首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Plants possess numerous traits that confer resistance against insect herbivores, and herbivores, in turn, can evolve traits to ameliorate the effectiveness of these traits. The pipevine swallowtail, Battus philenor, is an extreme specialist on plants in the genus Aristolochia. The only host plant available to the California population of B. philenor is A. californica. Aristolochia californica is distinct from most other B. philenor host plants in that it is pubescent. 2. The progeny of B. philenor are larger in California compared with populations examined in Texas. Size differences persist throughout larval development. 3. Regardless of maternal host plant, population differences in progeny size persist, and crosses between California (large progeny) and Texas (small progeny) B. philenor populations resulted in offspring producing intermediate sized progeny, indicating a heritable component to progeny size variation. 4. California neonate caterpillars more easily overcame the trichomes of A. californica compared with Texas neonates. When trichomes were removed from A. californica, time to feeding establishment was reduced for caterpillars from both populations. Texas caterpillars established feeding sites on A. californica with trichomes removed, in the same time required to establish feeding on their non‐pubescent host plant, A. erecta. 5. This study shows that plant trichomes might impose selection pressure on progeny size.  相似文献   

2.
Insect herbivores contend with various plant traits that are presumed to function as feeding deterrents. Paradoxically, some specialist insect herbivores might benefit from some of these plant traits, for example by sequestering plant chemical defenses that herbivores then use as their own defense against natural enemies. Larvae of the butterfly species Battus philenor (L.) (Papilionidae) sequester toxic alkaloids (aristolochic acids) from their Aristolochia host plants, rendering larvae and adults unpalatable to a broad range of predators. We studied the importance of two putative defensive traits in Aristolochia erecta: leaf toughness and aristolochic acid content, and we examined the effect of intra- and interplant chemical variation on the chemical phenotype of B. philenor larvae. It has been proposed that genetic variation for sequestration ability is ??invisible to natural selection?? because intra- and interindividual variation in host-plant chemistry will largely eliminate a role for herbivore genetic variation in determining an herbivore??s chemical phenotype. We found substantial intra- and interplant variation in leaf toughness and in the aristolochic acid chemistry in A. erecta. Based on field observations and laboratory experiments, we showed that first-instar larvae preferentially fed on less tough, younger leaves and avoided tougher, older leaves, and we found no evidence that aristolochic acid content influenced first-instar larval foraging. We found that the majority of variation in the amount of aristolochic acid sequestered by larvae was explained by larval family, not by host-plant aristolochic acid content. Heritable variation for sequestration is the predominant determinant of larval, and likely adult, chemical phenotype. This study shows that for these highly specialized herbivores that sequester chemical defenses, traits that offer mechanical resistance, such as leaf toughness, might be more important determinants of early-instar larval foraging behavior and development compared to plant chemical defenses.  相似文献   

3.
Nice CC  Fordyce JA 《Oecologia》2006,146(4):541-548
We tested the hypothesis that larvae of the pipevine swallowtail butterfly, Battus philenor, employ behavioral and phenotypic plasticity as thermoregulatory strategies. These larvae are phenotypically varied across their range with predominantly black larvae (southeastern USA and California) and red larvae (western Texas, Arizona) occurring in different regions. Two years of field observations in south Texas indicate that the proportion of red larvae increases with increasing daily temperatures as the growing season progresses. Larvae were also observed to shift their microhabitats by climbing on non-host vegetation and avoided excessive heat in their feeding microhabitat. Larvae of ten half-sib families from populations in south Texas and California, reared under different temperature regimes in common garden experiments, exhibited plasticity in larval phenotype, with larvae from both populations producing the red phenotype at temperatures greater than 30°C and maintaining the black phenotype at cooler temperatures. However, larvae from Texas were more tolerant of higher temperatures, showing no decrease in growth rate in the highest temperature (maximum seasonal temperature) treatment, compared to the California population. In a field experiment, black larvae were found to have higher body temperatures when exposed to sunlight compared to red larvae. These results suggest that microhabitat shifts and the color polyphenism observed in pipevine swallowtail larvae may be the adaptive strategies that enable larvae to avoid critical thermal maximum temperatures.  相似文献   

