首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目前,蛋白质内含子在蛋白质工程领域中得到越来越广泛的应用。为提高微小蛋白质内含子Ter DnaE-3(Trichodesmium erythraeum)在异源宿主中的剪接活性,采用易错PCR技术,通过改变反应体系中dNTP、Mg2+、Mn2+的浓度等手段,借助依赖卡那霉素的蛋白质内含子筛选系统进行筛选。Western印迹结果表明:通过定向进化,其中5号突变体的剪接活性从原始的约20%提高至约85%;9号突变体能够避免发生剪接副反应,即N端断裂反应。氨基酸突变位点与剪接活性变化的相关性分析表明:参与α-helix形成的氨基酸的突变极有可能影响蛋白质内含子的断裂反应,参与β-sheet形成的氨基酸的突变则有可能影响蛋白质内含子结构的紧凑性。通过定向进化提高微小蛋白质内含子Ter DnaE-3在异源宿主中的剪接活性,进一步验证依赖卡那霉素抗性的筛选系统的可行性,为扩大蛋白质内含子的应用范围奠定基础。  相似文献   

2.
Protein splicing is a self-catalyzed process involving the excision of an intervening polypeptide sequence, the intein, and joining of the flanking polypeptide sequences, the extein, by a peptide bond. We have studied the in vitro splicing of erythropoietin (EPO) using a truncated form of the Mycobacterium tuberculosis RecA mini-intein in which the homing endonuclease domain was replaced with a hexahistidine sequence (His-tag). The intein was inserted adjacent to cysteine residues to assure that the spliced product had the natural amino acid sequence. When expressed in Escherichia coli, intein-containing EPO was found entirely as inclusion bodies but could be refolded in soluble form in the presence of 0.5 M arginine. Protein splicing of the refolded protein could be induced with a reducing agent such as DTT or tris(2-carboxyethyl)phosphine and led to the formation of EPO and mini-intein along with some cleavage products. Protein splicing mediated by the RecA intein requires the presence of a cysteine residue adjacent to the intein insertion site. We compared the efficiencies of protein splicing adjacent to three of the four cysteine residues of EPO (Cys29, Cys33 and Cys161) and found that insertion of intein adjacent to Cys29 allowed far more efficient protein splicing than insertion adjacent to Cys33 or Cys161. For ease of purification, our experiments involved a His-tagged EPO fusion protein and a His-tagged intein and the spliced products (25 kDa EPO and 24 kDa mini-intein) were identified by Western blotting using anti-EPO and anti-His-tag antibodies and by mass spectroscopy. The optimal splicing yield at Cys29 (40%) occurred at pH 7.0 after refolding at 4 degrees C and splicing for 18 h at 25 degrees C in the presence of 1 mM DTT.  相似文献   

3.
The 440 amino acid Mtu recA intein consists of independent protein-splicing and endonuclease domains. Previously, removal of the central endonuclease domain of the intein, and selection for function, generated a 168 residue mini-intein, DeltaI-SM, that had splicing activity similar to that of the full-length, wild-type protein. A D422G mutation (DeltaI-CM) increased C-terminal cleavage activity. Using the DeltaI-SM mini-intein structure (presented here) as a guide, we previously generated a highly active 139 residue mini-intein, DeltaDeltaI(hh)-SM, by replacing 36 amino acid residues in the residual endonuclease loop with a seven-residue beta-turn from the autoprocessing domain of Hedgehog protein. The three-dimensional structures of DeltaI-SM, DeltaDeltaI(hh)-SM, and two variants, DeltaDeltaI(hh)-CM and DeltaDeltaI(hh), have been determined to evaluate the effects of the minimization on intein integrity and to investigate the structural and functional consequences of the D422G mutation. These structural studies show that Asp422 is capable of interacting with both the N and C termini. These interactions are lacking in the CM variant, but are replaced by contacts with water molecules. Accordingly, additional mutagenesis of residue 422, combined with mutations that isolate N-terminal and C-terminal cleavage, showed that the side-chain of Asp422 plays a role in both N and C-terminal cleavage, thereby suggesting that this highly conserved residue regulates the balance between the two reactions.  相似文献   

