首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Xanthophyllomyces dendrorhous is a promising source of natural astaxanthin due to its ability to accumulate high amounts of astaxanthin. This study showed that 6-benzylaminopurine (6-BAP) is an effective substrate that enhances cell biomass and astaxanthin accumulation in X. dendrorhous. In the current study, the biomass and astaxanthin content in X. dendrorhous were determined to be improved by 21.98% and 24.20%, respectively, induced by 6-BAP treatments. To further understand the metabolic responses of X. dendrorhous to 6-BAP, time-course metabolomics and gene expression levels of X. dendrorhous cultures with and without 6-BAP feeding were investigated. Metabolome analysis revealed that 6-BAP facilitated glucose consumption, promoted the glycolysis, suppressed the TCA cycle, drove carbon flux of acetyl-CoA into fatty acid and mevalonate biosynthesis, and finally facilitated the formation of astaxanthin. ROS analysis suggested that the antioxidant mechanism in X. dendrorhous can be induced by 6-BAP. Additionally, the process of 6-BAP significantly upregulated the expression of six key genes involved in pathways related to astaxanthin biosynthesis. This research demonstrates the metabolomic mechanism of phytohormone stimulation of astaxanthin production iNn X. dendrorhous and presents a new strategy to improve astaxanthin production to prevent the dilemma of choosing between accumulation of astaxanthin and cell biomass.  相似文献   

2.
Astaxanthin is a valuable carotenoid that is widely used in the aquaculture, food, pharmaceutical, and cosmetic industries. Xanthophyllomyces dendrorhous is a carotenoid-synthesizing yeast strain that produces astaxanthin as its main pigment. Although metabolic engineering using gene manipulation is a valuable way to improve astaxanthin production, a gene expression system for X. dendrorhous has been poorly developed. In this study, three known promoters of X. dendrorhous, glycerol-3-phosphate dehydrogenase (gpd) promoter (Pgpd), glucose dehydrogenase (gdh) promoter (Pgdh), and actin (act) promoter (Pact), were evaluated for use in the overexpression of target proteins using green fluorescence protein (GFP) as an expression level indicator protein. The actin promoter, Pact, showed the highest expression level of GFP when compared with Pgpd and Pgdh. Additionally, to obtain new promoters for higher expression of target protein in X. dendrorhous, intracellular GFP intensity was evaluated for 13 candidate promoters. An alcohol dehydrogenase promoter, Padh4, showed more efficient expression of GFP rather than Pact. Overexpression of crtE gene encoding rate-limiting enzyme of carotenoid synthesis under the adh4 promoter yielded an increase in intracellular astaxanthin content of about 1.7-fold compared with the control strain. The promoters identified in this study must be useful for improving carotenoids production in X. dendrorhous.  相似文献   

3.

The ratio of carbon to nitrogen (C/N) in media plays a crucial role in the production of microbial carotenoids. However, the effects of a high C/N ratio on carotenoid production are ambiguous, and the mechanism of how C/N ratio affects astaxanthin accumulation in X. dendrorhous is unclear. In this study, the influence of C/N ratio on astaxanthin biosynthesis in X. dendrorhous at a fixed nitrogen concentration was investigated, and comparative proteomics were applied to address how C/N ratio affects cell growth and astaxanthin accumulation in X. dendrorhous. The results showed that cell growth and astaxanthin accumulation in X. dendrorhous were strongly related to the ratio of carbon to nitrogen with increasing C/N ratio in medium. However, the astaxanthin content per cell showed an inverse relationship, decreasing with an increasing C/N ratio. Differential proteomics showed the proteins with highest degree of change in expression under varying C/N ratios were mainly involved in carbohydrate metabolic pathways and carotenogenesis metabolism. In addition, several redox- and stress-associated proteins were up-regulated along with the carotenogenesis proteins, implying the environmental stress may affect metabolism and astaxanthin synthesis. A possible regulatory mechanism in response to glucose in X. dendrorhous is discussed.

