首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Serially sectioned embryo sacs of Nicotiana tabacum were examined during fertilization events using transmission electron microscopy. After pollen tube discharge, the outer membrane of the sperm pair is removed, the two sperm cells are deposited in the degenerate synergid and the sperm cells migrate to the chalazal edge of the synergid where gametic fusion occurs. During fertilization, the male cytoplasm, including heritable organelles, is transmitted into the female reproductive cells as shown by: (1) the cytoplasmic confluence of one sperm and the central cell during cellular fusion, (2) the occurrence of sperm mitochondria (distinguished by ultrastructural differences) in the zygote cytoplasm and adjacent to the sperm nucleus, (3) the presence of darkly stained aggregates which are found exclusively in mature sperm cells within the cytoplasm of both female cells soon after cell fusion, and (4) the absence of any large enucleated cytoplasmic bodies containing recognizable organelles outside the zygote or endosperm cells. The infrequent occurrence of plastids in the sperm and the transmission of sperm cytoplasm into the egg during double fertilization provide the cytological basis for occasional biparental plastid inheritance as reported previously in tobacco. Although sperm mitochondria are transmitted into the egg/zygote, their inheritance has not been detected genetically. In one abnormal embryo sac, a pair of sperm cells was released into the cytoplasm of the presumptive zygote. Although pollen tube discharge usually removes the inner pollen-tube plasma membrane containing the two sperm cells, this did not occur in this case. When sperm cells are deposited in a degenerating synergid or outside of a cell, this outer membrane is removed, as it apparently is for fertilization.  相似文献   

2.
The mature embryo sac of barley consists of an egg, two synergids, a central cell, and up to 100 antipodal cells. At shedding the male gametophyte is 3-celled, consisting of a vegetative cell with a large amount of starch and two sperms having PAS+ boundaries. Before pollination the nucleus and cytoplasm of each synergid appear normal. After pollination the nucleus and cytoplasm of one synergid undergo degeneration. The pollen tube grows along the surface of the integument of the ovule, passes through the micropyle, and enters the degenerate synergid through the filiform apparatus. The pollen tube discharges the vegetative nucleus, two cellular sperms, and a variable amount of starch into the degenerate synergid. Soon after deposition the sperms migrate by an unknown mechanism to the chalazal end of the degenerate synergid. Sperm nuclei then enter the cytoplasm of the egg and central cell, ultimately resulting in the formation of the zygote and primary endosperm nucleus, respectively. Sperm boundaries do not enter egg or central cell, but it was not possible to determine the fate of other sperm components. Degenerate vegetative and synergid nuclei remain in the synergid after fertilization, constituting what are considered to be X-bodies in barley. The second synergid degenerates during early embryogeny.  相似文献   

3.
The ultrastructure of the embryo sac, nucellus, and parts of the micropyle of Lilium longiflorum were studied both before and after pollen tube penetration to examine the interactions between ovule and pollen tube, using transmission electron microscopy and light microscopy. Before pollen tube penetration the egg cell and two synergids are similar. No filiform apparatus was detected and no synergid degeneration occurs prior to pollen tube penetration. The polar nuclei do not fuse until fertilization. No differences in embryo sac ultrastructure were detected between pollinated ovules unpenetrated by pollen tubes and unpollinated flowers of a comparable age. Shortly after the discharge of the pollen tube two enucleated cytoplasmic bodies with different ribosome densities were observed in the degenerated cytoplasm. These structures border both on the central cell and the egg cell as well as each other and are interpreted as remains of sperm cytoplasm after transmission of sperm nuclei. In the central cell both the sperm nucleus and the polar nuclei are associated with endoplasmic reticulum (ER). ER is thought to be a transport mechanism to achieve contact between the haploid polar nuclei and the sperm nucleus. In the egg cell sperm nucleus alignment is not visibly achieved by ER. The persistent cells of the egg apparatus and the central cell appear to become more metabolically active after pollen tube penetration. Pollen tube penetration already occurs despite the absence of a filiform apparatus and a low level of differences between the cells of the egg apparatus.  相似文献   

