首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The proteinaceous inhibitor of limit dextrinase in barley and malt   总被引:2,自引:0,他引:2  
Barley limit dextrinase catalyses hydrolysis of alpha-1,6-D-glucosidic bonds in branched poly- or oligosaccharides from starch. A specific inhibitor of this enzyme is found in mature barley kernels, but disappears after several days of germination. Two forms of this proteinaceous inhibitor, identical in amino acid sequence, have been isolated and characterized. They differ in attachment of cysteine or glutathione to a sulfhydryl group, possibly that of cysteine residue 59 of the inhibitor. They can form a 1:1 complex with limit dextrinase and are believed to interact specifically with the enzyme active site. The inhibitor present in mature barley can effectively reduce enzyme activity in barley germinated for a short time and in commercial malt.  相似文献   

3.
Limit dextrinase (LD) is a key enzyme in determining the malting quality. A survey of 60 barley varieties showed a wide range of variation for the enzyme activity and thermostability. Galleon showed low enzyme activity and high thermostability while Maud showed high activity and low thermostability. Alignment of the LD amino acid sequences of Galleon and Maud identified seven amino acid substitutions Lys/Arg-102, Thr/Ala-233, Ser/Gly-235, Gly/Ala-298, Cys/Arg-415, Ala/Ser-885 and Gly/Cys-888. Genetic diversity of LD was investigated using single strand conformation polymorphism based on the amino acid substitutions. Only limited genetic variation was detected in the current malting barley varieties, although wide variation was observed in the wider barley germplasm. The Thr/Ala-233 and Ala/Ser-885 substitutions were associated with enzyme thermostability (P < 0.0001), but no polymorphism was associated with the enzyme activity. This result was confirmed from further sequence analysis. The results will provide a tool for understanding and selection of high LD thermostability.  相似文献   

4.
The barley protein limit dextrinase inhibitor (LDI), structurally related to the alpha-amylase/trypsin inhibitor family, is an inhibitor of the starch debranching enzyme limit dextrinase (LD). In order to investigate the function of LDI, and the consequences for starch metabolism of reduced LDI activity, transgenic barley plants designed to downregulate LDI by antisense were generated. Homozygous antisense lines with reduced LDI protein level and activity were analysed and found to have enhanced free LD activity in both developing and germinating grains. In addition the antisense lines showed unpredicted pleiotropic effects on numerous enzyme activities, for example, alpha- and beta-amylases and starch synthases. Analysis of the starch showed much reduced numbers of the small B-type starch granules, as well as reduced amylose relative to amylopectin levels and reduced total starch. The chain length distribution of the amylopectin was modified with less of the longer chains (>25 units) and enhanced number of medium chains (10-15 units). These results suggest an important role for LDI and LD during starch synthesis as well as during starch breakdown.  相似文献   

5.
A DNA fragment containing the exons 16, 17 and intron 16 of the limit dextrinase gene was cloned using a 654 bp cDNA as probe. Intron 16 contained a simple sequence repeat (microsatellite). PCR primers were designed to amplify that microsatellite. Using these primers, the limit dextrinase gene was mapped to the short arm of chromosome 1 (7H) using 150 DH lines from the Steptoe × Morex mapping population. This gene co-segregated with the RFLP marker ABC154A. QTLs for malt extract, -amylase activity, diastatic power and fine-coarse difference previously mapped in the North American Barley Genome Mapping Project have been located in this chromosome region. Five limit dextrinase alleles were detected in 31 barley cultivars with a PIC of 0.75. Ten different alleles/genes were identified in 23 uncultivated Hordeum species or subspecies using these microsatellite primers. The primers also amplified one fragment from wheat and two from oat. This microsatellite should be useful for marker-assisted selection for malting quality.  相似文献   

