首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Lead (Pb) is known to disrupt the pro-oxidant/antioxidant balance of tissues, which leads to biochemical and physiological dysfunction. Oxidative stress is considered a possible molecular mechanism involved in Pb neurotoxicity. Considering the vulnerability of the brain to oxidative stress under Pb neurotoxicity, this study investigated the effects of exposure of the thiol antioxidant N-acetylcysteine (NAC) on lead-induced oxidative damage and lipid peroxidation in brain regions of the rat. Wister strain rats were exposed to lead in the form of lead acetate (20 mg/kg body wt/d) for a period of 2 wk and the effects of NAC on lead-induced neurotoxicity in rat brain regions were assessed by postadministration of NAC (160 mg/kg body wt/d) for a period of 3 wk. The lipid peroxidation byproduct, malondialdehyde (MDA) increased following lead exposure in both of the regions, and the antioxidant capacities of the cell in terms of the activity of antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) was diminished. Following NAC treatment, lead-induced lipid peroxidation decreased and antioxidant enzyme activities improved, with CAT showing enhancement in the cerebral region only and SOD showing enhancements in the cerebellar region. Our result suggests that thiol-antioxidant supplementation following Pb exposure might enhance the reductive status of brain regions by arresting the lipid peroxidative damage in brain regions.  相似文献   

2.
The antioxidant activity of an arabinogalactan polysaccharide (TSP) isolated from Tinospora cordifolia, an Indian medicinal plant, was studied. The polysaccharide showed good protection against iron-mediated lipid peroxidation of rat brain homogenate as revealed by the thiobarbituric acid reactive substances (TBARS) and lipid hydroperoxide (LOOH) assays. TSP also provided significant protection to protein against gamma-ray induced damage. The protective action can possibly be explained by its very high reactivity towards DPPH, superoxide radicals and the most damaging of radicals, the hydroxyl radical.  相似文献   

3.
Exposure to lead induces oxidative stress and renal damage. Although most forms of oxidative stress are characterized by simultaneous elevation of nitrogen and oxidative species, lead-induced oxidative stress is unusual in that it is associated with a reduction in nitric oxide (NO) levels in the kidney. The role of NO in kidney injury is controversial; some studies suggest that it is associated with renal injury, whereas others show that it exerts protective effects. Concentration-dependent effects have also been proposed, linking low levels with vasodilatation and high levels with toxicity. The aim of this study was to evaluate the effects of melatonin co-exposure on the lead-induced reduction in renal NO levels. We found that sub-acute intraperitoneal administration of 10 mg/kg/day of lead for 15 days induced toxic levels of lead in the blood and caused renal toxicity (pathological and functional). Under our experimental conditions, lead induced an increase in lipid peroxidation and a decrease in NO. Melatonin co-treatment decreased lead-induced oxidative stress (peroxidation level) and toxic effects on kidneys without altering the lead-induced reduction in renal NO. These results suggest that, in our experimental model, the reduction in renal NO levels by lead exposure is not the only responsible factor for lead-induced kidney damage.  相似文献   

4.
The present study investigates the inhibition of lipid peroxidation by dehydrozingerone and curcumin in rat brain homogenates. Both the test compounds inhibited the formation of conjugated dienes and spontaneous lipid peroxidation. These compounds also inhibited lipid peroxidation induced by ferrous ions, ferric-ascorbate and ferric-ADP-ascorbate. In all these cases, curcumin was more active than dehydrozingerone and dl--tocopherol.  相似文献   

5.
In the present study, the protective effect of curcumin against sodium fluoride-induced nephrotoxicity was evaluated in rats. Renal injury was induced by daily administration of 600 ppm sodium fluoride in drinking water for 1 week. One week before the administration of fluoride, the animals selected as study group were given curcumin (10 and 20 mg/kg body weight, intraperitoneally). After 1 week, lipid peroxidation level, activities of superoxide dismutase, catalase, and level of glutathione in kidney homogenate were measured. Blood serum samples were examined for creatinine, serum urea, and blood urea nitrogen levels. Another group of rats received vitamin C (10 mg/kg) as standard antioxidant. The results show that curcumin and vitamin C treatment prior to fluoride administration normalized the levels of serum creatinine, serum urea, and blood urea nitrogen. Moreover, curcumin and vitamin C administrations prevented the antioxidant enzyme decreasing and lipid peroxidation levels imbalance. In conclusion, curcumin treatment at the doses of 10 and 20 mg/kg (intraperitoneally) showed significant nephroprotective effects.  相似文献   