4.
Fordyce JA  Nice CC  Shapiro AM 《Oecologia》2006,149(1):101-106
Diapause allows insects to temporally avoid conditions that are unfavorable for development and reproduction. However, diapause may incur a cost in the form of reduced metabolic energy reserves, reduced potential fecundity, and missed reproductive opportunities. This study investigated a hitherto ignored consequence of diapause: trade-offs involving sequestered chemical defense. We examined the aristolochic acid defenses of diapausing and non-diapausing pipevine swallowtail butterflies, Battus philenor. Pipevine swallowtail larvae acquire these chemical defenses from their host plants. Butterflies that emerge following pupal diapause have significantly less fat, a female fitness correlate, compared to those that do not diapause. However, butterflies emerging from diapaused pupae are more chemically defended compared to those that have not undergone diapause. Furthermore, non-diapausing butterflies are confronted with older, lower quality host plants on which to oviposit. Thus, a trade-off exists where butterflies may have greater energy reserves at the cost of less chemical defense and sub-optimal food resources for their larvae, or have substantially less energetic reserves with the benefit of greater chemical defense and plentiful larval food resources.  相似文献   

5.
1. Aggregative feeding of larvae is widespread in the Lepidoptera, and many hypotheses have been proposed to explain the adaptive significance of this trait. Group feeding occurs disproportionately more in species with aposematic, chemically defended larvae compared with species with cryptic, non‐chemically defended larvae, consistent with the hypothesis that group feeding provides an enhanced aposematic signal to natural enemies. Most species characterised as having chemically defended larvae are cryptic during the first instar, when they are most highly aggregated and most vulnerable to predation. 2. The benefits of group feeding in terms of decreased predation were explored for first‐instar larvae of the pipevine swallowtail, Battus philenor, a species that sequesters aristolochic acids from its Aristolochia host plant and exhibits aposematism in later instars and as adults. We found that groups of larvae with experimentally enhanced aristolochic acid content had significantly lower survivorship due to predation both in the field and in laboratory experiments compared with groups of larvae without enhanced chemical defence. 3. A laboratory experiment found that aristolochic acid does not deter the generalist predator Hippodamia convergens. 4. No evidence was found that was consistent with the hypothesis that group feeding and increased sequestered chemical defence interact to decrease rates of larval mortality in non‐aposematic, first‐instar larvae. Future research on chemical defence, aposematism, and aggregative feeding should continue to appreciate that particular chemical defences and feeding behaviours are not universally effective against all natural enemies.  相似文献   

6.
Larvae of the pipevine swallowtail ( Battus philenor ) sequester toxic alkaloids called aristolochic acids from their Aristolochia host plants, rendering both larvae and adults chemically defended against most predators. Using a chemically controlled artificial diet, we observed substantial among-family variation in sequestration ability and larval developmental rate in a population occurring in central Texas. Early instar larvae from families that sequester greater amounts of aristolochic acid showed increased survivorship in a field experiment in which cohorts from each family were exposed to natural predators, whereas among-family variation in growth rate did not predict survivorship. Conversely, the aristolochic acid content of adult butterflies was negatively correlated with adult fat content, a fitness correlate. Sequestration ability positively affects the probability of larval survivorship, but at the cost of adult fat content. The costs and benefits of aristolochic acid sequestration vary during the course of the butterfly's development, and these antagonistic selection pressures may explain why variation in sequestration ability persists in wild populations.  相似文献   

7.
Experiments were performed to test the acceptability of two palatable, cryptic caterpillars, the tobacco hornworm,Manduca sexta, and the cabbage looper,Trichoplusia ni, reared on different diets, to the Argentine ant,Iridomyrmex humilis. Ants preferred larvae reared on artificial diet, groundcherry, or cowpea to tobacco-reared larvae. Ants also preferred larvae reared on artificial diet without nicotine to larvae reared on diet containing nicotine (5% dry wt). Experiments were also performed to test the response of ants to larval extracts and chemicals applied to the surface of palatable prey. Ants did not respond differently to larvae of the potato tuber moth,Phthorimaea operculella, treated with larval extracts or regurgitate from tobacco-reared larvae compared to artificialdiet-reared larvae, but ants were deterred byP. operculella larvae treated with nicotine compared to untreated larvae. The results of this study indicate that caterpillars can derive at least some degree of chemical protection from their food plant without sequestering and storing plant compounds and without the development of elaborate aposematic characteristics.  相似文献   

8.
Ovipositing females of the pipevine swallowtail butterfly, Battus philenor, detect the presence of eggs laid by other females on their host plants. The presence of eggs on a plant inhibits oviposition by a female that discovers it. The selection pressure responsible for the evolution and maintenance of discrimination against plants with eggs appears to be lower survival from egg to adult of eggs laid on plants already containing eggs than on plants without eggs.  相似文献   

