首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Class II molecules of the major histocompatibility complex (MHC) are composed of two polymorphic glycoprotein chains (alpha and beta), that associate in the ER with a third, non-polymorphic glycoprotein known as the invariant chain (Ii). We have examined the relationship between the intracellular transport and physico-chemical characteristics of various combinations of murine alpha, beta and Ii chains. Biochemical and morphological analyses of transfected fibroblasts expressing class II MHC chains show that both unassembled alpha and beta chains, as well as a large fraction of alpha+beta complexes synthesized in the absence of Ii chain, are retained in the ER in association with the immunoglobulin heavy chain binding protein, BiP. Analyses by sedimentation velocity on sucrose gradients show that most incompletely assembled class II MHC species exist as high molecular weight aggregates in both transfected fibroblasts and spleen cells from mice carrying a disruption of the Ii chain gene. This is in contrast to the sedimentation properties of alpha beta Ii complexes from normal mice, which migrate as discrete, stoichiometric complexes of M(r) approximately 200,000-300,000. These observations suggest that assembly with the Ii chain prevents accumulation of aggregated alpha and beta chains in the ER, which might relate to the known ability of the Ii chain to promote exit of class II MHC molecules from the ER.  相似文献   

2.
Class II major histocompatibility complex (MHC) molecules are cell surface glycoproteins that bind and present immunogenic peptides to T cells. Intracellularly, class II molecules associate with a polypeptide referred to as the invariant (Ii) chain. Ii is proteolytically degraded and dissociates from the class II complex prior to cell surface expression of the mature class II alpha beta heterodimer. Using human fibroblasts transfected with HLA-DR1 and Ii cDNAs, we now demonstrate that truncation of the cytoplasmic domain of Ii results in the failure of Ii to dissociate from the alpha beta Ii complex and leads to stable expression of class II alpha beta Ii complexes on the cell surface. Furthermore, biochemical analysis and peptide presentation assays demonstrated that transfectants with stable surface alpha beta Ii complexes expressed very few free alpha beta heterodimers at the surface and were very inefficient in their ability to present immunogenic peptides to T cells. These results support the hypothesis that the cytoplasmic domain of Ii is responsible for endosomal targeting of alpha beta Ii and directly demonstrate that association with Ii interferes with the antigen presentation function of class II molecules.  相似文献   

3.
Newly synthesized class II molecules of the major histocompatibility complex must be transported to endosomal compartments where antigens are processed for presentation to class II-restricted T cells. The invariant chain (Ii), which assembles with newly synthesized class II alpha- and beta-chains in the endoplasmic reticulum, carries one or more targeting signals for transport to endosomal compartments where Ii dissociates from alpha beta Ii complexes. Here we show that the transport route of alpha beta Ii complexes is regulated selectively by two forms of Ii (p33 and p35) that are generated by the use of alternative translation initiation sites. Using a novel quantitative surface arrival assay based on labeling with [6-3H]-D-galactose combined with biochemical modification at the cell surface with neuraminidase, we demonstrate that newly synthesized alpha beta Ii molecules containing the Ii-p33 isoform can be detected on the cell surface shortly after passage through the Golgi apparatus/trans-Golgi network. A substantial amount of these alpha beta Ii complexes are targeted to early endosomes either directly from the trans-Golgi network or after internalization from the cell surface before their delivery to antigen processing compartments. The fraction of alpha beta Ii complexes containing the p35 isoform of Ii with a longer cytosolic domain was not detected at the cell surface as determined by iodination of intact cells and the lack of susceptibility to neuraminidase trimming on ice. However, treatment with neuraminidase at 37 degrees C did reveal that some of the alpha beta Ii-p35 complexes traversed early endosomes. These results demonstrate that a fraction of newly synthesized class II molecules arrive at the cell surface as alpha beta Ii complexes before delivery to antigen processing compartments and that class II alpha beta Ii complexes associated with the two isoforms of Ii are sorted to these compartments by different transport routes.  相似文献   