6.
Modulation of acute cadmium toxicity by Emblica officinalis fruit in rat   总被引:1,自引:0,他引:1  
The efficacy of Emblica officinalis in modifying the acute cytotoxicity of cadmium in male rats was evaluated. Oral administration of Emblica fruit juice (500 mg/kg, b.w.) for 8 days followed by a single toxic dose of Cd as CdCl2 (3 mg/kg,b.w. ip), considerably reduced the mortality in rats as well as prevented to some extent the cadmium induced histopathological damage in testis, liver and kidneys. Biochemical investigation also revealed reduced levels of Cd induced serum glutamate oxaloacetate transaminase, glutamate pyruvate transaminase and gamma glutamyltranspeptidase. The enhanced levels of Cd and lipid peroxidation in liver, kidney, and testes and metallothionein and total sulphydryl in liver and kidney by Cd were significantly reduced by Emblica pretreatment. These results suggest cytoprotective potential of Emblica fruit in acute cadmium toxicity which could be due to its multiple role in biological system.  相似文献   

7.
Lead remains a considerable occupational and public health problem, which is known to cause a number of adverse effects in both man and animals. Here, the neuroprotective effect of flaxseed oil (1,000 mg/kg) on lead acetate (20 mg/kg) induced alternation in monoamines and brain oxidative stress was examined in rats. The levels of lead, dopamine (DA), norepinephrine (NE), serotonin (5-HT), lipid peroxidation, nitrite/nitrate (NO), and glutathione (GSH) were determined; also, the activity of acetylcholinesterase (AChE) and Na(+)-K(+)-ATPase were estimated on different brain regions of adult male albino rats. The level of lead was markedly elevated in different brain regions of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in AChE activity and GSH level. In addition, the levels of DA, NE, and 5-HT were decreased in the brain. These findings were associated with BAX over expression. Treatment of rats with flaxseed oil induced a marked improvement in most of the studied parameters as well as the immunohistochemistry features. These data indicated that dietary flaxseed oil provide protection against lead-induced oxidative stress and neurotoxic effects.  相似文献   

8.
In crude synaptosomal fractions from rat brain exposed to iron and ascorbate, enhanced lipid peroxidation (more than 3-fold compared to control), loss of protein thiols up to the extent of 40% compared to control, increased incorporation of carbonyl groups into proteins (more than 4.5-fold compared to control) and non-disulphide covalent cross-linking of membrane proteins have been observed. The phenomena are not inhibited by catalase or hydroxyl radical scavengers like mannitol or dimethyl sulphoxide. However, chain breaking antioxidants like alpha-tocopherol and butylated hydroxytoluene prevent both lipid peroxidation and accompanying protein oxidation. It is suggested that in this system lipid peroxidation propagated by the decomposition of preformed lipid hydroperoxides by iron and ascorbate is the primary event and products of the peroxidation process cause secondary protein damage. In view of high ascorbate content of brain and availability of several transition metals, such ascorbate mediated oxidative damage may be relevant in the aetiopathogenesis of several neurodegenerative disorders as well as ageing of brain.  相似文献   

9.
Nicotinamide (vitamin B3) an endogenous metabolite, showed significant inhibition of oxidative damage induced by reactive oxygen species (ROS) generated by ascorbate-Fe2+ and photosensitization systems in rat brain mitochondria. It protected against both protein oxidation and lipid peroxidation, at millimolar concentrations. Inhibition was more pronounced against oxidation of proteins than peroxidation of lipids. Chemically related endogenous compounds, tryptophan and isonicotinic acid, showed comparable inhibitory properties. The protective effect observed, at biologically relevant concentrations, with nicotinamide was more than that of the endogenous antioxidants ascorbic acid and alpha-tocopherol. Hence our studies suggest that nicotinamide (vitamin B3) can be considered as a potent antioxidant capable of protecting the cellular membranes in brain, which is highly susceptible to prooxidants, against oxidative damage induced by ROS.  相似文献   