  相似文献   

4.
Astaxanthin production in the wild strain Xanthophyllomyces dendrorhous TISTR 5730 was investigated using different mustard waste media, including mustard waste residue extract (MRE), mustard waste residue hydrolysate (MRH), mustard waste precipitated extract (MPE), and mustard waste precipitated hydrolysate (MPH). The growth of X. dendrorhous and the production of astaxanthin were dependent on the type and initial concentrations of mustard waste media. The MPH medium was the best substrate resulting in yields of biomass and astaxanthin of 19.6 g/L and 25.8 mg/L, respectively, under optimal conditions. MPH medium improved astaxanthin production 11-fold compared to the commonly used commercial yeast malt medium, and 1.3–2.1-fold compared to other mustard waste media.  相似文献   

5.
Phaffia rhodozyma (sexual form, Xanthophyllomyces dendrorhous) is a basidiomycetous yeast that has been found in tree exudates in the Northern Hemisphere at high altitudes and latitudes. This yeast produces astaxanthin, a carotenoid pigment with biotechnological importance because it is used in aquaculture for fish pigmentation. We isolated X. dendrorhous from the Southern Hemisphere (Patagonia, Argentina), where it was associated with fruiting bodies of Cyttaria hariotii, an ascomycetous parasite of Nothofagus trees. We compared internal transcribed spacer (ITS)-based phylogenies of P. rhodozyma and its tree host (Betulaceae, Corneaceae, Fagaceae, and Nothofagaceae) and found them to be generally concordant, suggesting that different yeast lineages colonize different trees and providing an explanation for the phylogenetic distance observed between the type strains of P. rhodozyma and X. dendrorhous. We hypothesize that the association of Xanthophyllomyces with Cyttaria derives from a previous association of the yeast with Nothofagus, and the sister relationship between Nothofagaceae and Betulaceae plus Fagaceae correlates with the phylogeny of X. dendrorhous strains originating from these three plant families. The two most basal strains of X. dendrorhous are those isolated from Cornus, an ancestral genus in the phylogenetic analysis of the host trees. Thus, we question previous conclusions that P. rhodozyma and X. dendrorhous represent different species since the polymorphisms detected in the ITS and intergenic spacer sequences can be attributed to intraspecific variation associated with host specificity. Our study provides a deeper understanding of Phaffia biogeography, ecology, and molecular phylogeny. Such knowledge is essential for the comprehension of many aspects of the biology of this organism and will facilitate the study of astaxanthin production within an evolutionary and ecological framework.  相似文献   

6.
A novel population of the biotechnologically important yeast Xanthophyllomyces dendrorhous, the sexual stage of Phaffia rhodozyma, has been recently isolated for the first time in the southern Hemisphere (Patagonia, Argentina). The aim of the present work was to phenotypically and genotypically characterize two representative strains of this new population, and assess such strains as a potential biotechnological source of astaxanthin, fatty acids and extracellular enzymes. Minor variations were found in physiological tests. PCR fingerprinting studies (MSP-PCR) showed the main differences between X. dendrorhous Patagonian and Type strains. Patagonian strains accumulated a xanthophyll-like pigment, which was identified as astaxanthin. These strains showed low fatty acids content (mainly polyunsaturated fatty acids) and, of a total of six extracellular enzymes tested, only produced amylase. Genetic differences between Patagonian and collection X. dendrorhous strains could be explained by geographic isolation and habitat specificity.  相似文献   

7.
8.
The yeast Xanthophyllomyces dendrorhous is one of the rare organisms which can synthesize the commercially interesting carotenoid astaxanthin. However, astaxanthin yield in wild-type and also in classical mutants is still too low for an attractive bioprocess. Therefore, we combined classical mutagenesis with genetic engineering of the complete pathway covering improved precursor supply for carotenogenesis, enhanced metabolite flow into the pathway, and efficient conversion of intermediates into the desired end product astaxanthin. We also constructed new transformation plasmids for the stepwise expression of the genes of 3-hydroxymethyl-3-glutaryl coenzyme A reductase, geranylgeranyl pyrophosphate synthase, phytoene synthase/lycopene cyclase, and astaxanthin synthase. Starting from two mutants with a 15-fold higher astaxanthin, we obtained transformants with an additional 6-fold increase in the final step of pathway engineering. Thus, a maximum astaxanthin content of almost 9 mg per g dry weight was reached in shaking cultures. Under optimized fermenter conditions, astaxanthin production with these engineered transformants should be comparable to Haematococcus pluvialis, the leading commercial producer of natural astaxanthin.  相似文献   