4.
Many naturally occurring inteins consist of two functionally independent domains, a protein-splicing domain and an endonuclease domain. In a previous study, a 168 amino acid residue mini-intein was generated by removal of the central endonuclease domain of the 440 residue Mycobacterium tuberculosis (Mtu) recA intein. In addition, directed evolution experiments identified a mutation, V67L, that improved the activity of the mini-intein significantly. A recent crystal structure shows that the loop connecting two beta-strands from the N-terminal and C-terminal intein subdomains of the mini-intein is disordered. The goals of the present study were to generate smaller mini-intein derivatives and to understand the basis for reversal of the splicing defect by the V67L mutation. Guided by the structural information, we generated a number of derivatives 135 to 152 residues in length, with V67 or L67. All of the new minimal inteins are functional in splicing. In vivo selection experiments for function showed that by removal of the loop region, 137 residues may be the lower limit for full protein-splicing activity. In addition, the activation effect of the V67L mutation was observed to be universal for mini-inteins longer than 137 residues. Structural and functional analyses indicate that the role of the mutation is in stabilization of the mini-intein core.  相似文献   

5.
Zhang A  Gonzalez SM  Cantor EJ  Chong S 《Gene》2001,275(2):241-252
Affinity purification of recombinant proteins has been facilitated by fusion to a modified protein splicing element (intein). The fusion protein expression can be further improved by fusion to a mini-intein, i.e. an intein that lacks an endonuclease domain. We synthesized three mini-inteins using overlapping oligonucleotides to incorporate Escherichia coli optimized codons and allow convenient insertion of an affinity tag between the intein (predicted) N- and C-terminal fragments. After examining the splicing and cleavage activities of the synthesized mini-inteins, we chose the mini-intein most efficient in thiol-induced N-terminal cleavage for constructing a novel intein fusion system. In this system, green fluorescent protein (GFP) was fused to the C-terminus of the affinity-tagged mini-intein whose N-terminus was fused to a target protein. The design of the system allowed easy monitoring of soluble fusion protein expression by following GFP fluorescence, and rapid purification of the target protein through the intein-mediated cleavage reaction. A total of 17 target proteins were tested in this intein-GFP fusion system. Our data demonstrated that the fluorescence of the induced cells could be used to measure soluble expression of the intein fusion proteins and efficient intein cleavage activity. The final yield of the target proteins exhibited a linear relationship with whole cell fluorescence. The intein-GFP system may provide a simple route for monitoring real time soluble protein expression, predicting final product yields, and screening the expression of a large number of recombinant proteins for rapid purification in high throughput applications.  相似文献   

6.
Inteins are internal protein splicing elements that can autocatalytically self-excise from their host protein and ligate the protein flanks (exteins) with a peptide bond. Large inteins comprise independent protein splicing and endonuclease domains whereas mini-inteins lack the central endonuclease domain. To identify mini-intein domains that are essential for protein splicing, deletions were introduced at different sites of the 157-aa PRP8 mini-intein of Penicillium chrysogenum. The removal of eight and six amino acids at two different sites resulted in a functional eukaryotic mini-intein of only 143 aa.  相似文献   

7.
The majority of inteins are comprised of a protein splicing domain and a homing endonuclease domain. Experimental evidence has demonstrated that the splicing domain and the endonuclease domain in a bifunctional intein are largely independent of each other with respect to both structure and activity. Here, an artificial bifunctional intein has been created through the insertion of an existing homing endonuclease into a mini-intein that is naturally lacking this functionality. The gene for I-CreI, an intron-encoded homing endonuclease, was grafted into the monofunctional Mycobacterium xenopi GyrA intein at the putative site of the missing endonuclease. The resulting fusion protein was found to be capable of protein splicing similar to that of the parent intein. In addition, the protein demonstrated site-specific endonuclease activity that is characteristic of the I-CreI homing endonuclease. The function of each domain therefore remained unaffected by the presence of the other domain. This artificial fusion of the two domains is a potential novel mobile genetic element.  相似文献   

8.
Oligonucleotide-directed mutagenesis has been used to alter highly conserved sequences within the intervening sequence (IVS) of the Tetrahymena large ribosomal RNA precursor. Mutations within either sequence element 9L or element 2 eliminate splicing activity under standard in vitro splicing conditions. A double mutant with compensatory base changes in elements 9L and 2 has accurate splicing activity restored. Thus, the targeted nucleotides of elements 9L and 2 base-pair with one another in the IVS RNA, and pairing is important for self-splicing. Mutant splicing activities are restored by increased magnesium ion concentrations, supporting the conclusion that the role of the targeted bases in splicing is primarily structural. Based on the temperature dependence, we propose that a conformational switch involving pairing and unpairing of elements 9L and 2 is required for splicing.  相似文献   

