首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ant faunas of three remote Polynesian islands were censused using hand collecting techniques Known ant species richnesses were increased by factors of 2 3 3 7, and 4 3 and total species richnesses were estimated with a first-order jackknife estimator The large increase in species numbers is apparently due to inadequate earlier censuses (which missed localized and cryptic species) rather than recent immigrations Tests of species associations revealed more positive than negative interactions among species on both a pairwise and community-wide basis There is no evidence that ant species on these islands exclude each other from islands or from communities within islands, with the exception of three very aggressive species A multiple regression analysis of known ant species richness against sampling effort and area for Polynesian islands which have been differentially censused for ants by various collectors revealed sampling effort was highly significant, while area was not significant in explaining variation in known ant species numbers On Pacific islands that have been surveyed relatively thoroughly for ants multiple regression analyses of known ant species richness on area and distance showed that area was always highly significant, but distance was only marginally significant (depending on the regression model used) Thus remote Polynesian islands appear neither to be as depauperate as previously thought in numbers of ant species present, nor possess an unusual potential for evolutionary increase in species numbers  相似文献   

2.
Long-term impact of exotic ants on the native ants of Madeira   总被引:4,自引:1,他引:3  
Abstract.  1. The earliest exotic records for two notorious invasive ants, the big-headed ant ( Pheidole megacephala ) and the Argentine ant ( Linepithema humile ), both come from the Atlantic islands of Madeira, where the two species underwent population explosions in the 1850s and 1890s respectively. Researchers have long assumed that these invaders spread across all of Madeira and exterminated most or all native ants, despite no research actually documenting such impact.
2. Re-examination of first-hand nineteenth century accounts suggest that P. megacephala and L. humile may never have spread beyond coastal lowland areas, representing < 10% of Madeira's land area. In 2002, native ants dominated most of Madeira; P. megacephala and L. humile were restricted to ≈ 0.3% and ≈ 6% of Madeira's land area respectively.
3. Of the 10 native ant species known from Madeira, only one ( Temnothorax wollastoni ) was not present in 1999–2002 surveys. Although exotic ants may have exterminated T. wollastoni , it seems likely that this species still survives.
4. Thus, even after 150 or more years of residence, P. megacephala and L. humile have come to occupy only a small part of Madeira, and appear to have had little impact.
5. Most of Madeira may be too cool for P. megacephala and perhaps too moist for L. humile to dominate. Also, Madeira's vast natural areas may generally lack weedy vegetation that can support high densities of plant-feeding Hemiptera critical for the ecological dominance of invasive ants. Finally, a dominant native ant, Lasius grandis , inhabiting ≈ 84% of Madeira, may actively exclude P. megacephala and L. humile .  相似文献   

3.
The islands of remote Polynesia (east of Rotuma, Samoa, Tonga and New Zealand) have long been thought to contain few, if any, native ants. The findings of recent sediment core studies, however, challenge this conventional wisdom and indicate some species may be native. The majority of ant species in remote Polynesia, however, are introductions from tropical and subtropical regions around the world. Despite this diversity of origins, and the lack of a common coevolutionary history in the region, patterns of organization in remote Polynesian ant communities are generally similar to those observed in coevolved continental areas. The distribution of ant species across Polynesia is consistent with a primary mechanism of anthropogenic introductions, with the availability of suitable habitat as a secondary mechanism. The species-area relationship for better-collected Polynesian islands reveals these islands are depauperate compared to Melanesian islands with endemic species. Four out of five of the “world’s worst” invasive ant species are present in remote Polynesia. Recent studies have documented how range expansions of such ant species have had detrimental effects on native arthropod populations, although the overall effects of introduced ants per se on naïve endemic island arthropods may never be known with certainty. Considering the relatively fragile nature of island ecosystems, and the potential transformative effects of invasive ants on arthropod communities, vigilance is required to prevent the spread of invasive ant species across Polynesia.  相似文献   