9.
The yeast Xanthophyllomyces dendrorhous synthesizes the carotenoid astaxanthin, which has applications in biotechnology because of its antioxidant and pigmentation properties. However, wild-type strains produce too low amounts of carotenoids to be industrially competitive. Considering this background, it is indispensable to understand how the synthesis of astaxanthin is controlled and regulated in this yeast. In this work, the steps leading to the synthesis of the carotenoid precursor geranylgeranyl pyrophosphate (GGPP, C20) in X. dendrorhous from isopentenyl pyrophosphate (IPP, C5) and dimethylallyl pyrophosphate (DMAPP, C5) was characterized. Two prenyl transferase encoding genes, FPS and crtE, were expressed in E. coli. The enzymatic assays using recombinant E. coli protein extracts demonstrated that FPS and crtE encode a farnesyl pyrophosphate (FPP, C15) synthase and a GGPP-synthase, respectively. X. dendrorhous FPP-synthase produces geranyl pyrophosphate (GPP, C10) from IPP and DMAPP and FPP from IPP and GPP, while the X. dendrorhous GGPP-synthase utilizes only FPP and IPP as substrates to produce GGPP. Additionally, the FPS and crtE genes were over-expressed in X. dendrorhous, resulting in an increase of the total carotenoid production. Because the parental strain is diploid, the deletion of one of the alleles of these genes did not affect the total carotenoid production, but the composition was significantly altered. These results suggest that the over-expression of these genes might provoke a higher carbon flux towards carotenogenesis, most likely involving an earlier formation of a carotenogenic enzyme complex. Conversely, the lower carbon flux towards carotenogenesis in the deletion mutants might delay or lead to a partial formation of a carotenogenic enzyme complex, which could explain the accumulation of astaxanthin carotenoid precursors in these mutants. In conclusion, the FPS and the crtE genes represent good candidates to manipulate to favor carotenoid biosynthesis in X. dendrorhous.  相似文献   

10.
The crtYB locus was used as an integrative platform for the construction of specific carotenoid biosynthetic mutants in the astaxanthin-producing yeast Xanthophyllomyces dendrorhous. The crtYB gene of X. dendrorhous, encoding a chimeric carotenoid biosynthetic enzyme, could be inactivated by both single and double crossover events, resulting in non-carotenoid-producing transformants. In addition, the crtYB gene, linked to either its homologous or a glyceraldehyde-3-phosphate dehydrogenase promoter, was overexpressed in the wild type and a β-carotene-accumulating mutant of X. dendrorhous. In several transformants containing multiple copies of the crtYB gene, the total carotenoid content was higher than in the control strain. This increase was mainly due to an increase of the β-carotene and echinone content, whereas the total content of astaxanthin was unaffected or even lower. Overexpression of the phytoene synthase-encoding gene (crtI) had a large impact on the ratio between mono- and bicyclic carotenoids. Furthermore, we showed that in metabolic engineered X. dendrorhous strains, the competition between the enzymes phytoene desaturase and lycopene cyclase for lycopene governs the metabolic flux either via β-carotene to astaxanthin or via 3,4-didehydrolycopene to 3-hydroxy-3′-4′-didehydro-β-ψ-caroten-4-one (HDCO). The monocylic carotenoid torulene and HDCO, normally produced as minority carotenoids, were the main carotenoids produced in these strains.  相似文献   

11.

Background

Xanthophyllomyces dendrorhous is a basal agaricomycete with uncertain taxonomic placement, known for its unique ability to produce astaxanthin, a carotenoid with antioxidant properties. It was the aim of this study to elucidate the organization of its CoA-derived pathways and to use the genomic information of X. dendrorhous for a phylogenomic investigation of the Basidiomycota.