9.
In vivo selection was used to improve the activity of the Tetrahymena pre-rRNA self-splicing intron in the context of heterologous exons. The intron was engineered into a kanamycin nucleotidyltransferase gene, with the pairing between intron bases and the 5' and 3' splice sites maintained. The initial construct failed to confer kanamycin resistance on Escherichia coli, although the pre-mRNA was active in splicing in vitro. Random mutation libraries were constructed to identify active intron variants in E. coli. All the active mutants sequenced contained mutations disrupting a base-paired region above the paired region P1 (referred to as the P1 extension region or P1ex) that involves the very 5' end of the intron. Subsequent site-directed mutagenesis confirmed that these P1ex mutations are responsible and sufficient to activate the intron splicing in E. coli. Thus, it appears that too strong of a secondary structure in the P1ex element can be inhibitory to splicing in vivo. In vitro splicing assays demonstrated that two P1ex mutant constructs splice six to eight times faster than the designed construct at 40 microM GTP concentration. The relative reaction rates of the mutant constructs compared to the original design are further increased at a lower GTP concentration. Possible mechanisms by which the disrupted P1ex structure could influence splicing rates are discussed. This study emphasizes the value of using libraries of random mutations to improve the activity of ribozymes in heterologous contexts in vivo.  相似文献   

10.
To characterize sequences in the RNA helicase-like PRP2 protein of Saccharomyces cerevisiae that are essential for its function in pre-mRNA splicing, a pool of random PRP2 mutants was generated. A dominant negative allele was isolated which, when overexpressed in a wild-type yeast strain, inhibited cell growth by causing a defect in pre-mRNA splicing. This defect was partially alleviated by simultaneous co-overexpression of wild-type PRP2. The dominant negative PRP2 protein inhibited splicing in vitro and caused the accumulation of stalled splicing complexes. Immunoprecipitation with anti-PRP2 antibodies confirmed that dominant negative PRP2 protein competed with its wild-type counterpart for interaction with spliceosomes, with which the mutant protein remained associated. The PRP2-dn1 mutation led to a single amino acid change within the conserved SAT motif that in the prototype helicase eIF-4A is required for RNA unwinding. Purified dominant negative PRP2 protein had approximately 40% of the wild-type level of RNA-stimulated ATPase activity. As ATPase activity was reduced only slightly, but splicing activity was abolished, we propose that the dominant negative phenotype is due primarily to a defect in the putative RNA helicase activity of PRP2 protein.  相似文献   

11.
Mathys S  Evans TC  Chute IC  Wu H  Chong S  Benner J  Liu XQ  Xu MQ 《Gene》1999,231(1-2):1-13
The determinants governing the self-catalyzed splicing and cleavage events by a mini-intein of 154 amino acids, derived from the dnaB gene of Synechocystis sp. were investigated. The residues at the splice junctions have a profound effect on splicing and peptide bond cleavage at either the N- or C-terminus of the intein. Mutation of the native Gly residue preceding the intein blocked splicing and cleavage at the N-terminal splice junction, while substitution of the intein C-terminal Asn154 resulted in the modulation of N-terminal cleavage activity. Controlled cleavage at the C-terminal splice junction involving cyclization of Asn154 was achieved by substitution of the intein N-terminal cysteine residue with alanine and mutation of the native C-extein residues. The C-terminal cleavage reaction was found to be pH-dependent, with an optimum between pH6.0 and 7.5. These findings allowed the development of single junction cleavage vectors for the facile production of proteins as well as protein building blocks with complementary reactive groups. A protein sequence was fused to either the N-terminus or C-terminus of the intein, which was fused to a chitin binding domain. The N-terminal cleavage reaction was induced by 2-mercaptoethanesulfonic acid and released the 43kDa maltose binding protein with an active C-terminal thioester. The 58kDa T4 DNA ligase possessing an N-terminal cysteine was generated by a C-terminal cleavage reaction induced by pH and temperature shifts. The intein-generated proteins were joined together through a native peptide bond. This intein-mediated protein ligation approach opens up novel routes in protein engineering.  相似文献   

12.
Inteins are internal protein sequences that post-translationally self-excise and splice together the flanking sequences, the so-called exteins. Natural and engineered inteins have been used in many practical applications. However, inteins are often inefficient or inactive when placed in a non-native host protein and may require the presence of several amino acid residues of the native exteins, which will then remain as a potential scar in the spliced protein. Thus, more general inteins that overcome these limitations are highly desirable. Here we report sequential directed evolution as a new approach to produce inteins with such properties. Random mutants of the Ssp (Synechocystis sp. PCC 6803) DnaB mini-intein were inserted into the protein conferring kanamycin resistance at a site where the parent intein was inactive for splicing. The mutants selected for splicing activity were further improved by iterating the procedure for two more cycles at different positions in the same protein. The resulting improved inteins showed high activity in the positions of the first rounds of selection, in multiple new insertion sites, and in different proteins. One of these inteins, the M86 mutant, which accumulated 8 amino acid substitutions, was also biochemically characterized in an artificially split form with a chemically synthesized N-terminal intein fragment consisting of 11 amino acids. When compared with the unevolved split intein, it exhibited an ~60-fold increased rate in the protein trans-splicing reaction and a K(d) value for the interaction of the split intein fragments improved by an order of magnitude. Implications on the intein structure-function, practical application, and evolution are discussed.  相似文献   

