细胞程序性死亡(programmed cell death,PCD)已成为当前生物学的研究热点之一。植物PCD普遍存在于植物器官和个体生长发育过程及与环境相互作用过程中,具有重要的生物学意义。在高等植物生长发育过程中,根冠细胞、导管细胞、绒毡层细胞、胚乳细胞、胚柄细胞、糊粉细胞、大孢子细胞、助细胞和反足细胞等细胞在一定程度上均发生了PCD。另外,衰老也涉及PCD。本文综述了最近几年来与发育有关的PCD研究进展,主要包括高等植物细胞死亡的形式、起因及其PCD的形态、生化特征及高等植物营养器官(根、茎和叶)和生殖器官(花、果实和种子)在其生长发育过程中的PCD。文章最后还对植物PCD的进化和生物学意义作了进一步的讨论。 Abstract:Plant programmed cell death(PCD),the details of which are becoming a focus of intensive research in biology, is a ubiquitous phenomenon and plays an improtant biological role in the develpoment of organs and whole organisms and in interactions with the environment.During higher plant development,root cap cells,tracheary elements(TEs),tapetalcells,endosperm cells,suspensor cells,aleurone cells,megaspore cells,help cells and antipodal cells,etc.undergo PCD to some degree.In addition,senescence also involves PCD.This paper mainly reviewed PCD research progress in higher plant development in recent years,including forms and causes of cell death and PCD morphological and biochemical features in higher plants;PCD in development of nutritive organs(root ,stem and leaf) and reproductive organs(flower ,fruit and seed),evolution and biological rloes of plant PCD were further discussed in the paper.  相似文献   

14.
Autocrine signals enable chondrocytes to survive in culture   总被引:11,自引:3,他引:8       下载免费PDF全文
《The Journal of cell biology》1994,126(4):1069-1077
We recently proposed that most mammalian cells other than blastomeres may be programmed to kill themselves unless continuously signaled by other cells not to. Many observations indicate that some mammalian cells are programmed in this way, but is it the case for most mammalian cells? As it is impractical to test all of the hundreds of types of mammalian cells, we have focused on two tissues--lens and cartilage-- which each contain only a single cell type: if there are cells that do not require signals from other cells to avoid programmed cell death (PCD), lens epithelial cells and cartilage cells (chondrocytes) might be expected to be among them. We have previously shown that rat lens epithelial cells can survive in serum-free culture without signals from other cell types but seem to require signals from other lens epithelial cells to survive: without such signals they undergo PCD. We show here that the same is true for rat (and chick) chondrocytes. They can survive for weeks in culture at high cell density in the absence of other cell types, serum, or exogenous proteins or signaling molecules, but they die with the morphological features of apoptosis in these conditions at low cell density. Medium from high density cultures, FCS, or a combination of known growth factors, all support prolonged chondrocyte survival in low density cultures, as long as antioxidants are also present. Moreover, medium from high density chondrocyte cultures promotes the survival of lens epithelial cells in low density cultures and vice versa. Chondrocytes isolated from adult rats behave similarly to those isolated from developing rats. These findings support the hypothesis that most mammalian cells require signals from other cells to avoid PCD, although the signals can sometimes be provided by cells of the same type, at least in tissues that contain only one cell type.  相似文献   

15.
16.
Oxalic acid is thought to be a key factor of the early pathogenicity stage in a wide range of necrotrophic fungi. Studies were conducted to determine whether oxalate could induce programmed cell death (PCD) in Arabidopsis thaliana suspension cells and to detail the transduction of the signalling pathway induced by oxalate. Arabidopsis thaliana cells were treated with millimolar concentrations of oxalate. Cell death was quantified and ion flux variations were analysed from electrophysiological measurements. Involvement of the anion channel and ethylene in the signal transduction leading to PCD was determined by using specific inhibitors. Oxalic acid induced a PCD displaying cell shrinkage and fragmentation of DNA into internucleosomal fragments with a requirement for active gene expression and de novo protein synthesis, characteristic hallmarks of PCD. Other responses generally associated with plant cell death, such as anion effluxes leading to plasma membrane depolarization, mitochondrial depolarization, and ethylene synthesis, were also observed following addition of oxalate. The results show that oxalic acid activates an early anionic efflux which is a necessary prerequisite for the synthesis of ethylene and for the PCD in A. thaliana cells.  相似文献   