6.
Contaminating fungi, such as Fusarium species, produce metabolites that may interfere with normal barley grain proteolysis pattern and consequently, affect malt and beer quality. Protein compositional changes of an initial mixture of 20 % Fusarium culmorum infected and 80 % noninfected mature barley grains and respective malt are reported here. Proteolytic activity of infected barley grains (IBG) and respective malt, with controls (uninfected grains), were characterized using protease inhibitors from each class of this enzyme, including metallo-, cysteine, serine, and aspartic proteases, as well as uninhibited protease fractions. The proteins were extracted according to the Osborne fractionation and separated by size exclusion chromatography. Additionally, two-dimensional (2D) gel electrophoresis (GE) was used to analyze hydrophobic storage proteins isolated from the control and IBG. Analyses revealed that F. culmorum IBG had a twofold increase of proteolytic activity compared to the control sample, which showed an increase in all protease classes with aspartic proteases dominating. Infected and control malt grains were comparable with cysteine proteases representing almost 50 % of all proteolytic enzymes detected. Protein extractability was 31 % higher in IBG compared to the control barley. The albumin fraction showed that several metabolic proteins decreased and increased at different rates during infection and malting, thus showing a complex F. culmorum infection interdependence. Prolamin storage proteins were more hydrophobic during barley fungal infection. F. culmorum interfered with the grain hydrolytic protein profile, thereby altering the grain's protein content and quality.  相似文献   

7.
The limit dextrinase inhibitor (LDI) from barley seeds acts specifically on limit dextrinase (LD), an endogenous starch debranching enzyme. LDI is a 14 kDa hydrophobic protein containing four disulfide bonds and one unpaired thiol group previously found to be either glutathionylated or cysteinylated. It is a member of the so-called CM-protein family that includes α-amylase and serine protease inhibitors, which have been extremely challenging to produce recombinantly in functional form and in good yields. Here, LDI is produced in very high yields by secretory expression by Pichia pastoris applying high cell-density fermentation in a 5L fed-batch bioreactor. Thus about 200mg of LDI, which showed twofold higher inhibitory activity towards LD than LDI from barley seeds, was purified from 1L of culture supernatant by His-tag affinity chromatography and gel filtration. Electrospray ionization mass spectrometry verified the identity of the produced glutathionylated LDI-His(6). At a 1:1M ratio the recombinant LDI completely inhibited hydrolysis of pullulan catalyzed by 5-10 nM LD. LDI retained stability in the pH 2-12 range and at pH 6.5 displayed a half-life of 53 and 33 min at 90 and 93°C, respectively. The efficient heterologous production of LDI suggests secretory expression by P. pastoris to be a promising strategy to obtain other recombinant CM-proteins.  相似文献   

8.
转trxS基因大麦发芽种子水解酶活性的变化   总被引:1,自引:1,他引:0  
卫丽  孔维威  尹钧 《生物工程学报》2008,24(9):1526-1530
利用转基因技术是改良大麦品种品质的有效途径.研究了转trxS基因对大麦种子发芽过程中水解酶活性的影响,结果表明转基因种子中α-淀粉酶、自由态β-淀粉酶和极限糊精酶的活性比未转基因种子高;转基因种子醇溶蛋白和谷蛋白中巯基的含量提高,说明该基因能够表达,为大麦育种和品质改良提供新的途径.  相似文献   

9.
Water deficient or drought stress is a major factor causing deterioration or instability of malt barley quality. In the studies on the influence of drought stress during grain filling on malt quality formation or metabolic changes, it is quite difficult to obtain the uniform plant individuals and water condition in pot or field experiments. In this study, we combined barley spike in vitro culture and PEG-6000 simulated drought to determine the genotypic difference in the changes of grain metabolites and the expression level of the genes encoding β-amylase and β-glucan using two Tibetan wild barley accessions and two cultivated genotypes differing in malt quality stability under drought stress. Under simulated drought, grain weight and β-glucan content were dramatically reduced and β-amylase activity was increased, and a lot of metabolites were markedly changed for all genotypes. On the whole, the changes were relatively smaller in the wild barley. Meanwhile, the expressions of Bmy1 related to β-amylase synthesis and GSL1, GSL4 and GSL7 related to β-glucan synthesis were up-regulated and down-regulated under drought stress, respectively, being consistent with the changes of β-amylase activity and β-glucan content in the four barley genotypes. The current results showed that PEG-6000 simulated drought and spike in intro culture may provide the basically similar information on grain development or metabolites as do in the field experiments, and it is suitable for use in studies on the influence of drought stress on quality traits during grain filling stage of barley or other cereal crops.  相似文献   