4.
B. -Q. Huang  S. D. Russell 《Planta》1994,194(2):200-214
The cytoskeletal organization of the embryo sac of tobacco (Nicotiana tabacum L.) was examined at maturity and during synergid degeneration, pollen-tube delivery and gamete transfer using rapid-frozen, freeze-substituted and chemically fixed material in combination with immunofluorescence and immunogold electron microscopy. Before fertilization, the synergid is a highly polarized cell with dense longitudinally aligned arrays of microtubules adjacent to the filiform apparatus at the micropylar end of the cell associated with major organelles. The cytoskeleton of the central cell is less polarized, with dense cortical microtubules in the micropylar and chalazal regions and looser, longitudinally oriented cortical microtubules in the lateral region. In the synergid and central cell, F-actin is frequently found at the surface of the organelles and co-localizes with either single microtubules or microtubule bundles. Egg cell microtubules are frequently cortical, randomly oriented and more abundant at the chalazal end of the cell; actin filaments are associated with microtubules and the cortex of the egg cell. At 48 h after pollination and before the pollen tube arrives, the onset of degeneration is evident in one of the two synergids: the electron density of cytoplasmic organelles and the ground cytoplasm increases and the nucleus becomes distorted. Although synergids otherwise remain intact, the vacuole collapses and organelles degenerate rapidly after pollen-tube entry. Abundant electron-dense material extends from the degenerated synergid into intercellular spaces at the chalazal end of the synergid and between the synergids, egg and central cell. Rhodamine-phalloidin and anti-actin immunogold labeling reveal that electron-dense aggregates in this region contain abundant actin forming two distinct bands termed coronas. This actin is part of a mechanism in the egg apparatus which appears to precisely position and facilitate the access of male gametes to the egg and central cell for fusion.Abbreviations ES embryo sac - FA filiform apparatus - Mf microfilament - Mt microtubule - PT pollen tube - RF-FS rapid-freeze freeze-substitution - TEM transmission electron microscopy We thank Gregory W. Strout for technical assistance in the use of the RF-FS technique and Dr. Hongshi Yu for providing Fig. 1. This research was supported by U.S. Department of Agriculture grants 88-37261-3761 and 91-37304-6471. We gratefully acknowledge use of the Samuel Robert Noble Electron Microscopy Laboratory of the University of Oklahoma.  相似文献   

5.
The megagametophyte of Epidendrum scutella, an orchid, was examined with the electron microscope after the entrance and discharge of the pollen tube. The pollen tube enters the embryo sac by growing through the filiform apparatus of a synergid and discharges through a terminal pore into the degenerating cytoplasm of the synergid. The synergid nucleus appears pushed to one side by the discharge of the pollen tube. What is believed to be the remains of the vegetative nucleus has been found in the degenerate synergid, but no trace of the sperm cytoplasm has been seen. The zygote is approximately the same size as the egg. The ribosomes become grouped into polysomes. Both the egg and the zygote apparently completely lack dictyosomes. The polar nuclei partially fuse before fertilization, but fusion of the sperm nucleus with the polar nuclei does not occur and no endosperm is produced. Polysome formation occurs in the central cell and large amounts of tubular, smooth ER are seen. The antipodals remain following fertilization, undergoing ultrastructural changes similar to the central cell.  相似文献   

6.
The ultrastructure of the synergids of Proboscidea louisianica was investigated from just before fertilization until 48 hr after pollination. It was found that the cytoplasm of one synergid consistently begins to degenerate before arrival of the pollen tube at the embryo sac, and that it is always this synergid which receives the pollen tube tip and its discharge. The other synergid (persistent synergid) remained unchanged throughout the study period. Polysaccharide vesicles of pollen tube origin were observed fusing with the pollen tube wall as well as contributing to cell wall formation of the degenerate synergid. In one ovule (48 hr after pollination) two pollen tubes had entered and grown the length of the micropyle, but only the first tube penetrated the degenerate synergid and discharged normally. The second pollen tube was abutting against the persistent synergid, but had not entered or discharged. In another exceptional case (18 hr after pollination), a pollen tube had grown the length of the micropyle, but did not discharge, or enter either synergid. Both synergids of this ovule were observed to be completely intact. It is concluded that synergid and pollen tube cytoplasmic degeneration is the result of a very specific interaction between these two cells and that this degeneration is probably a prerequisite for normal pollen tube entrance and discharge into the embryo sac, and for male gamete transfer to the egg and central cell.  相似文献   