4.
Invariant chain (Ii) serves as a chaperone for folding and intracellular transport of major histocompatibility complex class II (MHCII) molecules. Early in biosynthesis, Ii associates with MHCII molecules and directs their intracellular transport to endocytic compartments where vesicular proteinases sequentially release Ii from the MHCII heterodimer. The detachment of Ii makes the MHCII groove susceptible for binding of antigenic peptides. We investigated the role of N-linked glycosylation in the controlled intracellular degradation of Ii. Motifs for asparagine-linked glycosylation were altered, and mutated Ii (IiNmut) was transiently expressed in COS cells. The half-life of IiNmut was strongly reduced compared with wild-type Ii although the sensitivity of the N glycan-free polypeptide to in vitro proteinase digestion was not substantially increased. Inhibition of vesicular proteinases revealed endosomal degradation of IiNmut. Intracellular proteolysis of IiNmut is substantially impaired by serine proteinase inhibitors. Thus, a considerable amount of IiNmut is degraded in nonacidic intracellular compartments. The data suggest that N-linked glycosylation of Ii hinders premature proteolysis in nonacidic vesicles resulting in Ii degradation in acidic MHC class II-processing compartments.  相似文献   

5.
MHC class II molecules usually bind peptides in the endocytic pathway, but can also present endogenous peptides from newly synthesized proteins in a chloroquine-insensitive manner, suggesting that peptide binding might occur in the endoplasmic reticulum (ER). We used in vitro translation of HLA-DR1 class II molecules in the presence of microsomes to study peptide binding in the ER. Formation of functional class II molecules in vitro depends on formation of disulfide bridges in alpha and beta chains. The class II alpha beta heterodimers made by in vitro translation resemble class II molecules synthesized in cells in (i) their reactivity with conformation-specific antibodies, (ii) their assembly with Ii chain homotrimers, (iii) the generation of SDS-stable dimers upon peptide binding and (iv) their specificity of peptide binding. The assembly of class II molecules occurs via an alpha beta intermediate and can occur post-translationally, but only in intact microsomes. Class II alpha beta heterodimers are able to bind peptides in ER-derived microsomes, a process that precludes subsequent association of class II molecules with Ii chain. This mechanism might explain presentation of endogenous peptides by class II molecules.  相似文献   

6.
We have examined trafficking of major histocompatibility complex (MHC) class II molecules in human B cells exposed to concanamycin B, a highly specific inhibitor of the vacuolar H(+)-ATPases required for acidification of the vacuolar system and for early to late endosomal transport. Neutralization of vacuolar compartments prevents breakdown of the invariant chain (Ii) and blocks conversion of MHC class II molecules to peptide-loaded, SDS-stable alpha beta dimers. Ii remains associated with alpha beta and this complex accumulates internally, as ascertained biochemically and by morphological methods. In concanamycin B-treated cells, a slow increase (> 20-fold) in surface expression of Ii, mostly complexed with alpha beta, is detected. This surface-disposed fraction of alpha beta Ii is nevertheless a minor population that reaches the cell surface directly, or is routed via early endosomes as intermediary stations. In inhibitor-treated cells, the bulk of newly synthesized alpha beta Ii is no longer accessible to fluid phase endocytic markers. It is concluded that the majority of alpha beta Ii is targeted directly from the trans-Golgi network to the compartment for peptide loading, bypassing the cell surface and early endosomes en route to the endocytic pathway.  相似文献   

7.
Cathepsin B cleavage of Ii from class II MHC alpha- and beta-chains   总被引:1,自引:0,他引:1  
Class II MHC-associated invariant chain (Ii) might regulate binding of digested peptides to the Ag binding site (desetope) of class II MHC proteins by directly or allosterically blocking that site until cleavage and release of Ii from MHC alpha- and beta-chains at the time of peptide charging. We examined the cleavage and release of Ii from class II MHC alpha/beta Ii trimers by cathepsin B, which has been shown by others to colocalize with class II MHC molecules in intracellular compartments and to generate antigenic peptide fragments. Cathepsin B at pH 5.0 cleaved and released Ii from class II MHC alpha- and beta-chains. Cathepsin B digested Ii from alpha- and beta-chains in a dose-dependent fashion, yielding 23-, 21-, and 10-kDa fragments. Blockage of cathepsin B activity with leupeptin restored the 2D(nonequilibrium pH gradient gel electrophoresis/SDS) PAGE patterns of Ii and sialic acid-derivatized forms of Ii seen without the protease. The fragmentation pattern of cathepsin D treatment was different from that of cathepsin B, yielding 25-kDa intermediates.  相似文献   