9.
The increase of the amino acid concentration over different time intervals in artificial nectar (i.e., a sucrose solution) due to pollen contamination was investigated in four Californian plant species (Aesculus californica, Amsinckia lunaris, Brodiaea pulchella, Carduus pycnocephalus), which are important nectar resources for a Californian colony of the butterflyBattus philenor as well as for other insects. The increase of the amino acid concentration in the medium is different in all four species and seems to be determined by a variety of factors including permeability of the pollen grain wall and presence or absence of pores. The results suggest a passive diffusion process of the free pollen amino acids into the medium rather than an active release. Implications from the experiments forBattus philenor and for other nectar feeding pollinators are discussed. A possible complementary effect of free pollen and nectar amino acids is proposed for plant species in which pollen is likely to be knocked into nectar by their flower visitors. A possible evolutionary pathway from nectar feeding butterflies such asBattus philenor to the complex derived pollen feeding habit in theHeliconius butterflies is proposed.  相似文献   

10.
11.
Summary Bradshaw (1965) proposed that phenotypic plasticity would be more common than adaptive genetic variability in species for which environmental fluctuations occur over periods roughly equal to that species' generation time. In an effort to examine this notion, sources of seasonal variation in two components of oviposition behavior in an east Texas population of pipevine swallowtail butterflies (Battus philenor) were investigated under natural and seminatural conditions. Variability in a visually-based prealighting component involving orientation to leaf shape was primarily due to phenotypic plasticity in the form of adult learning; no seasonally-based genotypic differences in leaf-shape discrimination behavior were observed. By contrast, a chemotactile post-alighting component involving elicitation of oviposition after landing on the host plant was not phenotypically plastic, i.e., not susceptible to learning. In addition, only slight and nonsignificant seasonally-based differences in post-alighting responses to different host species were observed.  相似文献   

12.
Gardens with nectar sources and larval host plants have been proposed to stem the decline in butterfly abundance caused by habitat loss. However, no study has provided evidence that gardens benefit butterflies. We examined the use of natural sites and gardens in the San Francisco bay area by the butterfly, Battus philenor. We found that natural sites were more likely to attract adult B. philenor, received more oviposition, and had higher juvenile survival than gardens sites. Butterflies were more likely to be present in gardens with established populations of the host plant, Aristolochia californica, growing in the sun. Battus philenor are unlikely to visit gardens with host plants planted within the past 7 years. Gardens between the ages of 8–40 years received oviposition, but did not always support completion of larval development of B. philenor. In gardens with host plants over 40 years of age, B. philenor consistently survived from egg to the adult stage. Natural enemy induced mortality of eggs did not differ between garden and natural sites, but overall egg survival was lower in gardens than at natural sites. It is unlikely that gardens serve as 'refugia' for B. philenor in years when populations in natural sites experience low survival or low fecundity. Even in gardens capable of supporting larvae to maturity, the density of eggs and survival rates were lower than in natural populations of the host plant suggesting that gardens were not optimal habitats. Therefore, without evidence that juvenile abundance and survival rates in gardens matches or exceeds that in natural sites, it is most likely that gardens act as population sinks for B. philenor.  相似文献   

13.
The gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis, overlap geographically as well as in their host ranges. Adult female swallowtails are incapable of distinguishing between damaged and undamaged leaves, and the opportunities for competition between these two species are numerous. We designed field and laboratory experiments to look for evidence of indirect competition between P. canadensis and L. dispar larvae. Swallowtail caterpillars were reared in the laboratory on leaves from gypsy-moth-defoliated and undefoliated trees to explore host-plant effects. We tested for pathogen-mediated interactions by rearing swallowtail larvae on both sterilized and unsterilized leaves from defoliated and undefoliated sources. In addition, we measured the effects of known gypsy moth pathogens, as well as gypsy moth body fluids, on the growth and survival of swallowtail larvae. Field experiments were designed to detect the presence of parasitoid-mediated competition, as well: we recorded parasitism of swallowtail caterpillars placed in the field either where there were no gypsy moth larvae present, or where we had artificially created dense gypsy moth populations. We found evidence that swallowtails were negatively affected by gypsy moths in several ways: defoliation by gypsy moths depressed swallowtail growth rate and survival, whether leaves were sterilized or not; sterilization significantly reduced the effect of defoliation, and gypsy moth body fluids proved lethal; and swallowtail caterpillars suffered significantly increased rates of parasitism when they were placed in the field near gypsy moth infestations.  相似文献   