7.
The ultrastructure and composition of the synergids of Capsella bursa-pastoris were studied before and after fertilization. The synergids in the mature embryo sac contain numerous plastids, mitochondria, dictyosomes and masses of ER and associated ribosomes. Each synergid contains a large chalazal vacuole, a nucleus with a single nucleolus and is surrounded by a wall. This wall is thickest at the micropyle end of the cell where it proliferates into the filiform apparatus. At the chalazal end of the cell the wall thins and may be absent for small distances. The pollen tube grows into one of the two synergids through the filiform apparatus and extends one-third the length of the cell before it discharges. Following discharge of the pollen tube, mitochondria and plastids of the tube can be identified in the synergid as can hundreds of 0.5 μ polysaccharide spheres liberated by the tube. The method by which the sperm or sperm nuclei enter the egg or central cell is not known although an apparent rupture was found in the wall of the egg near the tip of the pollen tube. The second synergid changes at the time the pollen tube enters the first synergid. These changes result in the disorganization of the nucleus and loss of the chalazal wall and plasma membrane. Eventually this synergid loses its identity as its cytoplasm merges with that of the central cell.  相似文献   

8.
In Angiosperms, the male gametes are delivered to the female gametes through the maternal reproductive tissue by the pollen tube. Upon arrival, the pollen tube releases the two sperm cells, permitting double fertilization to take place. Although the critical role of the female gametophyte in pollen tube reception has been demonstrated, the underlying mechanisms remain poorly understood. Here, we describe lorelei, an Arabidopsis thaliana mutant impaired in sperm cell release, reminiscent of the feronia/sirène mutant. Pollen tubes reaching lorelei embryo sacs frequently do not rupture but continue to grow in the embryo sac. Furthermore, lorelei embryo sacs continue to attract additional pollen tubes after arrival of the initial pollen tube. The LORELEI gene is expressed in the synergid cells prior to fertilization and encodes a small plant-specific putative glucosylphosphatidylinositol-anchored protein (GAP). These results provide support for the concept of signaling mechanisms at the synergid cell membrane by which the female gametophyte recognizes the arrival of a compatible pollen tube and promotes sperm release. Although GAPs have previously been shown to play critical roles in initiation of fertilization in mammals, flowering plants appear to have independently evolved reproductive mechanisms that use the unique features of these proteins within a similar biological context.  相似文献   

9.
水稻双受精过程的细胞形态学及时间进程的观察   总被引:1,自引:0,他引:1  
丁建庭  申家恒  李伟  杨虹 《植物学报》2009,44(4):473-483
应用常规石蜡切片和荧光显微镜观察水稻(Oryz a sativa)受精过程中雌雄性细胞融合时的形态特征及时间进程, 确定合子期, 为花粉管通道转基因技术的实施提供理论依据。结果表明: 授粉后, 花粉随即萌发, 花粉管进入羽毛状柱头分支结构的细胞间隙, 继续生长于花柱至子房顶部的引导组织的细胞间隙中, 而后进入子房, 在子房壁与外珠被之间的缝隙中向珠孔方向生长, 花粉与花粉管均具有明显的绿色荧光。花粉管经珠孔及珠心表皮细胞间隙进入一个助细胞, 释放精子。精子释放前, 两极核移向卵细胞的合点端; 两精子释放于卵细胞与中央细胞的间隙后, 先后脱去细胞质, 然后分别移向卵核和极核, 移向卵核的精核快于移向极核的精核; 精核与两极核在向反足细胞团方向移动的过程中完成雌雄核融合。大量图片显示了雌雄性核融合的详细过程以及多精受精现象。水稻受精过程经历的时间表如下: 授粉后, 花粉在柱头萌发; 花粉萌发至花粉管进入珠孔大约需要0.5小时; 授粉后0.5小时左右, 花粉管进入一个助细胞, 释放精子; 授粉后0.5-2.5小时, 精卵融合形成合子; 授粉后约10.0小时, 合子第1次分裂, 合子期为授粉后2.5-10.0小时; 授粉后1.0-3.0小时, 精核与两极核融合; 授粉后约5.0小时, 初生胚乳核分裂。  相似文献   