8.
Association of the invariant chain (Ii) with MHC class II alpha and beta chains is central for their functionality and involves the Ii CLIP(81-104) region. Ii mutants with an antigenic peptide sequence in place of the CLIP region are shown to form alphabetaIi complexes resistant to dissociation by SDS at 25 degrees C. This reflects class II peptide binding site occupancy, since substitution of the major anchor residue within the antigenic peptide sequence of one of these Ii mutants abolishes its capacity to form SDS-stable heterotrimers. Therefore, CLIP location within Ii is compatible with CLIP access to the class II binding groove. However, in wild-type Ii this access does not lead to a tight association, which seems to be affected by the Ii 81-90 region. This region, together with a region C-terminal of CLIP, is shown to contribute to Ii association with HLA-DR1 molecules. Thus, Ii mutants with non-HLA-DR1 binding sequences in place of the CLIP(87-102) region can still associate with HLA-DR1 molecules and inhibit peptide binding.  相似文献   

9.
The MHC class II invariant chain (Ii or CD74) in higher vertebrates is necessary for normal MHC class II loading in endosomal compartments. Detection of an Ii chain in fish would greatly support the idea that MHC class II function in fish and higher vertebrates is similar. Before this study only Ii homologues had been reported in fish that are unlikely to perform true Ii function. In the present study two Ii-like genes, Onmy-Iclp-1 and Onmy-Iclp-2, were detected in rainbow trout. Conservation of elements, particularly in Onmy-Iclp-1, suggests that the encoded proteins may be involved in MHC class II transport and peptide loading as is the Ii protein. The expression pattern of both rainbow trout genes was similar to that of the MHC class II beta chain, with strong expression in the lymphoid tissues, gills and intestine. Analysis of separated peripheral blood leucocyte fractions indicated that expression of Onmy-Iclp-1, Onmy-Iclp-2 and the MHC class II beta chain were all highest in B lymphocytes. This agrees with the expectation that the functions of the products of the new genes are closely associated with MHC class II. It is interesting why in rainbow trout there are two proteins that may function similar to Ii in higher vertebrates.  相似文献   

10.
11.
Analysis by molecular cloning of the human class II genes   总被引:3,自引:0,他引:3  
The HLA class II genes control immune responsiveness to defined antigens; they encode cell surface heterodimers composed of alpha and beta glycopeptides. Recently, cDNA and genomic clones encoding these chains have been isolated, which allows molecular analysis of the class II genes. cDNA clones encoding the alpha chain of the HLA-DR antigen as well as that of another HLA class II antigen have been identified and characterized by nucleotide sequence analysis. These clones have been used as probes to isolate additional class II alpha cDNA clones in cDNA libraries and to identify polymorphisms in genomic DNA. Polymorphic restriction sites have been localized within the HLA-DR alpha gene and used as genetic markers in the analysis of families and of disease (insulin-dependent diabetes mellitus) and control populations. In addition, cDNA clones encoding the DR beta and DC beta chains were used as hybridization probes to identify DNA polymorphism. cDNA clones encoding the DR gamma (Ii) chain have also been identified; unlike the DR alpha and DR beta loci, the DR gamma gene is located on some chromosome other than chromosome 6. The genetic complexity of the human class II alpha and beta loci, as revealed by analysis with cDNA and genomic clones, is greater than that of the murine class II genes. The extent of that complexity will be defined by future work in this area.  相似文献   

12.
Major histocompatibility complex (MHC) class II antigens consist of alpha and beta chains that associate intracellularly with the invariant (I) chain. The HLA-DR alpha beta I complex assembles in the endoplasmic reticulum (ER) into a nonameric structure via progressive addition of three alpha beta dimers to a core invariant chain trimer. We have examined intracellular association of alpha beta I complexes with the resident ER protein calnexin. Calnexin associates rapidly (within 3 min) with newly synthesized alpha, beta and I chains, and remains associated with the assembling alpha beta I complex until the final alpha beta dimer is added, forming the complete nonamer. Dissociation of calnexin parallels egress of alpha beta I from the ER. These results suggest that calnexin retains and stabilizes both free class II subunits and partially assembled class II-I chain complexes until assembly of the nonamer is complete.  相似文献   