4.
Thirteen Polynesian islands, including five true atolls, an uplifted atoll, and seven high volcanic islands of varying ages, were surveyed for ants by hand collecting techniques. Ten of the thirteen islands had been surveyed previously, and more and species were found in the present survey than were known from all earlier surveys combined, with two exception (Ducie Atoll and Easter Island).This represents the first report of the Argentine ant, Linepithema humile Mayr, from Easter Island. L. humile is a very successful pest species which has only recently invaded Easter Island, and is now very abundant and widespread, occurring at 16 of the 17 sample sites scattered across the island. The introduction of this species is almost certainly responsible for the apparent decline in species richness on Easter Island.In general, more species were present on high islands than atolls of a similar size, and elevation was significant while log (area) and latitude were not in a multiple linear regression with ant species number as the dependent variable. Not enough time was spent on the islands to survey their ant faunas completely, and extrapolations from species effort curves and jackknife estimators of earlier, thorough surverys for ants in the society Islands suggest that only about 50% of the total species were collected in the present survey, at least on the high islands. My collections were probably more complete on the atolls. The increase in species numbers from the present survey relative to known species richnesses (particularly when a large fraction of the species actually present were probably not included in the present survey) supports the hypothesis that remote Polynesian islands are not as depauperate in terms of ant species numbers as previously thought.  相似文献   

5.
The Bahamian archipelago consists of approximately 2,400 islands occurring in the Atlantic Ocean off the coasts of Florida, Cuba, and Hispaniola. In 1982 Donovan Correll and Helen Correll published the most current synopsis of the floristic diversity of this island chain. Their publication cited a total of 1,371 vascular plant species of which 114 seed plants were listed as endemic to the archipelago (~8 % of the native flora). In the last 30 years, additional herbarium collections and taxonomic studies have shown that a number of species previously indicated to be endemic to these islands also occur in other regions or have been taxonomically merged into other species. The current number of species considered endemic to the Bahamian archipelago is 89 (~6 % of the total flora). There are 50 endemic species that have a known distribution on one (31 species) or two island groupings (19 species). Biogeographical analyses of endemic plant distributions shows three distinct clusters of species: southern, central, and the northern islands, with a fourth cluster that includes islands with a small area and one medium size island that seems that has been underexplored (i.e., Little Inagua). We anticipate that understanding the conservation status of endemic species and their distributions will help to develop legislation to preserve this Bahamian natural heritage.  相似文献   

6.
An inventory of invertebrates is crucial to the development and implementation of conservation and restoration programs on small oceanic islands, which are among the most threatened ecosystems on earth. We use a survey of ants (Formicidae) on the Cocos (Keeling) Islands to illustrate issues that hinder detailed understanding of biodiversity and the origins of the invertebrate fauna and associated changes since human settlement on the islands. The ant fauna surveyed consisted of exotic ant species, most of which had been introduced to the islands via human activity. Some of these species, like the Yellow Crazy Ant (Anoplolepis gracilipes) have the potential to build to large numbers, particularly in conjunction with scale insects, and alter the relatively intact ecology and fauna of North Keeling Island. The absence of baseline information on the invertebrate fauna, the identities and locations of earlier collections, and the introduction of exotic invertebrates since human settlement compromised our ability to determine which invertebrate species are native to the island and the changes in species composition that have occurred since human arrival.  相似文献   

7.
The intent of this paper is to facilitate future research of the Solomon Islands ant fauna by providing the first comprehensively researched species inventory in over 75 years. The species list presented here includes the names of all ant species recorded from the islands that are available in the literature together with specimen records from several museum collections and new records from our 2008 Makira field expedition. All the names of described species presented are valid in accordance with the most recent Formicidae classification. In total, the checklist is composed of 237 species and subspecies (including 30 morphospecies) in 59 genera representing nine subfamilies. We report that the recent field expedition added 67 new species records to Makira and 28 new species records to the Solomon Islands. Our research recovered species occurrence records for 32 individual islands and five island groups. The five islands with the highest number of recorded species are: Makira (142 spp.), Guadalcanal (107 spp.), Malaita (70 spp.), Santa Isabel (68 spp.), and Rennell (66 spp.). Based on our results, we discuss the taxonomic composition of the archipelago’s ant fauna, which islands are most in need of additional sampling, and the importance of establishing biodiversity baselines before environmental threats such as the invasive ant Wasmannia auropunctata cause irrevocable harm to the native biodiversity.  相似文献   

8.

Aims

Colonization by non-native ants represents one of the gravest potential threats to island ecosystems. It is necessary to identify general mechanisms by which non-native species are able to colonize and persist in order to inform future prevention and management. We studied a model-island assemblage of 17 non-native ant species with aim of identifying the spatial source of introductions and assessing how such a diversity of species are able to coexist.

Location

Data were collected on Ascension Island: an ideal study system for its intermediate area, compact shape, spatial heterogeneity, lack of native ant species, and availability of non-native ant records dating back to the 1800s.