14.
Larvae of the sawfly Athalia rosae ruficornis Jakovlev (Hymenoptera: Tenthredinidae) feed on several glucosinolate-containing plants and have been shown to sequester the main glucosinolates of different hosts, namely sinalbin (p-hydroxybenzylglucosinolate) from Sinapis alba L., sinigrin (allylglucosinolate) from Brassica nigra (L.) Koch, and glucobarbarin ((S)-2-hydroxy-2-phenylethylglucosinolate) from Barbarea stricta Andrz. (Brassicaceae). These plant metabolites are stored in the haemolymph, which is readily released when larvae are attacked by predators. In a dual-choice bioassay the bio-activity of sawfly haemolymph collected from larvae reared on different host plants (S. alba, B. nigra, and B. stricta) was tested against the ant Myrmica rubra L. (Hymenoptera: Formicidae). The haemolymph had a stronger deterrence effect when the corresponding sawfly larvae were reared on S. alba than when reared on B. nigra and B. stricta. Haemolymph of caterpillars of Pieris rapae L. (Lepidoptera: Pieridae) that had fed on S. alba was not deterrent to the ants. No sinalbin could be detected in their haemolymph. The glucosinolates sinalbin and sinigrin, offered in a concentration comparable to that in the sawfly haemolymph, were deterrent to the ants, but not as strongly as the corresponding haemolymph samples. This suggests, that glucosinolates are not the only compounds involved in the chemical defence of A. rosae. However, the presence of sequestered glucosinolates is already a sufficient defence towards predators such as ants, and their effectiveness is modulated by the host plant chemistry.  相似文献   

15.
Assessments of potential impacts of global climate change often focus exclusively on plants; however, as the base of most food webs, plants generally experience abiotic stresses concomitantly with biotic stresses. Longleaf plantain, Plantago lanceolata L., is a cosmopolitan temperate perennial weed that experiences a wide range of environmental conditions throughout its range. We examined the impacts of elevated levels of exposure to shortwave (UV-B) radiation on this plant, on two herbivores associated with this plant, and on the plant-herbivore interaction. Plantains were grown at 6 and 12 kJ m–2 d–1 BE300 UV-B radiation and concentrations of iridoid glycosides (aucubin and catalpol), verbascosides, and nitrogen were measured. In terms of plant impacts, we found that iridoid glycoside concentrations were unchanged by elevated UV-B radiation, whereas, in one experiment, the concentration of verbascosides in young leaves and levels of nitrogen in old leaves increased under elevated UV-B radiation. Variation in plant chemistry due to leaf age and maternal family was greater than variation due to UV-B exposure. When caterpillars were fed excised leaves from plants grown under elevated UV-B, growth and survivorship of the specialist herbivore, Precis coenia Hbn. (Lepidoptera: Nymphalidae), were unaltered and growth of the generalist herbivore, Trichoplusia ni (Hbn.) (Lepidoptera: Noctuidae), was accelerated. When the caterpillars were reared on potted plants at high and low levels of UV-B radiation, growth and survivorship of P. coenia were unchanged while growth of T. ni was significantly depressed by elevated UV-B. Elevated UV-B altered allocation patterns of above-ground biomass in these plants; masses of crowns and reproductive tissue were reduced. UV-B levels, however, did not affect distribution of damage to foliage inflicted by either species. In two additional experiments with artificial diet, designed to test the direct effect of UV-B radiation on caterpillars, growth and survivorship of P. coenia were unaltered while survivorship of T. ni was significantly depressed when caterpillars were exposed to elevated UV-B radiation. These studies collectively demonstrate that higher trophic level impacts of UV-B-induced changes in plants depend on the identity of the herbivore and its degree of adaptation not only to variation in hostplant quality but also variation in its light environment.  相似文献   

16.
In central Arizona, receptive females of the pipevine swallowtail, Battus philenor, are widely scattered in time and space, and in this region the butterfly's mating system is one in which males patrol mountain peaks. Hilltopping males engage intruding males in ascending flights that appear to be ritualized aerial combat with individuals defending patrolling sites for relatively short periods on any given day. The day-to-day appearance of marked males is irregular, unlike the site fidelity shown by males of many other hilltopping insects. The distinctive pattern of male territoriality in B. philenor may be partly a response to very low male and female density in the observed population. Males at the hilltop chase, court, and attempt to copulate with virgin females released near them. Males assess the receptivity of females rapidly, and receptive females permit a lengthy copulation to occur after a courtship that lasts less than 30 s. During an initial copulation males pass a spermatophore that weighs about 6% of their body mass, with partners on following days receiving a smaller but still substantial donation.  相似文献   

