首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
We investigated the effect of 17β-estradiol (E2) alone and separately vitamin E treatment on trace element status of rats following an ovariectomic operation. Forty rats were equally divided into four groups: Group 1, control, non-ovariectomized rats; Group 2, (OVX) rats, ovariectomized under general anesthesia; Group 3, (OVX+E2) rats, the group received a 40 μg kg−1 subcutan dose of E2 per day after ovariectomy; and Group 4, (OVX + E2 + vitamin E) rats, received the same E2 treatment, but with an additional 100 mg kg−1 intraperitoneal dose of vitamin E per day after ovariectomy. At the end of the 30-day experiment, the rats were sacrificed and their blood was collected for the measurement of zinc, copper, iron, phosphorus, selenium, magnesium, calcium, manganese, and chromium; copper–zinc superoxide dismutase (SOD); manganese-superoxide dismutase (Mn-SOD); glutathione peroxidase (Se-GSH-Px); and catalase (CAT). The levels of zinc, copper, iron, phosphorus, selenium, calcium, chromium, and manganese and activities of SOD, Mn-SOD, Se-GSH-Px, and CAT were lower in the OVX than in the control group, but magnesium level was unaffected. However, zinc, copper, iron, phosphorus, selenium, calcium, chromium, and manganese levels and SOD, Mn-SOD, Se-GSH-Px, and CAT activities were higher under separate E2 and E2 + vitamin E treatments. The level of magnesium in the treated-OVX groups was not different than in the OVX group. In conclusion, E2 treatment has an ameliorating effect on the trace element status in OVX, and this effect may be enhanced with the addition of vitamin E.  相似文献   

2.
Some anesthetics have been suggested to induce Alzheimer??s disease (AD) neuro-pathogenesis. Increasing evidence indicates that hyperphosphorylated tau plays a key role in the pathogenic events that occur in AD. Isoflurane has been shown to induce apoptosis, which leads to accumulation of amyloid-?? (A??). We set out to investigate whether isoflurane can induce apoptosis by increasing hyperphosphorylated tau in A??25?C35-induced cells and the underlying mechanism. Cultured rat pheochromocytoma cells (PC12) were exposed to 20?mM A??25?C35 alone or with 2?% isoflurane for 6?h. The cell viability was determined by MTT assay, and the apoptosis rate was detected by flowcytometry. Western blotting and immunocytochemical staining were performed to observe the protein expression of Bcl-2 family, tau phosphorylation of different sites, tau protein kinases and phosphatases. Additionally, lithium chloride was administered to all above groups to investigate the changes of apoptosis rate and protein expression. The apoptosis rate was significantly increased in A??25?C35 group compared with the others groups, which was accompanied by bcl-2 decline, and the phosphorylation of glycogen synthase kinase-3??(GSK-3??) and tau of two sites increased. LiCl attenuated the cellular apoptosis by inhibition the level of tau phosphorylation. Isoflurane upregulated the level of phosphorylated GSK-3??, which phosphorylate tau at different sites, and aggravated the apoptotic rate of the A??25?C35-induced PC12 cells. It indicated that isoflurane-induced tau phosphorylation might play a role in the AD-like development.  相似文献   

3.
The present study was carried to evaluate the protective effects of melatonin alone and vitamin E with selenium combination against high dose cadmium-induced oxidative stress in rats. The control group received subcutanous physiological saline. The first study group administered cadmium chloride (CdCl2) by subcutaneous injection of dose of 1 mg/kg. The second study group administered cadmium plus vitamin E with selenium (1 mg/kg sodium selenite with 60 mg/kg vitamin E); the third study group administered cadmium plus 10 mg/kg melatonin (MLT); the fourth study group administered CdCl2 plus a combination of melatonin in addition to vitamin E and selenium for a month. Determination levels of plasma malondialdehyde (MDA), glutathione peroxidase (GSH-Px), blood superoxide dismutase (SOD), creatinine alanine transaminase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), blood urea nitrogen (BUN), and urea were measured in serum. In only CdCl2 administered group, the MDA, creatinine, ALT, AST, ALP, and urea levels in the serum were significantly higher than the control group (p < 0.05). Whereas in all other groups, this values were significantly lower than the only CdCl2 administered group (p < 0.05). Erythrocytes GSH-Px, serum SOD activities of only CdCl2 received group were significantly lower than the control group (p < 0.05). In conclusion, vitamin E + Se, melatonin and vitamin E, and Se, in addition to MLT combinations, had protective effects against high dose cadmium-induced oxidative damage.  相似文献   