13.
The Saccharomyces cerevisiae splicing factor Prp2 is an RNA-dependent ATPase required before the first transesterification reaction in pre-mRNA splicing. Prp2 binds to the spliceosome in the absence of ATP and is released following ATP hydrolysis. It contains three domains: a unique N-terminal domain, a helicase domain that is highly conserved in the DExD/H protein family, and a C-terminal domain that is conserved in spliceosomal DEAH proteins Prp2, Prp16, Prp22, and Prp43. We examined the role of each domain of Prp2 by deletion mutagenesis. Whereas deletions of either the helicase or C-terminal domain are lethal, deletions in the N-terminal domain have no detectable effect on Prp2 activity. Overexpression of the C-terminal domain of Prp2 exacerbates the temperature-sensitive phenotype of a prp2(Ts) strain, suggesting that the C-domain interferes with the activity of the Prp2(Ts) protein. A genetic approach was then taken to study interactions between Prp2 and the spliceosome. Previously, we isolated dominant negative mutants in the helicase domain of Prp2 that inhibit the activity of wild-type Prp2 when the mutant protein is overexpressed. We mutagenized one prp2 release mutant gene and screened for loss of dominant negative function. Several weak binding mutants were isolated and mapped to the C terminus of Prp2, further indicating the importance of the C terminus in spliceosome binding. This study is the first to indicate that amino acid substitutions outside the helicase domain can abolish spliceosome contact and splicing activity of a spliceosomal DEAH protein.  相似文献   

14.
Improved peptide function from random mutagenesis over short 'windows'   总被引:4,自引:0,他引:4  
We have applied random mutagenesis over short contiguous residue tracts ('windows') within an active peptide (the alpha-peptide of beta-galactosidase) such that all window residues are replaced simultaneously. A novel technique using mixed synthetic oligonucleotides and selection against an EcoK restriction site has allowed the construction of libraries of mutants for two separate windows, sites A and B. Mutant phenotypes can be easily assessed in vivo by a complementation test, and panels of mutants have been quantitatively tested in vitro. This allowed the rapid probing of structural requirements for each site. The two windows yielded markedly disparate results. Site B was much less stringent in its sequence requirements for significant function than Site A, and mutants with improved function were isolated at Site B alone. In addition, one Site B mutant with wild-type levels of activity showed enhanced stability to heat or a protein denaturant. We propose that short tracts with the characteristics of Site B constitute 'secondary' interaction sites which are more tolerant of sequence diversity. Random manipulation of such secondary sites is thus more likely to yield upmutations for standard or altered environments. Window mutagenesis can in principle be applied to any protein--protein or protein--ligand interaction.  相似文献   

15.
The SR family proteins and SR-related polypeptides are important regulators of pre-mRNA splicing. A novel SR-related protein of an apparent molecular mass of 53 kDa was isolated in a gene trap screen that identifies proteins which localize to the nuclear speckles. This novel protein possesses an arginine- and serine-rich domain and was termed SRrp53 (for SR-related protein of 53 kDa). In support for a role of this novel RS-containing protein in pre-mRNA splicing, we identified the mouse ortholog of the Saccharomyces cerevisiae U1 snRNP-specific protein Luc7p and the U2AF65-related factor HCC1 as interacting proteins. In addition, SRrp53 is able to interact with some members of the SR family of proteins and with U2AF35 in a yeast two-hybrid system and in cell extracts. We show that in HeLa nuclear extracts immunodepleted of SRrp53, the second step of pre-mRNA splicing is blocked, and recombinant SRrp53 is able to restore splicing activity. SRrp53 also regulates alternative splicing in a concentration-dependent manner. Taken together, these results suggest that SRrp53 is a novel SR-related protein that has a role both in constitutive and in alternative splicing.  相似文献   