13.
BACKGROUND: The HLA gene complex encodes three class II isotypes, DR, DQ, and DP. HLA class II molecules are peptide receptors that present antigens for recognition by T lymphocytes. In antigen presenting cells, the assembly of matched α and β subunits to heterodimers is chaperoned by invariant chain (Ii). Ii forms a homotrimer with three binding sites for class II heterodimers. The current model of class II and Ii structure states that three αβ heterodimers bind to an Ii trimer. METHOLOGY/PRINCIPAL FINDINGS: We have now analyzed the composition and size of the complexes of class II and Ii using epitope tagged class II subunits and density gradient experiments. We show here that class II-Ii oligomers consist of one class II heterodimer associated with one Ii trimer, such that the DR, DQ and DP isotypes are contained within separate complexes with Ii. CONCLUSION/SIGNIFICANCE: We propose a structural model of the class II-Ii oligomer and speculate that the pentameric class II-Ii complex is bent towards the cell membrane, inhibiting the binding of additional class II heterodimers to Ii.  相似文献   

14.
Unlike class I histocompatibility (MHC) antigens, most newly synthesized MHC class II molecules fail to be loaded with peptides in the endoplasmic reticulum (ER), binding instead to the invariant chain glycoprotein (Ii). Ii blocks the class II peptide binding groove until the class II:Ii complexes are transported to endosomes where Ii is removed by proteolysis, thus permitting loading with endosomal short peptides (approximately 12-25 amino acids). Ligands from which the groove is protected by Ii have not yet been identified; theoretically they could be short peptides or longer polypeptides (or both), because the class II groove is open at both ends. Here we show that in Ii- deficient cells, but not in cells expressing large amounts of Ii, a substantial fraction of class II alpha beta dimers forms specific, SDS-resistant 1:1 complexes with a variety of polypeptides. Different sets of polypeptides bound to H-2Ak, Ek, Ed and HLA-DR1 class II molecules; for Ak, a major species of Mr 50 kDa (p50) and further distinct 20 and 130 kDa polypeptides were detectable. Class II binding of p50 was characterized in detail. Point mutations within the Ak antigen binding groove destabilized the p50:class II complexes; a mutation outside the groove had no effect. A short segment of p50 was sufficient for association with Ak. The p50 polypeptide was synthesized endogenously, bound to Ak in a pre-Golgi compartment, and was transported to the cell surface in association with Ak. Thus, Ii protects the class II groove from binding endogenous, possibly misfolded polypeptides in the ER. The possibility is discussed that polypeptide binding is an ancestral function of the MHC antigen binding domain.  相似文献   

15.
Papain-solubilized human class II (HLA-DR) antigens have been purified from cadaveric spleens by ion-exchange chromatography, gel chromatography, and immunosorbent purification. The isolated papain-solubilized antigens comprised two subunits with apparent molecular weights of 23 000 and 30 000, respectively. The circular dichroism spectrum for the isolated class II antigens was similar to spectra recorded for HLA-A, -B, and -C antigens, immunoglobulins, and immunoglobulin fragments. Thus, class II antigens contain a considerable amount of beta structure. The small subunit (beta chain) exhibited extensive charge heterogeneity on two-dimensional isoelectric focusing polyacrylamide gel electrophoresis, whereas the large subunit (alpha chain) was more homogeneous. The structural heterogeneity of beta chains remained after neuraminidase treatment. The NH2-terminal amino acid sequence of the beta chains displayed multiple residues in several positions in accordance with the genetic polymorphism displayed by this chain. The alpha chain also displayed multiple residues in some positions, suggesting either that some of the genetic polymorphism of the class II antigens may be endowed in this chain or that multiple loci control the expression of several alpha chains. Papain-solubilized class II antigen subunits were homologous in their amino acid sequences with HLA-DR antigens of defined antigenic specificity as well as with murine I-E/C antigens.  相似文献   