10.
Marked hippocampal changes in response to excitatory amino acid agonists occur during pregnancy (e.g. decreased frequency in spontaneous recurrent seizures in rats with KA lesions of the hippocampus) and lactation (e.g. reduced c-Fos expression in response to N-methyl-d,l-aspartic acid but not to kainic acid). In this study, the possibility that lactation protects against the excitotoxic damage induced by KA in hippocampal areas was explored. We compared cell damage induced 24 h after a single systemic administration of KA (5 or 7.5 mg/kg bw) in regions CA1, CA3, and CA4 of the dorsal hippocampus of rats in the final week of lactation to that in diestrus phase. To determine cellular damage in a rostro-caudal segment of the dorsal hippocampus, we used NISSL and Fluorojade staining, immunohistochemistry for active caspase-3 and TUNEL, and we observed that the KA treatment provoked a significant loss of neurons in diestrus rats, principally in the pyramidal cells of CA1 region. In contrast, in lactating rats, pyramidal neurons from CA1, CA3, and CA4 in the dorsal hippocampus were significantly protected against KA-induced neuronal damage, indicating that lactation may be a natural model of neuroprotection.  相似文献   

11.
Cadmium induced lipid peroxidation in rat testes and protection by selenium   总被引:5,自引:1,他引:4  
The main goal of this study was to investigate the role of cadmium in the promotion of lipid peroxidation in the homogenates of rat testes and the effect of selenium on lipid peroxidation in testes of rats after cadmium injection. Treatment of rats with cadmium resulted in a time- and dose-related accumulation of the metal ions in testes. The concentrations of cadmium, copper, zinc, selenium and iron in the tissues were determined by an atomic absorption spectrophotometer and lipid peroxidation in testes was measured by a spectrophotometer. Cadmium produced enhanced lipid peroxidation in testes. These cadmium-induced changes were accompanied by a significant increase of iron and copper, and a decrease of zinc in testes. Concurrent treatment with selenium and cadmium reduced the cadmium-induced alterations in lipid peroxidation and essential metal levels. Data suggest that lipid peroxidation was associated with cadmium toxicity in testes and that the addition of selenium was found to be effective in attenuation of this effect.  相似文献   

12.
Toxic outcome of chemical therapeutics as well as multidrug resistance are two serious phenomena for their inacceptance in cancer chemotherapy. Antioxidants like curcumin (Cur) have gained immense importance for their excellent anticarcinogenic activities and minimum toxic manifestations in biological system. However, Cur is lipophilic and thus following oral administration hardly appears in blood indicating its potential therapeutic challenge in cancer therapy. Nanocapsulated Cur has been used as a drug delivery vector to focus the effectiveness of these vesicles against hepatocellular carcinoma. The theme of work was to evaluate effectiveness in oral route of polylactide co-glycolide (PLGA) Nanocapsulated curcumin (Nano Cur) against diethylnitrosamine (DEN) induced hepatocellular carcinoma (HCC) in rat. Nano Cur of average diameter 14nm and encapsulation efficiency of 78% were prepared. Fourier Transform Infra Red (FTIR) analysis revealed that there is no chemical interaction between drug and the polymer. Three i.p. injections of the chemical hepatocarcinogen DEN at 15days interval causes hepatotoxicity, the generation of reactive oxygen species (ROS), lipid peroxidation, decrease in plasma membrane microviscosity and depletion of antioxidant enzyme levels in liver. Nano Cur (weekly oral treatment for 16weeks at 20mg/kg b.wt) in DEN induced HCC rats exerted significant protection against HCC and restored redox homeostasis in liver cells. Nanocapsulated Cur caused cancer cell apoptosis as visualized by ApoBrdU analysis. Histopathological analysis confirmed the pathological improvement in the liver. Nano Cur was found to be a potential formulation in oral route in combating the oxidative damage of hepatic cells and eliminating DEN induced hepatocellular cancer cells in rat whereas identical amount of free Cur treatment was found almost ineffective.  相似文献   

13.
Chronic lead exposure is associated with several health disorders in humans and animals. Lead exposure leads to the generation of reactive oxygen species and depletes body antioxidant enzymes causing damage to various macromolecules and ultimately cell death. Curcumin has been widely recognized to protect against metal toxicity but has major limitations of reduced bioavailability. Nanoencapsulation of curcumin could be an effective strategy to combat lead induced toxic manifestations. The present study investigates the protective efficacy of bulk and nanocurcumin against lead-induced toxicity. Swiss albino mice were daily exposed to lead acetate (25 mg/kg, i.p.) alone and after 1 h treated either with curcumin (15 mg/kg, orally) or nanocurcumin (15 mg/kg, orally) for two consecutive weeks. The preventive efficacy of nanocurcumin was evaluated against various altered biochemical variables suggestive of oxidative stress and lead accumulation in blood and soft tissues. Coadministration of nanocurcumin with lead restored the altered δ-aminolevulinic acid dehydratase activity, glutathione (reduced and oxidized) levels, and also decreased reactive oxygen species, and thiobarbituric acid reactive substances levels. Nanocurcumin due to its possible chelating property and enhanced bioavailability efficiently removed lead from blood and soft tissues compared to bulk curcumin. Results demonstrate the enhanced preventive efficacy of nanocurcumin and suggest an interesting and novel approach for better treatment of lead toxicity.  相似文献   