10.
Summary Actin organization was observed inm-maleimidobenzoic acid N-hydroxysuccinimide ester(MBS)-treated maize embryo sacs by confocal laser scanning microscopy. The results revealed that dynamic changes of actin occur not only in the degenerating synergid, but also in the egg during fertilization. The actin filaments distribute randomly in the chalazal part of the synergid before fertilization; they later become organized into numerous aggregates in the chalazal end after pollination. The accumulation of actin at this region is intensified after the pollen tube discharges its contents. Concurrently, actin patches have also been found in the cytoplasm of the egg cell and later they accumulate in the cortical region. To compare with MBS-treated maize embryo sacs, we have performed phalloidin microinjection to label the actin cytoskeleton in living embryo sacs ofTorenia fournieri. The results have extended the previous observations on the three-dimensional organization of the actin arrays in the cells of the female germ unit and confirm the occurrence of the actin coronas in the embryo sac during fertilization. We have found that there is an actin cap occurring near the filiform apparatus after anthesis. In addition, phalloidin microinjection into the Torenia embryo sac has proved the presence of intercellular actin between the cells of the female germ unit and thus confirms the occurrence of the actin coronas in the embryo sac during fertilization. Moreover, actin dynamic changes also take place in the egg and the central cell, accomplished with the interaction between the male and female gametes. The actin filaments initially organize into a distinct actin network in the cortex of the central cell after anthesis; they become fragmented in the micropylar end of the cell after pollination. Similar to maize, actin patches have also been observed in the egg cortex after pollination. This is the first report of actin dynamics in the living embryo sac. The results suggest that the actin cytoskeleton may play an essential role in the reception of the pollen tube, migration of the male gametes, and even gametic fusion.  相似文献   

11.
Summary In vitro penetration of the micropyle of freshly isolatedGasteria verrucosa ovules by pollen tube was monitored on agar medium. 40–60% of the micropyles were penetrated, comparable with in vivo penetration percentages. When germinated on agar,Gasteria pollen tube elongation lasts for up to 8 h while plasma streaming continues for about 20–24 h. The generative cell divides between 7 and 20 h after germination, and after 20 h the pollen tube arrives at one of the synergids. The sperm cells arrive after 22 h. The whole process takes more time in vitro than in vivo. In fast growing pollen tubes, a pulsed telescope-like growth pattern of tube elongation is observed. The formation of pollen tube wall material precedes tube elongation and probably prevents regular enlargement of the pollen tube tip-zone. Rapid stretching of the new pollen tube wall material follows, probably due to gradually increased osmotic pressure and the use of lateral wall material below the tip. The stretching ceases when the supplies of plasma membrane and excretable wall material are exhausted. Multiple pollen tube penetration of the micropyle occurs in vitro as it does in vivo. Most pollen tube growth ceases within the micropyle but, if it continues, the pollen tubes curl. Inside the micropyle the pollen tube shows haustorial growth. At the ultrastructural level, the wall thickening of in vitro pollen tubes is quite similar to that in vivo. Before transfer of pollen tube cytoplasm a small tube penetrates one of the synergids. Sperm nuclei with condensed chromatin are observed in the pollen tube and the synergid. In vivo prometaphase nuclei are found in the most chalazal part of a synergid, against the egg cell nucleus and nucleus of the central cell at a later stage. Using media forLilium ovule culture,Gasteria ovules were kept alive for at least 6 weeks. Swelling of the ovule depends on pollen tube penetration. The conditions for fertilization to occur after in vitro ovular pollination seem to be present.  相似文献   