16.
17.
The expression of MHC class II molecules and the invariant chain (Ii) chaperone, is coordinately regulated in professional antigen presenting cells (APC). Ii facilitates class II subunit folding as well as transit and retention in mature endosomal compartments rich in antigenic peptides in these APC. Yet, in nonprofessional APC such as tumors, fibroblasts and endocrine tissues, the expression of class II subunits and Ii may be uncoupled. Studies of nonprofessional APC indicate class II molecules access antigenic peptides by distinct, but poorly defined pathways in the absence of Ii. Here, investigations demonstrate that nonprofessional APC such as human fibroblasts lacking Ii internalize antigenic peptides prior to the binding of these ligands to recycling class II molecules. By contrast, fibroblast lines expressing Ii favor exogenous peptides binding directly to cell surface class II molecules without a need for ligand internalization. Endocytosis of class II molecules was enhanced in cells lacking Ii compared with Ii-expressing APC. These results suggest enhanced reliance on the endocytic recycling pathway for functional class II presentation in nonprofessional APC.  相似文献   

18.
The major histocompatibility complex class II (MHCII) genes are only constitutively expressed in certain immune response cells such as B cells, macrophages, dendritic cells and other antigen presenting cells. This cell specific expression pattern and the presence of conserved regions such as the X-, X2-, Y-, and W-boxes make the MHCII promoters especially interesting as vector constructs. We tested whether the Atlantic salmon (Salmo salar L.) MHCII promoters can function in cell lines from other organisms. We found that the salmon MHCII alpha and MHCII beta promoters could drive expression of a LacZ reporter gene in adherent lymphoblast cell lines from dog (DH82) and rabbit (HybL-L). This paper shows that the promoters of Atlantic salmon MHCII alpha and beta genes can function in mammalian cell lines.  相似文献   

19.
Expression of the major histocompatibility complex (MHC) class I and class II antigens and the class II-associated invariant chain (Ii) is strongly increased by treatment of cells with tumor necrosis factor alpha (TNF-alpha) and gamma interferon. We investigated elevation of expression of the invariant chain gene by TNF-alpha. Rat fibroblast cells transfected with the mouse Ii gene containing 802 base pairs of 5' sequences could be stimulated for Ii expression by treatment with TNF-alpha. Analysis of 5'-deleted Ii gene promoter-CAT constructs provided evidence for the presence of a TNF-alpha response box (TRB). Cloning of TRB in front of a non-TNF-alpha-responsive promoter could transfer the TNF-alpha stimulatory effect. We demonstrate binding of a TNF-alpha-induced factor to a kappa B-like motif within TRB. Mutations introduced into the kappa B element of the Ii promoter-CAT plasmid abolished the TNF-alpha-mediated stimulatory effect. Comparison of the TNF-alpha-induced factor and lipopolysaccharide-induced NF-kappa B in gel mobility shift assays upon partial protease digestion suggests similar DNA-binding protein cores. Further support for the NF-kappa B-like nature of the TNF-alpha-induced factor was obtained in methylation interference assays. The TNF-alpha-induced nuclear factor comprises DNA contact sites that are identical to those described for NF-kappa B. This TNF-alpha-induced factor also interacts with kappa B-like sequences of the MHC Kb, Ek alpha, and beta 2-microglobulin promoter, suggesting a common TNF-alpha-mediated regulatory signal for expression of MHC antigens and Ii.  相似文献   

20.
Genetic modulation of tumor antigen presentation   总被引:5,自引:0,他引:5  
An effective cancer-cell vaccine is created by expressing major-histocompatibility-complex (MHC) class II molecules without the invariant chain protein (Ii) that normally blocks the antigenic-peptide-binding site of MHC class II molecules at their synthesis in the endoplasmic reticulum. Such tumor-cell constructs are created either by the transfer of genes for MHC class IIalpha and beta chains, or by the induction of MHC class II molecules and Ii protein with a transacting factor, followed by Ii suppression using antisense methods. Preclinical validation of this approach is reviewed with the goal of using this immunotherapy for metastatic human cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号