17.
Conventional gravimetry and a combination of gravimetry and respirometry were compared for their precision in measuring respiration and metabolic efficiency of growth of final stadiumPieris brassicae L. (Pieridae, Lepidoptera) caterpillars. This was done both for caterpillars feeding on an artificial diet and for caterpillars feeding on excised leaf material of a host plant,Brassica oleracea L. Gravimetry produced significantly greater variation in the total amount of matter respired and the metabolic efficiency than indirect calorimetry for caterpillars feeding on plant material, while the two methods gave similar results for the caterpillars reared on a meridic artificial diet. Respirometry (indirect calorimetry) revealed that caterpillars feeding on the artificial diet were growing with a higher metabolic efficiency than caterpillars feeding on the host plant. This difference was not revealed by conventional gravimetry. It is argued that metabolic efficiencies as derived from gravimetric budget calculations are subject to a number of random errors that distort precise determination of metabolic efficiencies in studies involving plant food.  相似文献   

18.
We examined the foraging patterns of two species of caterpillar (Junonia coenia: Nymphalidae and Spilosoma congrua: Arctiidae) that contrast in feeding specialization and crypticity on plantain (Plantago lanceolata) in the absence and presence of two different insect predators [stinkbugs, Podisus maculiventris (Pentatomidae) and wasps, Polistes fuscatus (Vespidae)]. Junonia larvae were quite apparent to human observers, feeding on upper leaf surfaces during daylight, whereas Spilosoma larvae were relatively cryptic, often hiding under leaves and in soil crevices during daylight. In the presence of either predator species, the non-cryptic Junonia caterpillars more quickly left the plant on which they were initially placed and were less apparent than Junonia larvae not exposed to predators. The presence of predators had no detectable influence on where the caterpillars occurred on the plants (new, intermediate-aged or mature leaves, or reproductive stalks). Surprisingly, the predators influenced the behavior of the inherently cryptic Spilosoma: the apparency of these larvae at night increased when wasps had access to the plots during the day. Survivorship of the non-cryptic Junonia was less than 12% when stinkbugs were present compared to 60% in their absence. Although the presence of wasps resulted in a lower relative growth rate for the non-cryptic Junonia larvae, the indirect effect of predators on reduction in survivorship due to alterations in prey growth rate through behavioral changes was less than 3%. After taking into account the decline in caterpillars per plot through predation, we found that both the amount of leaves eaten and the proportion of plants eaten were altered on plots with predators present, which suggests that the caterpillars' increased consumption countered increased maintenance costs due to the presence of predators. Overall, our results indicate that hostplant size, level of predation and type of predator can influence the degree to which these caterpillars react to the presence of insect predators. In contrast, degree of inherent feeding specialization and cryptic behavior seemed to have little effect on the expression of reactive behaviors of these caterpillars to predators.  相似文献   

19.
If generalist insect predators are a selective force contributing to patterns of feeding specialization by insect herbivores, then predators should be deterred from eating allelochemical-fed prey. The attack and feeding behaviors of naive predators (Podisus maculiventris stinkbugs) reared on control caterpillars (Manduca sexta) fed plain diet were compared to experienced predators reared on caterpillars fed tomato allelochemicals. Tomatine-fed prey were found more quickly by both naive and tomatine-experienced predators, and chlorogenic acid-experienced predators were more stimulated to begin searching for prey. However, experienced predators were less likely to attack both chlorogenic acidfed and tomatine-fed caterpillars than were naive predators. These results indicate that allelochemical-fed prey were easier for predators to locate, but allelochemical-containing prey often deterred predation by experienced predtors.  相似文献   

20.
Warning coloration deters predators from attacking distasteful or toxic prey. Signal features that influence warning color effectiveness are not well understood, and in particular, we know very little about how effective short‐wavelength and iridescent colors are as warning color elements in nature and how warning signal effectiveness changes throughout the day. We tested the effect of these factors on predation risk in nature using specimens of the distasteful pipevine swallowtail butterfly, Battus philenor. B. philenor adults display both iridescent blue and diffusely reflecting orange components in their warning signal. We painted B. philenor wings to create five different model types: all‐black, only‐iridescent‐blue, only‐orange, iridescent‐blue‐and‐orange (intact signal), and matte‐blue‐and‐orange. We placed 25 models in each of 14 replicate field sites for 72 h and checked for attacks three times each day. Model type affected the likelihood of attack; only‐orange models were, the only model attacked significantly less than the all‐black model. Iridescence did not enhance or decrease warning signal effectiveness in our experiment because matte‐blue‐and‐orange models were attacked at the same rate as iridescent‐blue‐and‐orange models. Time of day did not differentially affect model type. Video recordings of attacks revealed that insectivorous birds were responsible. The results of this experiment, when taken with previous work, indicate that the response to blue warning coloration is likely dependent on predator experience and context, but that iridescence per se does not affect warning signals in a natural context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号