10.
Barley limit dextrinase [Hordeum vulgare limit dextrinase (HvLD)] catalyzes the hydrolysis of α-1,6 glucosidic linkages in limit dextrins. This activity plays a role in starch degradation during germination and presumably in starch biosynthesis during grain filling. The crystal structures of HvLD in complex with the competitive inhibitors α-cyclodextrin (CD) and β-CD are solved and refined to 2.5 Å and 2.1 Å, respectively, and are the first structures of a limit dextrinase. HvLD belongs to glycoside hydrolase 13 family and is composed of four domains: an immunoglobulin-like N-terminal eight-stranded β-sandwich domain, a six-stranded β-sandwich domain belonging to the carbohydrate binding module 48 family, a catalytic (β/α)8-like barrel domain that lacks α-helix 5, and a C-terminal eight-stranded β-sandwich domain of unknown function. The CDs are bound at the active site occupying carbohydrate binding subsites + 1 and + 2. A glycerol and three water molecules mimic a glucose residue at subsite − 1, thereby identifying residues involved in catalysis. The bulky Met440, a unique residue at its position among α-1,6 acting enzymes, obstructs subsite − 4. The steric hindrance observed is proposed to affect substrate specificity and to cause a low activity of HvLD towards amylopectin. An extended loop (Asp513-Asn520) between β5 and β6 of the catalytic domain also seems to influence substrate specificity and to give HvLD a higher affinity for α-CD than pullulanases. The crystal structures additionally provide new insight into cation sites and the concerted action of the battery of hydrolytic enzymes in starch degradation.  相似文献   

11.
Heterologous production of large multidomain proteins from higher plants is often cumbersome. Barley limit dextrinase (LD), a 98 kDa multidomain starch and α-limit dextrin debranching enzyme, plays a major role in starch mobilization during seed germination and is possibly involved in starch biosynthesis by trimming of intermediate branched α-glucan structures. Highly active barley LD is obtained by secretory expression during high cell-density fermentation of Pichia pastoris. The LD encoding gene fragment without signal peptide was subcloned in-frame with the Saccharomyces cerevisiae α-factor secretion signal of the P. pastoris vector pPIC9K under control of the alcohol oxidase 1 promoter. Optimization of a fed-batch fermentation procedure enabled efficient production of LD in a 5-L bioreactor, which combined with affinity chromatography on β-cyclodextrin–Sepharose followed by Hiload Superdex 200 gel filtration yielded 34 mg homogenous LD (84% recovery). The identity of the recombinant LD was verified by N-terminal sequencing and by mass spectrometric peptide mapping. A molecular mass of 98 kDa was estimated by SDS–PAGE in excellent agreement with the theoretical value of 97419 Da. Kinetic constants of LD catalyzed pullulan hydrolysis were found to Km,app = 0.16 ± 0.02 mg/mL and kcat,app = 79 ± 10 s?1 by fitting the uncompetitive substrate inhibition Michaelis–Menten equation, which reflects significant substrate inhibition and/or transglycosylation. The resulting catalytic coefficient, kcat,app/Km,app = 488 ± 23 mL/(mg s) is 3.5-fold higher than for barley malt LD. Surface plasmon resonance analysis showed α-, β-, and γ-cyclodextrin binding to LD with Kd of 27.2, 0.70, and 34.7 μM, respectively.  相似文献   

12.
Though alcoholic beverages are widely made with barley malt in Western countries, as well as in Asiatic countries today, alcoholic beverages are rarely made with sprouting rice. Rice wines were obtained from cooked nonglutinous rice using sprouting rice and barley malt as saccharifying agents with compressed baker's yeast and Kyokai no. 9 yeast, and a comparative study was conducted of the resulting rice wines. The saccharifying activity of barley malt was higher than that of sprouting rice. The amounts of ethyl alcohol, volatile aromatic components, and reducing sugars in the rice wine made with barley malt were higher than those in the wine made with sprouting rice. The rice wine made with barley malt was faintly brownish in color and had heavy, complicated and vulgar characteristics. By contrast, sprouting rice wine was colorless and had light, simple and refined characteristics in terms of both aroma and taste. Sprouting rice wine made with Kyokai no. 9 yeast contained about 8% ethanol with an acidity of around 4.1. Sprouting rice was found to be applicable as a saccharifying agent for ethanol fermentation, as is barley malt. The quality of the sprouting rice wine was further improved through the use of Kyokai no. 9 yeast.  相似文献   