14.
The purpose of this study was to evaluate the effects of cadmium-induced peroxidative damage to rat liver, heart, and spleen. Sprague-Dawley rats were injected subcutaneously with a single dose of 25, 125, 500, or 1250 μg Cd/kg and evaluated 6, 12, 24, or 72 h later. Liver, heart, and spleen were analyzed for lipid peroxidation and Fe, Cu, Zn, Se, and Cd concentrations. Data showed that Cd produced enhanced lipid peroxidation in the liver, heart, and spleen. These Cd-induced changes were accompanied by a significant rise in liver, heart, and spleen Fe and Cu, and a fall in spleen Zn and liver, heart, and spleen Se. Concurrent treatment with Se and Cd reduced the Cd-induced alterations in liver, heart, and spleen peroxidation and essential metal levels. Data suggest that lipid peroxidation is associated with cadmium toxicity and that Se was found effective in preventing lipid peroxidation.  相似文献   

15.
Chlorpyrifos exposure leads to various neurological disorders adverting disturbance in molecular pathways and normal brain functions. Major complications arise when these potent nerve agents access neuronal mechanisms causing adverse effect on acetylcholinesterase and brain lipids with generation of reactive oxygen species. Chlorpyrifos elicits chronic intoxication leading to redox disturbance with irreversible brain damage and oxidative stress. In the present study, neuroprotective and anti-apoptotic effects of eugenol (EO), a phenolic antioxidant, against chlorpyrifos-induced neurotoxicity was explored on rat brain cortex. Rats treated orally with chlorpyrifos [89.4 mg/kg body weight (BW)] for 15 consecutive days showed changes in brain lipid profile, increased levels of lipid peroxidation, inhibition of acetylcholinesterase activity, and changes in antioxidant enzymes. EO (250 mg/kg BW), administered 1 h after chlorpyrifos treatment, restored lipid, acetylcholinesterase, and antioxidant enzyme levels of brain cortex by suppressing chlorpyrifos-induced oxidative stress and neurotoxicity. Histological findings further demonstrated damage to brain morphology with increased protein levels of caspase-3 in CPF-treated animals. Alterations caused by neurotoxic effects of chlorpyrifos were attenuated by EO administration with decreased protein expressions of caspase-3. Thus, through its antioxidant and anti-apoptotic activities, EO showed protective effect against chlorpyrifos-induced neuronal damage.  相似文献   

16.
Lipid peroxidation induced by metals at sub-lethal levels, alter physiological and biochemical characteristics of biological systems. To counter the detrimental effects of the prooxidant activity of metals, a group of antioxidant enzyme systems function in the organisms. The present study was performed to investigate into the lipid peroxidation product formation due to the exposure to effects of the metals namely aluminium, lead and cadmium at sub-lethal concentrations and the biological response through protective antioxidant enzyme activity in the marine mussels,Perna viridis Lin. This organism is a known bioindicator and bioconcentrator of metals in the environment.The results of the present study were: (a) accumulation of lead showed a definite linear increase during the period of exposure whereas aluminium and cadmium showed fluctuations. Mantle and gill tissues showed greater accumulation of metals when compared to digestive gland; (b) lead and aluminium induced lipid peroxidation was greater in tissues than the peroxidation induced by cadmium. Cadmium induced peroxidation was observed only after the day 7 of the exposure; (c) anti-oxidant enzymes activity levels were significantly higher in digestive gland and mantle than gills; (d) mantle was observed to significantly contribute to the organismal response to lipid peroxidation as indicated by high activity levels of anti-oxidant enzymes.  相似文献   