4.
Autophagy is a catabolic process involved in the continuous removal of toxic protein aggregates and cellular organelles to maintain the homeostasis and functional integrity of cells. The mechanistic understanding of autophagy mediated neuroprotection during the development of neurodegenerative disorders remains elusive. Here, we investigated the potential role of rapamycin-induced activation of autophagy and PI3K/Akt1/mTOR/CREB pathway(s) in the neuroprotection of amyloid-beta (Aβ1-42)-insulted hippocampal neurons in rat model of Alzheimer’s disease (AD) like phenotypes. A single intra-hippocampal injection of Aβ1-42 impaired redox balance and markedly induced synaptic dysfunction, neurotransmission dysfunction, and cognitive deficit, and suppressed pro-survival signaling in the adult rats. Rapamycin administration caused a significant reduction of mTOR complex 1 phosphorylation at Ser2481 and a significant increase in levels of autophagy markers such as microtubule-associated protein-1 light chain-3 (LC3), beclin-1, sequestosome-1/p62, unc-51-like kinase 1 (ULK1). In addition, rapamycin induced the activation of autophagy that further activated p-PI3K, p-Akt1 (Ser473), and p-CREB (Ser183) expression in Aβ1-42-treated rats. The activated autophagy markedly reversed Aβ1-42-induced impaired redox homeostasis by decreasing the levels of prooxidants—ROS generation, intracellular Ca2+ flux and LPO, and increasing the levels of antioxidants—SOD, catalase, and GSH. The activated autophagy also provided significant neuroprotection against Aβ1-42-induced synaptic dysfunction by increasing the expression of synapsin-I, synaptophysin, and PSD95; and neurotransmission dysfunction by increasing the levels of CHRM2, DAD2 receptor, NMDA receptor, and AMPA receptor; and ultimately improved cognitive ability in rats. Wortmannin administration significantly reduced the expression of autophagy markers, p-PI3K, p-Akt1, and p-CREB, as well as the autophagy mediated neuroprotective effect. Our study demonstrate that autophagy can be an integrated part of pro-survival (PI3K/Akt1/mTOR/CREB) signaling and autophagic activation restores the oxidative defense mechanism(s), neurodegenerative damages, and maintains the integrity of synapse and neurotransmission in rat model of AD.  相似文献   

5.
This study sought to investigate and compare the interaction of caffeic acid and chlorogenic acid on acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and some pro-oxidants (FeSO4, sodium nitroprusside and quinolinic acid) induced oxidative stress in rat brain in vitro. The result revealed that caffeic acid and chlorogenic acid inhibited AChE and BChE activities in dose-dependent manner; however, caffeic acid had a higher inhibitory effect on AChE and BChE activities than chlorogenic acid. Combination of the phenolic acids inhibited AChE and BChE activities antagonistically. Furthermore, pro-oxidants such as, FeSO4, sodium nitroprusside and quinolinic acid caused increase in the malondialdehyde (MDA) contents of the brain which was significantly decreased dose-dependently by the phenolic acids. Inhibition of AChE and BChE activities slows down acetylcholine and butyrylcholine breakdown in the brain. Therefore, one possible mechanism through which the phenolic acids exert their neuroprotective properties is by inhibiting AChE and BChE activities as well as preventing oxidative stress-induced neurodegeneration. However, esterification of caffeic acid with quinic acid producing chlorogenic acid affects these neuroprotective properties.  相似文献   

6.
The present study was designed to determine the effects of both Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) on oxidative stress and trace element levels in the kidney and testis of growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their 96 newborn offspring were equally divided into four different groups, namely, control, 2.45 GHz, 900 MHz, and 1800 MHz groups. The 2.45 GHz, 900 MHz, and 1,800 MHz groups were exposed to EMR for 60 min/day during pregnancy and growth. During the fourth, fifth, and sixth weeks of the experiment, kidney and testis samples were taken from decapitated rats. Results from the fourth week showed that the level of lipid peroxidation in the kidney and testis and the copper, zinc, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and total antioxidant status (TAS) values in the kidney decreased in the EMR groups, while iron concentrations in the kidney as well as vitamin A and vitamin E concentrations in the testis increased in the EMR groups. Results for fifth-week samples showed that iron, vitamin A, and β-carotene concentrations in the kidney increased in the EMR groups, while the GSH and TAS levels decreased. The sixth week results showed that iron concentrations in the kidney and the extent of lipid peroxidation in the kidney and testis increased in the EMR groups, while copper, TAS, and GSH concentrations decreased. There were no statistically significant differences in kidney chromium, magnesium, and manganese concentrations among the four groups. In conclusion, Wi-Fi- and mobile phone-induced EMR caused oxidative damage by increasing the extent of lipid peroxidation and the iron level, while decreasing total antioxidant status, copper, and GSH values. Wi-Fi- and mobile phone-induced EMR may cause precocious puberty and oxidative kidney and testis injury in growing rats.  相似文献   

7.
Zhi  Zhongwen  Tang  Xiaohong  Wang  Yuqian  Chen  Rui  Ji  Hu 《Neurochemical research》2021,46(11):3012-3024
Neurochemical Research - Sinensetin (SIN) is an important active compound that exists widely in citrus plants, and has been reported to exhibit various pharmacological properties, including...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号