17.
To examine whether multiple pathways of cell death exist in sympathetic neurons, we studied the cell death pathway induced by staurosporine (STS) in sympathetic neurons and compared it with the well-characterized NGF deprivation-induced death pathway. Increasing concentrations of STS were found to induce sympathetic neuronal death with different biochemical and morphological characteristics. One hundred nM STS induced metabolic changes, loss of cytochrome c, and caspase-dependent morphological degeneration which closely resembled the apoptotic death induced by NGF deprivation. In contrast, sympathetic neurons treated with 1 microM STS showed no loss of cytochrome c but exhibited extensive, caspase-independent, chromatin changes that were not TUNEL positive. One microM STS-treated sympathetic neurons had greatly reduced metabolic activities and became committed to die rapidly, yet maintained soma structure and appeared viable by other criteria even up to 48 h after STS treatment, illustrating the need to assess cell death by multiple criteria. Lastly, in contrast to the cell death-inducing activities of 100 nM STS or 1 microM STS, very low concentrations of STS (1 nM STS) inhibited sympathetic neuronal death by acting either at or prior to c-jun phosphorylation in the NGF deprivation-induced PCD pathway.  相似文献   

18.
Duchenne muscular dystrophy (DMD) is a fatal and crippling disease of skeletal muscle which displays increased fibre turnover and elevated levels of programmed cell death (PCD) in muscle stem cells. Previously we showed that this cell death is inhibited by the growth factor IGF-II. To determine the functional significance of PCD to the dystrophic phenotype, we used a transgene to over-express IGF-II in the mdx mouse. We found that ectopic expression of IGF-II inhibited the elevated PCD observed in skeletal muscles in the absence of functional dystrophin and significantly ameliorates the early gross histopathological changes in skeletal muscles characteristic of the dystrophic phenotype. Replacement of the dystrophin gene abolished abnormal skeletal muscle cell PCD levels in vivo in a dose-dependent manner and in dystrophic SMS cell lines cultured in vitro. Thus elevation of stem cell PCD in dystrophic skeletal muscle is a direct consequence of the loss of functional dystrophin. Together these data demonstrate that elevated skeletal muscle cell PCD is a critical component of dystrophic pathology and is inversely correlated with both dystrophin gene dosage and with muscle fibre pathology. Targeting PCD in dystrophic muscles reduces both PCD and the classical features of dystrophic pathology in the mdx mouse suggesting that IGF-II is a strong candidate for therapeutic intervention in the dystrophinopathies.  相似文献   

19.
Chemotherapy has been widely used as a clinical treatment for cancer over the years. However, its effectiveness is limited because of resistance of cancer cells to programmed cell death (PCD) after treatment with anticancer drugs. To elucidate the resistance mechanism, we initially focused on cancer cell-specific mitophagy, an autophagic degradation of damaged mitochondria. This is because mitophagy has been reported to provide cancer cells with high resistance to anticancer drugs. Our data showed that TRIP-Br1 oncoprotein level was greatly increased in the mitochondria of breast cancer cells after treatment with various anticancer drugs including staurosporine (STS), the main focus of this study. STS treatment increased cellular ROS generation in cancer cells, which triggered mitochondrial translocation of TRIP-Br1 from the cytosol via dephosphorylation of TRIP-Br1 by protein phosphatase 2A (PP2A). Up-regulated mitochondrial TRIP-Br1 suppressed cellular ROS levels. In addition, TRIP-Br1 rapidly removed STS-mediated damaged mitochondria by activating mitophagy. It eventually suppressed STS-mediated PCD via degradation of VDACI, TOMM20, and TIMM23 mitochondrial membrane proteins. TRIP-Br1 enhanced mitophagy by increasing expression levels of two crucial lysosomal proteases, cathepsins B and D. In conclusion, TRIP-Br1 can suppress the sensitivity of breast cancer cells to anticancer drugs by activating autophagy/mitophagy, eventually promoting cancer cell survival.  相似文献   

20.
Controlled cellular suicide is an important process that can be observed in various organs during plant development. From the generation of proper sexual organs in monoecious plants to the hypersensitive response (HR) that occurs during incompatible pathogen interactions, programmed cell death (PCD) can be readily observed. Although several biochemical and morphological parameters have been described for various types of cell death in plants, the relationships existing between those different types of PCD events remain unclear. In this work, we set out to examine if two early molecular markers of HR cell death (HIN1 and HSR203J) as well as a senescence marker (SAG12) are coordinately induced during these processes. Our result indicates that although there is evidence of some cross-talk between both cell death pathways, spatial and temporal characteristics of activation for these markers during hypersensitive response and senescence are distinct. These observations indicate that these markers are relatively specific for different cell death programs. Interestingly, they also revealed that a senescence-like process seems to be triggered at the periphery of the HR necrotic lesion. This suggests that cells committed to die during the HR might release a signal able to induce senescence in the neighboring cells. This phenomenon could correspond to the establishment of a second barrier against pathogens. Lastly, we used those cell death markers to better characterize cell death induced by copper and we showed that this abiotic induced cell death presents similarities with HR cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号