Results

The genome assembly of a haploid strain of Xanthophyllomyces dendrorhous revealed a genome of 19.50 Megabases with 6385 protein coding genes. Phylogenetic analyses were conducted including 48 fungal genomes. These revealed Ustilaginomycotina and Agaricomycotina as sister groups. In the latter a well-supported sister-group relationship of two major orders, Polyporales and Russulales, was inferred. Wallemia occupies a basal position within the Agaricomycotina and X. dendrorhous represents the basal lineage of the Tremellomycetes, highlighting that the typical tremelloid parenthesomes have either convergently evolved in Wallemia and the Tremellomycetes, or were lost in the Cystofilobasidiales lineage. A detailed characterization of the CoA-related pathways was done and all genes for fatty acid, sterol and carotenoid synthesis have been assigned.

Conclusions

The current study ascertains that Wallemia with tremelloid parenthesomes is the most basal agaricomycotinous lineage and that Cystofilobasidiales without tremelloid parenthesomes are deeply rooted within Tremellomycetes, suggesting that parenthesomes at septal pores might be the core synapomorphy for the Agaricomycotina. Apart from evolutionary insights the genome sequence of X. dendrorhous will facilitate genetic pathway engineering for optimized astaxanthin or oxidative alcohol production.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1380-0) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
Astaxanthin is a red xanthophyll (oxygenated carotenoid) with large importance in the aquaculture, pharmaceutical, and food industries. The green alga Haematococcus pluvialis and the heterobasidiomycetous yeast Xanthophyllomyces dendrorhous are currently known as the main microorganisms useful for astaxanthin production at the industrial scale. The improvement of astaxanthin titer by microbial fermentation is a requirement to be competitive with the synthetic manufacture by chemical procedures, which at present is the major source in the market. In this review, we show how the isolation of new strains of X. dendrorhous from the environment, the selection of mutants by the classical methods of random mutation and screening, and the rational metabolic engineering, have provided improved strains with higher astaxanthin productivity. To reduce production costs and enhance competitiveness from an industrial point of view, low-cost raw materials from industrial and agricultural origin have been adopted to get the maximal astaxanthin productivity. Finally, fermentation parameters have been studied in depth, both at flask and fermenter scales, to get maximal astaxanthin titers of 4.7 mg/g dry cell matter (420 mg/l) when X. dendrorhous was fermented under continuous white light. The industrial scale-up of this biotechnological process will provide a cost-effective method, alternative to synthetic astaxanthin, for the commercial exploitation of the expensive astaxanthin (about $2,500 per kilogram of pure astaxanthin).  相似文献   

14.
Xanthophyllomyces dendrorhous is a basidiomycete yeast that produces carotenoids, mainly astaxanthin. Astaxanthin is an organic pigment of commercial interest due to its antioxidant and coloring properties. X. dendrorhous has a functional SREBP pathway, and the Sre1 protein is the SREBP homolog in this yeast. However, how sterol regulatory element (Sre)1 promotes the biosynthesis of sterols and carotenoids in X. dendrorhous is unknown. In this work, comparative RNA-sequencing analysis between modified X. dendrorhous strains that have an active Sre1 protein and the WT was performed to identify Sre1-dependent genes. In addition, Sre1 direct target genes were identified through ChIP combined with lambda exonuclease digestion (ChIP-exo) assays. SRE motifs were detected in the promoter regions of several Sre1 direct target genes and were consistent with the SREs described in other yeast species. Sre1 directly regulates genes related to ergosterol biosynthesis as well as genes related to the mevalonate (MVA) pathway, which synthesizes the building blocks of isoprenoids, including carotenoids. Two carotenogenic genes, crtE and crtR, were also identified as Sre1 direct target genes. Thus, carotenogenesis in X. dendrorhous is regulated by Sre1 through the regulation of the MVA pathway and the regulation of the crtE and crtR genes. As the crtR gene encodes a cytochrome P450 reductase, Sre1 regulates pathways that include cytochrome P450 enzymes, such as the biosynthesis of carotenoids and sterols. These results demonstrate that Sre1 is a sterol master regulator that is conserved in X. dendrorhous.  相似文献   

15.
The study evaluated the effect of media based on plant extracts: potato, carrot and barley malt broth, on growth and astaxanthin synthesis by yeast Xanthophyllomyces dendrorhous DSM 5626 and its mutants. The carrot medium promoted carotenogenesis most effectively. In cultures on this medium the highest volumetric and cellular concentrations of astaxanthin were recorded for four out of five tested strains. Also the share of astaxanthin in the total carotenoids produced by the tested strains was the highest.  相似文献   

16.