16.
The conjugative element pRS01 from Lactococcus lactis encodes the putative relaxase protein LtrB. The ltrB gene is interrupted by the functional group II intron Ll.ltrB. Accurate splicing of the two ltrB exons is required for synthesis of the mRNA encoding the LtrB conjugative relaxase and subsequent plasmid transfer. A conjugation-based genetic assay was developed to identify Ll.ltrB mutations that affect splicing. In this assay a nonsplicing, transfer-defective pRS01 derivative (pM1014) and a shuttle vector carrying the ltrB region, including the Ll.ltrB intron (pCOM9), are used. pCOM9 provides splicing-dependent complementation of the transfer defect of pM1014. Site-directed mutations within Ll.ltrB, either in the catalytic RNA or in the intron-encoded protein gene ltrA, were generated in the context of pCOM9. When these mutants were tested in the conjugation-based assay, significantly reduced mating was observed. Quantitative molecular analysis of in vivo splicing activity confirmed that the observed mating defects resulted from reduced splicing. Once the system was validated for the engineered mutants, random mutagenesis of the intron followed by genetic and molecular screening for splicing defects resulted in identification of point mutations that affect splicing.  相似文献   

17.
TheNAM2 gene ofSaccharomyces cerevisiae encodes the mitochondrial leucyl tRNA synthetase (mLRS), which is necessary for the excision of the fourth intron of the mitochondrialcytb gene (bI4) and the fourth intron of the mitochondrialcoxI gene (aI4), as well as for mitochondrial protein synthesis. Some dominant mutant alleles of the gene are able to suppress mutations that inactivate the bI4 maturase, which is essential for the excision of the introns aI4 and bI4. Here we report mutagenesis studies which focus on the splicing and suppressor functions of the protein. Small deletions in the C-terminal region of the protein preferentially reduce the splicing, but not the synthetase activity; and all the C-terminal deletions tested abolish the suppressor activity. Mutations which increase the volume of the residue at position 240 in the wild-type mLRS without introducing a charge, lead to a suppressor activity. The mutant 238C, which is located in the suppressor region, has a reduced synthetase activity and no detectable splicing activity. These data show that the splicing and suppressor functions are linked and that the suppressor activity of the mutant alleles results from a modification of the wild-type splicing activity.  相似文献   

18.
TheNAM2 gene ofSaccharomyces cerevisiae encodes the mitochondrial leucyl tRNA synthetase (mLRS), which is necessary for the excision of the fourth intron of the mitochondrialcytb gene (bI4) and the fourth intron of the mitochondrialcoxI gene (aI4), as well as for mitochondrial protein synthesis. Some dominant mutant alleles of the gene are able to suppress mutations that inactivate the bI4 maturase, which is essential for the excision of the introns aI4 and bI4. Here we report mutagenesis studies which focus on the splicing and suppressor functions of the protein. Small deletions in the C-terminal region of the protein preferentially reduce the splicing, but not the synthetase activity; and all the C-terminal deletions tested abolish the suppressor activity. Mutations which increase the volume of the residue at position 240 in the wild-type mLRS without introducing a charge, lead to a suppressor activity. The mutant 238C, which is located in the suppressor region, has a reduced synthetase activity and no detectable splicing activity. These data show that the splicing and suppressor functions are linked and that the suppressor activity of the mutant alleles results from a modification of the wild-type splicing activity.  相似文献   

19.
A physiologically important alternative pre-mRNA splicing switch, involving activation of protein 4.1R exon 16 (E16) splicing, is required for the establishment of proper mechanical integrity of the erythrocyte membrane during erythropoiesis. Here we identify a conserved exonic splicing silencer element (CE(16)) in E16 that interacts with hnRNP A/B proteins and plays a role in repression of E16 splicing during early erythropoiesis. Experiments with model pre-mRNAs showed that CE(16) can repress splicing of upstream introns, and that mutagenesis or replacement of CE(16) can relieve this inhibition. An affinity selection assay with biotinylated CE(16) RNA demonstrated specific binding of hnRNP A/B proteins. Depletion of hnRNP A/B proteins from nuclear extract significantly increased E16 inclusion, while repletion with recombinant hnRNP A/B restored E16 silencing. Most importantly, differentiating mouse erythroblasts exhibited a stage-specific activation of the E16 splicing switch in concert with a dramatic and specific down-regulation of hnRNP A/B protein expression. These findings demonstrate that natural developmental changes in hnRNP A/B proteins can effect physiologically important switches in pre-mRNA splicing.  相似文献   

20.
A cDNA encoding the 60 kDa subunit of mammalian splicing factor SF3a has been isolated. The deduced protein sequence reveals a 30% identity to the PRP9 splicing protein of the yeast S.cerevisiae. The highest homology is present in a zinc finger-like region in the C-terminal domain of both proteins. The PRP9 zinc finger-like motif has been replaced by the equivalent region of mammalian SF3a60. The chimeric protein rescues the temperature-sensitive phenotype of the prp9-1 mutant strain demonstrating that not only the structure but also the function of this domain has been conserved during evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号