Methods

We collected over 47,000 individual ants from 73 sites using a range of baited traps and survey techniques. We combined this novel data with past occurrence records in order to determine whether human settlements have historically been the source of ant introductions and to quantify the mean rate at which species have dispersed across the island. Analysis of standardized field data revealed the extent to which ants were partitioning ecological niche space via (1) habitat separation, (2) fine-scale resource partitioning and (3) climatic heterogeneity.

Results

Ants were radiating at a linear rate of approximately 0.5 km2 per year from human settlements on this island, with the most widespread species having been introduced earliest. After accounting for incomplete colonization, we found no evidence to suggest habitat separation between species. Instead, we found significant niche separation through resource partitioning and weather-dependent activity patterns.

Main Conclusions

Our results indicate that non-native ants can coexist in very close proximity and are therefore capable of existing at great diversity on even small islands. It is inevitable that ant colonization will continue without increased biosecurity measures, habitat restoration around settlements and conservation of native species populations.  相似文献   

9.
Aim This is the first comprehensive account of the biogeography of ants transferred and at least temporarily established outside their native habitat. Location Using museum and literature records, I established the distributions of transferred ant species. Methods I used taxonomic and functional groups to assess how geographical spread as a transferred species is affected by taxonomy and life history. Results 147 ant species in forty-nine genera have been recorded outside of their native habitat. The proportion of transferred ants is similar to the number of genera and species in each subfamily. The species-rich subfamily Myrmicinae contains nearly 50% of all transferred species, while many of the species-poor subfamilies have absolutely no transferred species. A disproportionate high number of transferred ants originate from the Neotropical and Oriental biogeographic regions. The Pacific Islands are the recipients of the most transferred ant species. Most transferred ants belong to the CRYPTIC, OPPORTUNIST, and GENERALIZED MYRMICINE functional groups, while there are no recorded transfers of army ants or leaf-cutting ants. Both invasive and human commensal ‘tramp’ ant species are nonrandom subsets of transferred ants. Main conclusions ‘Tramp’ species and invasive species tend to have widespread geographical distributions, and share life history characteristics including queen number, nest structure, and foraging behaviour. Combining observations of functional groups and biogeography may lead to a better understanding of the factors contributing to the spread of transferred species.  相似文献   

10.
Aim Comparisons among islands offer an opportunity to study the effects of biotic and abiotic factors on small, replicated biological communities. Smaller population sizes on islands accelerate some ecological processes, which may decrease the time needed for perturbations to affect community composition. We surveyed ants on 18 small tropical islands to determine the effects of island size, isolation from the mainland, and habitat disturbance on ant community composition. Location Thousand Islands Archipelago (Indonesian name: Kepulauan Seribu) off Jakarta, West Java, Indonesia. Methods Ants were sampled from the soil surface, leaf litter and vegetation in all habitat types on each island. Island size, isolation from the mainland, and land‐use patterns were quantified using GIS software. The presence of settlements and of boat docks were used as indicators of anthropogenic disturbance. The richness of ant communities and non‐tramp ant species on each island were analysed in relation to the islands’ physical characteristics and indicators of human disturbance. Results Forty‐eight ant species from 5 subfamilies and 28 genera were recorded from the archipelago, and approximately 20% of the ant species were well‐known human‐commensal ‘tramp’ species. Islands with boat docks or human settlements had significantly more tramp species than did islands lacking these indicators of anthropogenic disturbance, and the diversity of non‐tramp species decreased with habitat disturbance. Main conclusions Human disturbance on islands in the Thousand Islands Archipelago promotes the introduction and/or establishment of tramp species. Tramp species affect the composition of insular ant communities, and expected biogeographical patterns of ant richness are masked. The island with the greatest estimated species richness and the greatest number of unique ant species, Rambut Island, is a forested bird sanctuary, highlighting the importance of protected areas in preserving the diversity of species‐rich invertebrate faunas.  相似文献   