13.
The process of breeding superior varieties for the agricultural industry is lengthy and expensive. Plant metabolites may act as markers of quality traits, potentially expediting the appraisal of experimental lines during breeding. Here, we evaluated the utility of metabolites as markers by assessing metabolic variation influenced by genetic and environmental factors in an advanced breeding setting and in relation to the phenotypic distribution of 20 quality traits. Nontargeted liquid chromatography–mass spectrometry metabolite profiling was performed on barley (Hordeum vulgare L.) grain and malt from 72 advanced malting barley lines grown at two distinct but climatically similar locations, with 2‐row and 6‐row barley as the main genetic factors. 27 420 molecular features were detected, and the metabolite and quality trait profiles were similarly influenced by genotype and environment; however, malt was more influenced by genotype compared with barley. An O2PLS model characterized molecular features and quality traits that covaried, and 1319 features associated with at least one of 20 quality traits. An indiscriminant MS/MS acquisition and novel data analysis method facilitated the identification of metabolites. The analysis described 216 primary and secondary metabolites that correlated with multiple quality traits and included amines, amino acids, alkaloids, polyphenolics and lipids. The mechanisms governing quality trait–metabolite associations were interpreted based on colocalization to genetic markers and their gene annotations. The results of this study support the hypothesis that metabolism and quality traits are co‐influenced by relatively narrow genetic and environmental factors and illustrate the utility of grain metabolites as functional markers of quality traits.  相似文献   

14.
α-Amylase, limit dextrinase and α-glucosidase were induced by gibberellic acid in barley grain from which the embryos had been excised. The responses to different concentrations of gibberellic acid were similar for the three carbohydrases. However α-glucosidase activity increased before the other two enzymes, and a low level of α-glucosidase was found in ungerminated grain. Experiments with cycloheximide and density-labelling in deuterium oxide suggest that the observed increases in activity are the result of de novo protein synthesis. The induction of these enzymes was reduced by pre-incubation in actinomycin D.  相似文献   

15.
Molecular details underlying regulation of starch mobilization in cereal seed endosperm remain unknown despite the paramount role of this process in plant growth. The structure of the complex between the starch debranching enzyme barley limit dextrinase (LD), hydrolyzing α-1,6-glucosidic linkages, and its endogenous inhibitor (LDI) was solved at 2.7 Å. The structure reveals an entirely new and unexpected binding mode of LDI as compared with previously solved complex structures of related cereal type family inhibitors (CTIs) bound to glycoside hydrolases but is structurally analogous to binding of dual specificity CTIs to proteases. Site-directed mutagenesis establishes that a hydrophobic cluster flanked by ionic interactions in the protein-protein interface is vital for the picomolar affinity of LDI to LD as assessed by analysis of binding by using surface plasmon resonance and also supported by LDI inhibition of the enzyme activity. A phylogenetic analysis identified four LDI-like proteins in cereals among the 45 sequences from monocot databases that could be classified as unique CTI sequences. The unprecedented binding mechanism shown here for LDI has likely evolved in cereals from a need for effective inhibition of debranching enzymes having characteristic open active site architecture. The findings give a mechanistic rationale for the potency of LD activity regulation and provide a molecular understanding of the debranching events associated with optimal starch mobilization and utilization during germination. This study unveils a hitherto not recognized structural basis for the features endowing diversity to CTIs.  相似文献   