12.
应用常规石蜡切片和荧光显微镜观察水稻(Oryza sativa)受精过程中雌雄性细胞融合时的形态特征及时间进程,确定合子期,为花粉管通道转基因技术的实施提供理论依据。结果表明:授粉后,花粉随即萌发,花粉管进入羽毛状柱头分支结构的细胞间隙,继续生长于花柱至子房顶部的引导组织的细胞间隙中,而后进入子房,在子房壁与外珠被之间的缝隙中向珠孔方向生长,花粉与花粉管均具有明显的绿色荧光。花粉管经珠孔及珠心表皮细胞间隙进入一个助细胞,释放精子。精子释放前,两极核移向卵细胞的合点端:两精子释放于卵细胞与中央细胞的间隙后,先后脱去细胞质,然后分别移向卵核和极核,移向卵核的精核快于移向极核的精核:精核与两极核在向反足细胞团方向移动的过程中完成雌雄核融合。大量图片显示了雌雄性核融合的详细过程以及多精受精现象。水稻受精过程经历的时间表如下:授粉后,花粉在柱头萌发:花粉萌发至花粉管进入珠孔大约需要0.5小时:授粉后0.54,时左右,花粉管进入一个助细胞,释放精子:授粉后0.5—2.5小时,精卵融合形成合子:授粉后约10.0小时,合子第1次分裂,合子期为授粉后2.5-10.04,时:授粉后1.0-3.04,时,精核与两极核融合:授粉后约5.0小时,初生胚乳核分裂。’  相似文献   

13.
Reproduction in angiosperms depends on communication processes of the male gametophyte (pollen) with the female floral organs (pistil, transmitting tissue) and the female gametophyte (embryo sac). Pollen-pistil interactions control pollen hydration, germination and growth through the stylar tissue. The female gametophyte is involved in guiding the growing pollen tube towards the micropyle and embryo sac. One of the two synergids flanking the egg cell starts to degenerate and becomes receptive for pollen tube entry. Pollen tube growth arrests and the tip of the pollen tube ruptures to release the sperm cells. Failures in the mutual interaction between the synergid and the pollen tube necessarily impair fertility. But the control of pollen tube reception is not understood. We isolated a semisterile, female gametophytic mutant from Arabidopsis thaliana, named feronia after the Etruscan goddess of fertility, which impairs this process. In the feronia mutant, embryo sac development and pollen tube guidance were unaffected in all ovules, although one half of the ovules bore mutant female gametophytes. However, when the pollen tube entered the receptive synergid of a feronia mutant female gametophyte, it continued to grow, failed to rupture and release the sperm cells, and invaded the embryo sac. Thus, the feronia mutation disrupts the interaction between the male and female gametophyte required to elicit these processes. Frequently, mutant embryo sacs received supernumerary pollen tubes. We analysed feronia with synergid-specific GUS marker lines, which demonstrated that the specification and differentiation of the synergids was normal. However, GUS expression in mutant gametophytes persisted after pollen tube entry, in contrast to wild-type embryo sacs where it rapidly decreased. Apparently, the failure in pollen tube reception results in the continued expression of synergid-specific genes, probably leading to an extended expression of a potential pollen tube attractant.  相似文献   

14.
Fertilization in maize indeterminate gametophyte1 mutant   总被引:4,自引:0,他引:4  
Guo F  Huang BQ  Han Y  Zee SY 《Protoplasma》2004,223(2-4):111-120
Summary. Mature embryo sacs of the maize mutant indeterminate gametophyte1 displayed different cellular patterns compared to those of the wild type. About 40% of the ig1 embryo sacs contained three or more synergids and two or more egg cells at the micropylar end. During fertilization in embryo sacs with two synergids, both of them frequently degenerated and were penetrated by two pollen tubes. 75% of the embryo sacs containing three or more synergid cells were penetrated by two or more pollen tubes, although most of them had only one degenerated synergid. Multiple fusions between the sperm cells and eggs frequently occurred in the same embryo sac, which subsequently generated multiple embryos. There were two or more central cells in about 33% of ig1 embryo sacs. The largest central cell was usually adjacent to the egg apparatus and contained two unfused polar nuclei, while those extra central cells located at the chalazal end usually had a single nucleus. Fertilization occurred only between the male gamete and the largest binucleate central cell. The extra central cells eventually degenerated after fertilization.Present address: GI Basic Research Center, Mayo Clinic, Rochester, Minnesota, U.S.A.Correspondence and reprints: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing 100094, Peoples Republic of China.  相似文献   