11.
Aim To document long‐term rates of immigration, extinction and turnover in insular ant faunas and evaluate the relative impacts of recent hurricane activity and climate change. Location Small islands in the Exuma Cays, Andros and Abaco archipelagos of the Bahamas. Methods I surveyed the ant faunas of > 140 small islands in three archipelagos of the Bahamas over several multi‐year periods, spanning up to 17 years, by recording species attracted to baits. Immigrations, extinctions and species turnover were documented, as were the relative abundances of species. Four major hurricanes affected the study archipelagos in the second decade of this study. Results Rates of ant turnover were generally low among archipelagos and time periods. Immigrations outnumbered extinctions in the first decade of this study, although this pattern was reversed in the second decade. General physical characteristics of the islands were not significant predictors of the occurrence of extinctions. The relative abundance (based on proportion of baits occupied) of persistent populations of the two most common species both declined in the second decade, indicating, along with higher extinction rates, a generalized decline in these insular ant faunas. Main conclusions The available evidence suggests that hurricanes were not directly responsible for the observed declines in the ant faunas. Regional changes in insular ant species richness, however, are correlated with generalized North Atlantic hurricane activity over the last half century. Indirect effects of hurricanes on the vegetation of these islands, such as increased herbivory and possible decreased nutrient availability, along with a long‐term (quarter century) increase in temperature and decline in rainfall, are possible contributing factors to the changing ant turnover dynamics.  相似文献   

12.
为了探讨千岛湖岛屿景观参数对地表蚂蚁群落物种α和β多样性空间格局的影响, 作者分别于2017和2018年的5-8月, 采用陷阱法、凋落物分拣法和手捡法调查了千岛湖33个岛屿上的地表蚂蚁群落, 并依据食性将其划分为捕食性蚂蚁和杂食性蚂蚁。利用回归模型分析了全部蚂蚁、捕食性蚂蚁和杂食性蚂蚁群落α和β多样性与岛屿景观参数的关系。结果表明, 岛屿面积对全部蚂蚁、捕食性蚂蚁和杂食性蚂蚁的物种丰富度均有显著的正向影响, 而隔离度则无显著作用。蚂蚁群落的β多样性由空间周转组分主导。岛屿面积差对全部蚂蚁、捕食性蚂蚁和杂食性蚂蚁群落β多样性的嵌套组分有正向影响, 隔离度差只对杂食性蚂蚁的总体β多样性有正向影响。因此, 岛屿面积是影响千岛湖地表蚂蚁群落物种丰富度的主要因素, 并且岛屿面积通过嵌套组分来影响蚂蚁群落的β多样性, 表现出选择性灭绝过程。此外, 不同食性蚂蚁可能因为扩散能力的差异对岛屿景观参数产生不同的响应。  相似文献   

13.
《Acta Oecologica》2006,29(1):1-8
Ants and land crabs are common inhabitants of many coastal and insular communities across the tropics and subtropics, and yet direct evidence of interspecific competition between ants and land crabs has only recently been documented. I conducted a series of observational and manipulative experiments to further elucidate the mechanisms of competition, as well as coexistence, in these two groups in an archipelago of small Bahamian islands. Diel baiting trials demonstrated a significant temporal difference in foraging activity between the land hermit crab, Coenobita clypeatus (Herbst), and ant Brachymyrmex obscurior Forel, suggesting this is one mechanism underlying their coexistence on small oceanic islands. Reciprocal manipulative baiting experiments, in which one of a pair of species was removed from baits, documented that aggressive interspecific interactions underlie patterns of complementary distribution and temporal turnover at rich food resources. This was true for competition between hermit crabs and B. obscurior, and between B. obscurior and a second ant species, Dorymyrmex pyramicus Roger. Negative species associations at baits were found to be common throughout an archipelago of 69 small islands. A trade-off in exploitative and interference abilities may be a second mechanism allowing species coexistence on these small islands. Interspecific interactions such as competition and predation may occur commonly between ants and land crabs and have important consequences for the structure and function of tropical and subtropical insular ecosystems.  相似文献   

14.
A comprehensive and critical review of all available literature on associations between Australian lycaenid butterflies and ants was undertaken to establish an accurate database of the partners involved. Collections and observations of lycaenids and ants were used to augment this review, resulting in a significant number of newly documented association (and non-association) records. Twenty published records considered to be erroneous or doubtful are noted, with justifications given for their deletion from the association database. In total, 265 different associations between lycaenids and ants, plus 65 non-attendance records are documented for Australia. Nearly 80% of the lycaenid species in Australia, for which the early stages are known, are recorded associating with ants and half of these are obligately ant-associated. Patterns of association are examined from the perspective of both lycaenids and ants, with a focus on ant systematics and ecology. Lycaenids are recorded with five ant subfamilies, including the first record of an association with the Pseudomyrmecinae. The Dolichoderinae, and to some extent the Formicinae, have a disproportionately high percentage of genera that associate with lycaenid butterflies. All ant species that tend lycaenids spend at least some portion of their time foraging on vegetation to collect plant and insect nectar. There is a robust relationship between the competitive status of ants within a community, and their frequency and degree of association with lycaenids. Obligate ant-association is accompanied by a high degree of specificity for ant partner, but two notable exceptions, Ogyris aenone and O. amaryllis are discussed. Facultative myrmecophiles tend to associate with a broad range of ants, although interactions with ecologically dominant ants are less frequent than might be expected based on the abundance of dominant ant species in Australian communities.  相似文献   