Background

Astaxanthin is a potent antioxidant with increasing biotechnological interest. In Xanthophyllomyces dendrorhous, a natural source of this pigment, carotenogenesis is a complex process regulated through several mechanisms, including the carbon source. X. dendrorhous produces more astaxanthin when grown on a non-fermentable carbon source, while decreased astaxanthin production is observed in the presence of high glucose concentrations. In the present study, we used a comparative proteomic and metabolomic analysis to characterize the yeast response when cultured in minimal medium supplemented with glucose (fermentable) or succinate (non-fermentable).

Results

A total of 329 proteins were identified from the proteomic profiles, and most of these proteins were associated with carotenogenesis, lipid and carbohydrate metabolism, and redox and stress responses. The metabolite profiles revealed 92 metabolites primarily associated with glycolysis, the tricarboxylic acid cycle, amino acids, organic acids, sugars and phosphates. We determined the abundance of proteins and metabolites of the central pathways of yeast metabolism and examined the influence of these molecules on carotenogenesis.Similar to previous proteomic-stress response studies, we observed modulation of abundance from several redox, stress response, carbohydrate and lipid enzymes. Additionally, the accumulation of trehalose, absence of key ROS response enzymes, an increased abundance of the metabolites of the pentose phosphate pathway and tricarboxylic acid cycle suggested an association between the accumulation of astaxanthin and oxidative stress in the yeast. Moreover, we observed the increased abundance of late carotenogenesis enzymes during astaxanthin accumulation under succinate growth conditions.

Conclusions

The use of succinate as a carbon source in X. dendrorhous cultures increases the availability of acetyl-CoA for the astaxanthin production compared with glucose, likely reflecting the positive regulation of metabolic enzymes of the tricarboxylic acid and glyoxylate cycles. The high metabolite level generated in this pathway could increase the cellular respiration rate, producing reactive oxygen species, which induces carotenogenesis.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1484-6) contains supplementary material, which is available to authorized users.  相似文献   

17.
Zeaxanthin is an essential nutrient for prevention of macular degeneration. However, it is limited in our diet. For the production of zeaxanthin, we have engineered zeaxanthin synthesis into a carotenoid mutant of Xanthophyllomyces dendrorhous which is blocked in astaxanthin synthesis and accumulates β-carotene instead. Two strategies were followed to reach high-yield zeaxanthin synthesis. Total carotenoid synthesis was increased by over-expression of genes HMGR, crtE, and crtYB encoding for limiting enzymes in the pathway leading to and into carotenoid biosynthesis. Then bacterial genes crtZ were used to extend the pathway from β-carotene to zeaxanthin in this mutant. The increase of total carotenoids and the formation of zeaxanthin is dependent on the number of gene copies of crtYB and crtZ integrated into the X. dendrorhous upon transformation. The highest zeaxanthin content around 500 μg/g dw was reached by shaking flask cultures after codon optimization of crtZ for Xanthophyllomyces. Stabilization of carotenoid and zeaxanthin formation in the final transformant in the absence of selection agents was achieved after passing through a sexual cycle and germination of basidiospores. The values for the transformant before and after stabilization were very similar resembling about 70 % of total carotenoids and corresponding to a conversion rate of 80 % for hydroxylation of β-carotene to zeaxanthin. The stabilized transformant allowed experimental small-scale fermentation yielding X. dendrorhous cells with a zeaxanthin content similar to the shaking flask cultures. Our result demonstrates the potential of X. dendrorhous for its development as a zeaxanthin producer and its suitability for large-scale fermentation.  相似文献   