15.
The organization of isolated embryo sacs and eggs of Plumbago zeylanica was described before and after fertilization using microscopic cytochemistry and scanning electron microscopy. Major developmental events of fertilization, including preferential fertilization and early embryogenesis, are described in isolated embryo sacs. The two sperms, one unassociated with vegetative nucleus (Sua) and the other physically associated with the vegetative nucleus (Svn), fuse with nuclei of egg and central cell, respectively. The zygote divides asymmetrically to form a two-celled embryo, consisting of a massive suspensor occupying most of the micropylar portion of the embryo during early embryogenesis. Plastids are distributed in the perinuclear and micropylar regions of the egg cell and in cytoplasmic strands of the central cell before fertilization. Calcofluor white-positive fibrillar material in the filiform apparatus (presumed β-1,4 linked glucans) was investigated using scanning electron microscopy. The egg of P. zeylanica can easily be divided into three cytologically distinct regions: 1) perinuclear cytoplasm, 2) lateral cytoplasm, and 3) micropylar cytoplasm. Cytological differences are evident in the organization of the cell walls, general degree of vacuolization, and the distribution of heritable organelles, storage bodies, and microtubules. The present study supports the concept that the egg of P. zeylanica plays combined synergid and gamete functions.  相似文献   

16.
Huang BQ  Fu Y  Zee SY  Hepler PK 《Protoplasma》1999,209(1-2):105-119
Actin organization was observed in m-maleimidobenzoic acid N-hydroxysuccinimide ester(MBS)-treated maize embryo sacs by confocal laser scanning microscopy. The results revealed that dynamic changes of actin occur not only in the degenerating synergid, but also in the egg during fertilization. The actin filaments distribute randomly in the chalazal part of the synergid before fertilization; they later become organized into numerous aggregates in the chalazal end after pollination. The accumulation of actin at this region is intensified after the pollen tube discharges its contents. Concurrently, actin patches have also been found in the cytoplasm of the egg cell and later they accumulate in the cortical region. To compare with MBS-treated maize embryo sacs, we have performed phalloidin microinjection to label the actin cytoskeleton in living embryo sacs of Torenia fournieri. The results have extended the previous observations on the three-dimensional organization of the actin arrays in the cells of the female germ unit and confirm the occurrence of the actin coronas in the embryo sac during fertilization. We have found that there is an actin cap occurring near the filiform apparatus after anthesis. In addition, phalloidin microinjection into the Torenia embryo sac has proved the presence of intercellular actin between the cells of the female germ unit and thus confirms the occurrence of the actin coronas in the embryo sac during fertilization. Moreover, actin dynamic changes also take place in the egg and the central cell, accomplished with the interaction between the male and female gametes. The actin filaments initially organize into a distinct actin network in the cortex of the central cell after anthesis; they become fragmented in the micropylar end of the cell after pollination. Similar to maize, actin patches have also been observed in the egg cortex after pollination. This is the first report of actin dynamics in the living embryo sac. The results suggest that the actin cytoskeleton may play an essential role in the reception of the pollen tube, migration of the male gametes, and even gametic fusion.  相似文献   

17.
在野外居群调查的启示下,本文以组件观点对柳叶野豌豆复合种和歪头菜幼苗亚单位的时序变化与开花关系进行了分析。结果发现在柳叶野豌豆复合种栽培居群中存在打破物种间形体结构特征的个体,即在复叶由一对小叶组成的植株就已开花而进入生殖时期。另外,在歪头菜的野生居群中发现由三或四枚小叶组成复叶的个体,因此,我们推测这种形体结构的变化可能暗示着柳叶野豌豆复合种和歪头菜有着共同的祖先。  相似文献   