15.
The Argentine ant Linepithema humile (Dolichoderinae) is one of the most widespread invasive ant species in the world. Throughout its introduced range, it is associated with the loss or reduced abundance of native ant species. The mechanisms by which these native species are displaced have received limited attention, particularly in Australia. The role of interference competition in the displacement of native ant species by L. humile was examined in coastal vegetation in central Victoria (southeastern Australia). Foragers from laboratory colonies placed in the field consistently and rapidly displaced the tyrant ant Iridomyrmex bicknelli, the big-headed ant Pheidole sp. 2, and the pony ant Rhytidoponera victoriae from baits. Numerical and behavioural dominance enabled Argentine ants to displace these ants in just 20 min; the abundance of native species at baits declined 3.5–24 fold in direct relation to the rapid increase in L. humile. Most precipitous was the decline of I. bicknelli, even though species in this typically dominant genus have been hypothesized to limit invasion of L. humile in Australia. Interspecific aggression contributed strongly to the competitive success of Argentine ants at baits. Fighting occurred in 50–75% of all observed interactions between Argentine and native ants. This study indicates that Argentine ants recruit rapidly, numerically dominate, and aggressively displace from baits a range of Australian native ant species from different subfamilies and functional groups. Such direct displacement is likely to reduce native biodiversity and indirectly alter food web structure and ecosystem processes within invaded areas. Biotic resistance to Argentine ant invasion from native ants in this coastal community in southeastern Australia is not supported in this study.  相似文献   

16.
Aim Invasive ants can have substantial and detrimental effects on co‐occurring community members, especially other ants. However, the ecological factors that promote both their population growth and their negative influences remain elusive. Opportunistic associations between invasive ants and extrafloral nectary (EFN)‐bearing plants are common and may fuel population expansion and subsequent impacts of invasive ants on native communities. We examined three predictions of this hypothesis, compared ant assemblages between invaded and uninvaded sites and assessed the extent of this species in Samoa. Location The Samoan Archipelago (six islands and 35 sites). Methods We surveyed abundances of the invasive ant Anoplolepis gracilipes, other ant species and EFN‐bearing plants. Results Anoplolepis gracilipes was significantly more widely distributed in 2006 than in 1962, suggesting that the invasion of A. gracilipes in Samoa has progressed. Furthermore, (non‐A. gracilipes) ant assemblages differed significantly between invaded and uninvaded sites. Anoplolepis gracilipes workers were found more frequently at nectaries than other plant parts, suggesting that nectar resources were important to this species. There was a strong, positive relationship between the dominance of EFN‐bearing plants in the community and A. gracilipes abundance on plants, a relationship that co‐occurring ants did not display. High abundances of A. gracilipes at sites dominated by EFN‐bearing plants were associated with low species richness of native plant‐visiting ant species. Anoplolepis gracilipes did not display any significant relationships with the diversity of other non‐native ants. Main conclusions Together, these data suggest that EFN‐bearing plants may promote negative impacts of A. gracilipes on co‐occurring ants across broad spatial scales. This study underscores the potential importance of positive interactions in the dynamics of species invasions. Furthermore, they suggest that conservation managers may benefit from explicit considerations of potential positive interactions in predicting the identities of problematic invaders or the outcomes of species invasions.  相似文献   