16.
Several barley (Hordeum vulgare) cultivars are used in the production of malt for brewing. The malt quality depends on the cultivar, its growth and storage conditions, and the industrial process. To enhance studies on malt quality, we embarked on a proteome analysis approach for barley seeds and malt. The proteome analysis includes two-dimensional (2-D) gel electrophoresis, mass spectrometry, and bioinformatics for identification of selected proteins. This project initially focused on proteins in major spots in the neutral isoelectric point range (pI 4-7) including selected spots that differ between four barley cultivars. The excellent malting barley cultivar Barke was used as reference. Cultivar differences in the 2-D gel spot patterns are observed both at the seed and the malt level. In seed extracts one of the proteins causing variations has been identified as an alpha-amylase/trypsin inhibitor. In malt extracts multiple forms of the alpha-amylase isozyme 2 have been identified in varying cultivar characteristic spot patterns. The present identification of proteins in major spots from 2-D gels includes 27 different proteins from 42 spots from mature seed extract, while only three specific proteins were identified by analysing 13 different spots from the corresponding malt extract. It is suggested that post-translational processing causes the same protein to occur in different spots.  相似文献   

17.
Barley limit dextrinase (LD) that catalyses hydrolysis of α-1,6 glucosidic linkages in starch-derived dextrins is inhibited by limit dextrinase inhibitor (LDI) found in mature seeds. LDI belongs to the chloroform/methanol soluble protein family (CM-protein family) and has four disulfide bridges and one glutathionylated cysteine. Here, thioredoxin is shown to progressively reduce disulfide bonds in LDI accompanied by loss of activity. A preferential reduction of the glutathionylated cysteine, as indicated by thiol quantification and molecular mass analysis using electrospray ionisation mass spectrometry, was not related to LDI inactivation. LDI reduction is proposed to cause conformational destabilisation leading to loss of function.  相似文献   

18.
TJ March  D Richter  T Colby  A Harzen  J Schmidt  K Pillen 《Proteomics》2012,12(18):2843-2851
Malted barley is an important ingredient used in the brewing and distilling industry worldwide. In this study, we used a proteomics approach to investigate the biochemical function of previously identified quantitative trait loci (QTLs) on barley chromosomes 1H and 4H that influence malting quality. Using a subset of barley introgression lines containing wild barley (Hordeum vulgare ssp. spontaneum) alleles at these QTLs, we validated that wild barley alleles at the chromosome 1H QTL reduced overall malting quality, whereas wild barley alleles at the chromosome 4H QTL improved the malting quality parameters α-amylase activity, VZ45, and Kolbach index compared to the control genotype Scarlett. 2DE was used to detect changes in protein expression during the first 72 h of micromalting associated with these QTLs. In total, 16 protein spots showed a significant change in expression between the introgression lines and Scarlett, of which 14 were successfully identified with MS. Notably, the wild barley alleles in the line containing the chromosome 4H QTL showed a sixfold increased expression of a limit dextrinase inhibitor. The possible role of the identified proteins in malting quality is discussed. The knowledge gained will assist ongoing research toward cloning the genes underlying these important QTL.  相似文献   

19.
Summary Grain and straw yields of barley improved significantly due to N–S, row orientation, 30 cm row spacing and 90 kg/ha seed rate. A plant rectangularity of 13.6 was found most conducive for grain and straw yeilds of barley. None of the malt quality characters were affected wignificantly due to row orientation. A row spacing of 30 cm and a seed rate of 90 kg/ha improved the malt quality characters of barley. Increase in protein percentage at 30 cm row spacing deteriorated the malt quality.  相似文献   

20.

Objectives

Exogenous phytase improved the activity of hydrolases to decrease the malting time.

Results

Treatment with phytase during barley steeping increased activity of hydrolases (α-/β-amylase, proteinase, β-glucanase and xylanase) in green malt. Maximal activity was observed for α-/β-amylase, β-glucanase and xylanase with 0.8 U phytase/g and proteinase with 1.2 U phytase/g. Phytase promoted acrospire growth of green malt and reduced malting process with 0.8 U phytase/g in 96 h, which is 24 h less than the control. No significant variation of malt quality was found between control malt and malt treated with 0.8 U/g or 1.2 U phytase/g (P > 0.05), which makes application of exogenous phytase during steeping process as a good option for reducing malting time.

Conclusion

Adding phytase during steeping process increases the activity of hydrolases, which reduces malting time without impacting on malt quality.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号