18.
We describe some previously uncharacterised stages of fertilization in Arabidopsis thaliana and provide for the first time a precise time course of the fertilization process. We hand-pollinated wild type pistils with wild type pollen (Columbia ecotype), fixed them at various times after pollination, and analysed 600 embryo sacs using Confocal Laser Scanning Microscopy. Degeneration of one of the synergid cells starts at 5 Hours After Pollination (HAP). Polarity of the egg changes rapidly after this synergid degeneration. Karyogamy is then detected by the presence of two nucleoli of different diameters in both the egg and central cell nuclei, 7-8 HAP. Within the next hour, first nuclear division takes place in the fertilized central cell and two nucleoli can then be seen transiently in each nucleus produced. In a second set of experiments, we hand-pollinated wild type pistils with pollen from a transgenic promLAT52::EGFP line that expresses EGFP in its pollen vegetative cell. Release of the pollen tube contents into the synergid cell could be detected in living material. We show that the timing of synergid degeneration and pollen tube release correlate well, suggesting that either the synergid cell degenerates at the time of pollen tube discharge or very shortly before it. These observations and protocols constitute an important basis for the further phenotypic analysis of mutants affected in fertilization.  相似文献   

19.
The ultrastructure of synergids of watermelon (Citrullus Lanatus L.) was investigated using transmission electron microscopy at following stages of embryo sacs: 1. Unpollination, on the first flowering day. 2. Unpollination, on 2nd day after anthesis (DAA). 3. Fertilization, on DAA 2. The synergids with distinct filiform apparatus at the micropylar end have abundant organelle, such as mitochondria, endoplasmic reticulum, and plastids in cytoplasm, which indicate that they are active on the first flowering day. No wall is present at the chalazal part of synergid, and there are some flocculent materials and vesicles in the spaces of cytoplasma membranes among synergid, egg cell and central cell in embryo sacs at the first and the second stages. On DAA 2, in unpollinated embryo sacs, the central large vacuole of synergid is divided into several smaller ones and the starch grains decrease in cytoplasm. There is no newly synthesized wall at the chalazal end of persistent synergid in fertilized embryo sacs. The contents of degenerated synergid, in the form of electron dense granules, are located in the wide space among central cell, zygote and persistent synergid, and some of them migrate into central cell through cytoplasma membrane. Therefore, it is deduced that the contents of synergid might serve as a nutrient supplement to the development of endosperm, but not embryo.  相似文献   

20.
Actin coronas in normal and indeterminate gametophyte1 embryo sacs of maize   总被引:2,自引:2,他引:0  
 The actin cytoskeletal organization and nuclear behavior of normal and indeterminate gametophyte1 (ig1) embryo sacs of maize were examined during fertilization. After pollination, during degeneration of one of the synergids and before arrival of the pollen tube, the cytoskeletal elements undergo dramatic changes including formation of the actin coronas at the chalazal end of the degenerating synergid and at the interface between the egg cell and central cell. The actin coronas are present only for a limited period of time and their presence is coordinated with pollen tube arrival and fusion of the gametes; they disappear before the zygote divides. This allows us to estimate the frequency of fertilized ovules along the ear. Up to 88% of the ovules on an ear contain actin coronas in the embryo sacs when observed 16–19 h after pollination, indicating the high frequency of fertilizing kernels along the ear at this stage. In the ig embryo sacs, two or more degenerated synergids containing actin coronas at their chalazal ends receive multiple pollen tubes for gametic fusion and can consequently give rise to twin or polyembryos. These findings with the monocot maize are consistent with previous reports on the dicots Plumbago and Nicotiana, suggesting that the formation of actin coronas in the embryo sac during fertilization is a universal phenomenon in angiosperms and is part of a mechanism of interaction between gametic signaling and actin cytoskeleton behavior which appears to precisely position and facilitate the access of male gametes to the egg cell and central cell for fusion. Received: 15 May 1998 / Revision accepted: 17 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号