17.
Invasive ants threaten native communities, in part, through their potential to disrupt mutualisms, yet invasive species may also facilitate native species. The red imported fire ant (Solenopsis invicta) is one of the most conspicuous invasive ants in North America and its high densities, combined with its potential to displace native ants, have led to concerns that it may disrupt ant-plant seed dispersal mutualisms. We examined the potential of fire ants to disperse seeds in the longleaf pine ecosystem by comparing the removal of elaiosome-bearing seeds by fire ants versus native ants. A total of 14 ant species were observed removing seeds, with fire ants responsible for more than half of all removals. While fire ants were the dominant seed remover in this system, they did not remove significantly more seeds than would be expected based on their population density (46% of ground-dwelling ants). Moreover, red imported fire ants were similar to native ants with respect to distance of seed movement and frequency of moving seeds back to the nest. Areas of higher fire ant densities were found to have greater rates of seed removal by ants without a subsequent drop in seed dispersal by native ants, suggesting that fire ant-invaded areas may experience overall higher levels of seed dispersal. Thus, fire ants may actually facilitate dispersal of elaiosome-bearing plant species in the longleaf pine ecosystem.  相似文献   

18.
Ants are often considered antagonists when they visit flowers because they typically steal nectar without providing pollination services. Previous research on ant–flower interactions on two species of South African Proteaceae in the Cape Floral Kingdom revealed that the invasive Argentine ant (Linepithema humile), but not native ants, displace other floral arthropod visitors. To determine how common Argentine ant use of inflorescences is, how Argentine and native ant visits differ in the numbers they recruit to inflorescences, and what factors may affect Argentine and native ant foraging in inflorescences, I surveyed 723 inflorescences in 10 species in the genera Protea and Leucospermum across 16 sites and compared ant presence and abundance in inflorescences with abundance at nearby cat food and jam baits. Argentine ants were the most commonly encountered ant of the 22 observed. Argentine ants, as well as six species of native ants were present in all inflorescences for which they were present at nearby baits. Mean Argentine ant abundance per inflorescence was 4.4 ± 0.84 (SE) ants and similar to that of Anoplolepis custodiens and Crematogaster peringueyi, but higher than observed for the other most commonly encountered native ants, Camponotus niveosetosus and Lepisiota capensis. Both Argentine ants and A. custodiens were more likely to be found foraging in spring and under humid conditions, and in inflorescences closer to the ground, with lower sucrose concentrations, and with a greater proportion of open flowers. Argentine ants were more likely to be found in Protea inflorescences, whereas A. custodiens and L. capensis more often visited Leucospermum inflorescences. Considering its displacement of floral arthropods and widespread use of Proteaceae inflorescences, the Argentine ant could be posing a serious threat to plant and pollinator conservation in this biodiversity hotspot.  相似文献   

19.
Summary Few studies of island biogeography have been made on islands in which the time of insularization is precisely known. We tested the effects of island formation on ant species diversity in a man-made lake in South Africa, to determine whether island effects are detectable after only 16 years of insularization. The number of ant species observed at trap-line censuses on islands was significantly correlated with island size (r=0.608; P<0.05) and ant species diversity was generally low compared with similar mainland habitats. Mean species number for all islands, including landbridge islands, was 5.5±3.3 species, and on mainland sites was 7.9±2.85 species. Island effects were more marked on islands <20 ha, which had a mean of 3.3±2.5 species per island. Species number on islands was inversely related to densities of the aggressive Anoplolepis custodiens and A. steingroeveri. These two species were only patchily distributed on mainlands, but these ants were nearly ubiquitous on small islands. Several lines of evidence suggest that this single species domination may be responsible for island effects. Island sites also differed in the number of ant species in different trophic groupings, tending to have fewer granivorous species than the mainland sites, but species in other diet groups were similar in both island and mainland habitats. We conclude that there have been marked changes in the ant faunas on islands smaller than 20 ha apparently due to changes in abundance of the dominant ant species. However, the causes of these changes are unknown.  相似文献   

20.
Human  K. G.  Gordon  D. M. 《Insectes Sociaux》1999,46(2):159-163
Summary: The Argentine ant, Linepithema humile, has invaded many areas of the world, displacing native ants. Its behavior may contribute to its competitive success. Staged and natural encounters were observed at food resources in the field, between Argentine ants and eight ant species native to northern California. There was no relation between the frequency of aggression by any ant species and the outcome of encounters, though Argentine ants were more likely than ants of native species to behave aggressively. When an ant of one species initiated an encounter of any kind with an ant of another species, the ant that did not initiate was likely to retreat. This was true of all species studied. Most encounters between ants were initiated by Argentine ants. Thus the native species tended to retreat more frequently than Argentine ants. Interactions between Argentine ants and native species at food resources, causing ants of native species to retreat, may help Argentine ants to displace native species from invaded areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号