17.
Inhalation of toxic materials such as asbestos, silica, 100% oxygen, ozone, or nitrogen dioxide may lead to an increased production of reactive oxygen metabolites which may initiate lipid peroxidation. Measurement of lipid peroxidation in cells and fluid obtained by bronchoalveolar lavage (BAL), as well as in lung tissue, may aid in monitoring the development and extent of pulmonary damage after inhalation of a toxic substance. In this study, we employed a sensitive assay for detection of malondialdehyde (MDA), a breakdown product of lipid peroxidation. By separation of the adduct with thiobarbituric acid, using a reverse phase high pressure liquid chromatographic technique, we accurately and sensitively measured the content of MDA in BAL cells, lavage fluid, and lavaged lung tissue homogenates of rats. The amounts of sample required for detection of MDA were small enough possibly to be applied to use with human specimens; in addition, recovery of added MDA was acceptable with all types of samples. Inclusion of a metal chelator in the preparation of samples appeared necessary to prevent metal-catalyzed propagation of lipid peroxidation during the assay. Overall, the method described here using samples from rats may be applicable to detecting lipid peroxidation in BAL samples from humans.  相似文献   

18.
Unsymmetrical dichalcogenides, a class of organoselenium compounds, were screened for antioxidant activity in rat brain homogenates in vitro. Unsymmetrical dichalcogenides (1-3) were tested against lipid peroxidation induced by sodium nitroprusside (SNP) or malonate, and reactive species (RS) production induced by sodium azide in rat brain homogenates. Compounds 1 (without a substituent at the phenyl group), 2 (chloro substituent at the phenyl group bounded to the sulfur atom) and 3 (chloro substituent at the phenyl group bounded to the selenium atom) protected against lipid peroxidation induced by SNP. The IC50 values followed the order 3<2<1. Lipid peroxidation induced by malonate was also reduced by dichalcogenides 1, 2 and 3. The IC50 values were 3相似文献   

19.
The present study designed to investigate the protective effect of curcumin nanoparticles (CUR-NPs) on the cardiotoxicity induced by doxorubicin. Rats were divided into four groups; control, rats treated daily with CUR-NPs (50 mg/kg) for 14 days, rats treated with an acute dose of doxorubicin (20 mg/kg) and rats treated daily with CUR-NPs for 14 days injected with doxorubicin on the 10th day. After electrocardiogram (ECG) recording from rats at different groups, rat decapitation was carried out and the heart of each rat was excised out to measure the oxidative stress parameters; lipid peroxidation (MDA), nitric oxide (NO) and reduced glutathione (GSH) and the activities of Na,K,ATPase and acetylcholinesterase (AchE). In addition, the levels of dopamine (DA), norepinephrine (NE) and serotonin (5-HT) were determined in the cardiac tissues. Lactate dehydrogenase (LDH) activity was measured in the serum. The ECG recordings indicated that daily pretreatment with CUR- NPs has prevented the tachycardia (i.e. increase in heart rate) and ameliorated the changes in ST wave and QRS complex induced by doxorubicin. In addition, CUR-NPs prevented doxorubicin induced significant increase in MDA, NO, DA, AchE and LDH and doxorubicin induced significant decrease in GSH, NE, 5-HT and Na,K,ATPase. According to the present findings, it could be concluded that CUR-NPs have a protective effect against cardiotoxicity induced by doxorubicin. This may shed more light on the importance of CUR-NPs pretreatment before the application of doxorubicin therapy.  相似文献   

20.
Nicotine, a major toxic component of cigarette smoke has been identified as a major risk factor for lung related diseases. In the present study, we evaluated the protective effects of curcumin on lipid peroxidation and antioxidants status in bronchoalveolar lavage fluid (BALF) and bronchoalveolar lavage (BAL) of nicotine treated Wistar rats. Lung toxicity was induced by subcutaneous injection of nicotine at a dose of 2.5 mg/kg body weight (5 days a week, for 22 weeks) and curcumin (80 mg/kg body weight) was given simultaneously by intragastric intubation for 22 weeks. Measurement of biochemical marker enzymes: alkaline phosphatase, lactate dehydrogenase, lipid peroxidation and antioxidants were used to monitor the antiperoxidative effects of curcumin. The increased biochemical marker enzymes as well as lipid peroxides in BALF and BAL of nicotine treated rats was accompanied by a significant decrease in the levels of glutathione, glutathione peroxidase, superoxide dismutase and catalase. Administration of curcumin significantly lowered the biochemical marker enzymes, lipid peroxidation and enhanced the antioxidant status. The results of the present study suggest that curcumin exert its protective effect against nicotine-induced lung toxicity by modulating the biochemical marker enzymes, lipid peroxidation and augmenting antioxidant defense system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号