18.
Phaffia rhodozyma was isolated by Herman Phaff in the 1960s, during his pioneering studies of yeast ecology. Initially, the yeast was isolated from limited geographical regions, but isolates were subsequently obtained from Russia, Chile, Finland, and the United States. The biological diversity of the yeast is more extensive than originally envisioned by Phaff and his collaborators, and at least two species appear to exist, including the anamorph Phaffia rhodozyma and the teleomorph Xanthophyllomyces dendrorhous. The yeast has attracted considerable biotechnological interest because of its ability to synthesize the economically important carotenoid astaxanthin (3,3-dihydroxy-, -carotene-4,4-dione) as its major pigment. This property has stimulated research on the biology of the yeast as well as development of the yeast as an industrial microorganism for astaxanthin production by fermentation. Our laboratory has isolated several mutants of the yeast affected in carotenogenesis, giving colonies a vivid array of pigmentation. We have found that nutritional and environmental conditions regulate astaxanthin biosynthesis in the yeast, and have demonstrated that astaxanthin protects P. rhodozyma from damage by reactive oxygen species. We proposed in the 1970s that P. rhodozyma could serve as an economically important pigment source in animal diets including salmonids, lobsters, and the egg yolks of chickens and quail, in order to impart characteristic and desirable colors. Although P. rhodozyma/Xanthomyces dendrorhous has been studied by various researchers for nearly 30 years, it still attracts interest from yeast biologists and biotechnologists. There is a bright and colorful outlook for P. rhodozyma/X. dendrorhous from fundamental and applied research perspectives.  相似文献   

19.
Xanthophyllomyces dendrorhous (formerly Phaffia rhodozyma) in shake-flask cultures was exposed to 10–20 mmol/L H2O2 at various culture stages, and the astaxanthin production was significantly increased by H2O2 fed at 0 or 24 h (exponential phase), but only slightly at 48 h (near stationary phase). The astaxanthin production was enhanced most significantly with double feeding of 10 mmol/L H2O2 at 0 and 24 h, reaching a cellular content of 1.30 mg/g cell and a volumetric yield of 10.4 mg/L, which were 83 and 65% higher, respectively, than those of the control (0.71 mg/g cell and 6.3 mg/L). The intracellular catalase (CAT) activity was also increased after H2O2 treatment. The increases in CAT and astaxanthin of cells could be detected within 4 h of H2O2 treatment. The increase in the astaxanthin content of cells was concomitant with a notable decrease in the β-carotene content. The older yeast cells at late culture stage (120 h), due perhaps in part to their higher astaxanthin contents, were more tolerant to H2O2 toxicity than the younger cells (24 h). No enhancement of the astaxanthin biosynthesis was attained when H2O2 was added to the yeast culture together with a sufficient amount of exogenous CAT. The results suggest that astaxanthin biosynthesis in X. dendrorhous can be stimulated by H2O2 as an antioxidative response.  相似文献   

20.
Astaxanthin additions to animal diets predominantly serve as colorization aid to satisfy consumer expectations and desire for a consistent product with familiar coloration, e.g. the characteristic pink colorization of the flesh of species being produced by aquaculture. The heterobasidiomycetous yeast Phaffia rhodozyma (Xanthophyllomyces dendrorhous) can be used as natural feed source of astaxanthin. However, currently, the majority of astaxanthin used for the feed market is produced by chemical synthesis. We present a further step in direction of a competitive production of natural astaxanthin in an optimized bioprocess with non-genetically modified Phaffia rhodozyma. After medium optimization AXJ-20, a mutant strain of P. rhodozyma wild-type strain ATCC 96594, was able to grow to a cell dry weight concentration of over 114 g per kg of culture broth in a fed-batch process. In this bioprocess, where pH was lowered from 5.5 to 3.5 during the maturation phase, AXJ-20 produced the highest value reported for astaxanthin production with P. rhodozyma up to now: 0.7 g astaxanthin per kg of culture broth with a space-time-yield of 3.3 mg astaxanthin per kg of culture broth per hour. Lowering the pH during the bioprocess and increasing trace element and vitamin concentrations prevented loss of cell dry weight concentration in the maturation phase and proved to be critical for astaxanthin concentration and purity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号