首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Traditionally, the niche of a species is described as a hypothetical 3D space, constituted by well‐known biotic interactions (e.g. predation, competition, trophic relationships, resource–consumer interactions, etc.) and various abiotic environmental factors. Species distribution models (SDMs), also called “niche models” and often used to predict wildlife distribution at landscape scale, are typically constructed using abiotic factors with biotic interactions generally been ignored. Here, we compared the goodness of fit of SDMs for red‐backed shrike Lanius collurio in farmlands of Western Poland, using both the classical approach (modeled only on environmental variables) and the approach which included also other potentially associated bird species. The potential associations among species were derived from the relevant ecological literature and by a correlation matrix of occurrences. Our findings highlight the importance of including heterospecific interactions in improving our understanding of niche occupation for bird species. We suggest that suite of measures currently used to quantify realized species niches could be improved by also considering the occurrence of certain associated species. Then, an hypothetical “species 1” can use the occurrence of a successfully established individual of “species 2” as indicator or “trace” of the location of available suitable habitat to breed. We hypothesize this kind of biotic interaction as the “heterospecific trace effect” (HTE): an interaction based on the availability and use of “public information” provided by individuals from different species. Finally, we discuss about the incomes of biotic interactions for enhancing the predictive capacities on species distribution models.  相似文献   

2.
Ecological niche modeling is used to estimate species distributions based on occurrence records and environmental variables, but it seldom includes explicit biotic or historical factors that are important in determining the distribution of species. Expert knowledge can provide additional valuable information regarding ecological or historical attributes of species, but the influence of integrating this information in the modeling process has been poorly explored. Here, we integrated expert knowledge in different stages of the niche modeling process to improve the representation of the actual geographic distributions of Mexican primates (Ateles geoffroyi, Alouatta pigra, and A. palliata mexicana). We designed an elicitation process to acquire information from experts and such information was integrated by an iterative process that consisted of reviews of input data by experts, production of ecological niche models (ENMs), and evaluation of model outputs to provide feedback. We built ENMs using the maximum entropy algorithm along with a dataset of occurrence records gathered from a public source and records provided by the experts. Models without expert knowledge were also built for comparison, and both models, with and without expert knowledge, were evaluated using four validation metrics that provide a measure of accuracy for presence-absence predictions (specificity, sensitivity, kappa, true skill statistic). Integrating expert knowledge to build ENMs produced better results for potential distributions than models without expert knowledge, but a much greater improvement in the transition from potential to realized geographic distributions by reducing overprediction, resulting in better representations of the actual geographic distributions of species. Furthermore, with the combination of niche models and expert knowledge we were able to identify an area of sympatry between A. palliata mexicana and A. pigra. We argue that the inclusion of expert knowledge at different stages in the construction of niche models in an explicit and systematic fashion is a recommended practice as it produces overall positive results for representing realized species distributions.  相似文献   

3.
Abiotic factors such as climate and soil determine the species fundamental niche, which is further constrained by biotic interactions such as interspecific competition. To parameterize this realized niche, species distribution models (SDMs) most often relate species occurrence data to abiotic variables, but few SDM studies include biotic predictors to help explain species distributions. Therefore, most predictions of species distributions under future climates assume implicitly that biotic interactions remain constant or exert only minor influence on large‐scale spatial distributions, which is also largely expected for species with high competitive ability. We examined the extent to which variance explained by SDMs can be attributed to abiotic or biotic predictors and how this depends on species traits. We fit generalized linear models for 11 common tree species in Switzerland using three different sets of predictor variables: biotic, abiotic, and the combination of both sets. We used variance partitioning to estimate the proportion of the variance explained by biotic and abiotic predictors, jointly and independently. Inclusion of biotic predictors improved the SDMs substantially. The joint contribution of biotic and abiotic predictors to explained deviance was relatively small (~9%) compared to the contribution of each predictor set individually (~20% each), indicating that the additional information on the realized niche brought by adding other species as predictors was largely independent of the abiotic (topo‐climatic) predictors. The influence of biotic predictors was relatively high for species preferably growing under low disturbance and low abiotic stress, species with long seed dispersal distances, species with high shade tolerance as juveniles and adults, and species that occur frequently and are dominant across the landscape. The influence of biotic variables on SDM performance indicates that community composition and other local biotic factors or abiotic processes not included in the abiotic predictors strongly influence prediction of species distributions. Improved prediction of species' potential distributions in future climates and communities may assist strategies for sustainable forest management.  相似文献   

4.
Sister species that diverged in allopatry in similar environments are expected to exhibit niche conservatism. Using ecological niche modeling and a multivariate analysis of climate and habitat data, I test the hypothesis that the Bicknell's Thrush (Catharus bicknelli) and Gray‐cheeked Thrush (C. mimimus), sister species that breed in the North American boreal forest, show niche conservatism. Three tree species that are important components of breeding territories of both thrush species were combined with climatic variables to create niche models consisting of abiotic and biotic components. Abiotic‐only, abiotic+biotic, and biotic‐only models were evaluated using the area under the curve (AUC) criterion. Abiotic+biotic models had higher AUC scores and did not over‐project thrush distributions compared to abiotic‐only or biotic‐only models. From the abiotic+biotic models, I tested for niche conservatism or divergence by accounting for the differences in the availability of niche components by calculating (1) niche overlap from ecological niche models and (2) mean niche differences of environmental values at occurrence points. Niche background similarity tests revealed significant niche divergence in 10 of 12 comparisons, and multivariate tests revealed niche divergence along 2 of 3 niche axes. The Bicknell's Thrush breeds in warmer and wetter regions with a high abundance of balsam fir (Abies balsamea), whereas Gray‐cheeked Thrush often co‐occurs with black spruce (Picea mariana). Niche divergence, rather than conservatism, was the predominant pattern for these species, suggesting that ecological divergence has played a role in the speciation of the Bicknell's Thrush and Gray‐cheeked Thrush. Furthermore, because niche models were improved by the incorporation of biotic variables, this study validates the inclusion of relevant biotic factors in ecological niche modeling to increase model accuracy.  相似文献   

5.
Species distribution models (SDM) have been broadly used in ecology to address theoretical and practical problems. Currently, there are two main approaches to generate SDMs: (i) correlative, which is based on species occurrences and environmental predictor layers and (ii) process-based models, which are constructed based on species' functional traits and physiological tolerances. The distributions estimated by each approach are based on different components of species niche. Predictions of correlative models approach species realized niches, while predictions of process-based are more akin to species fundamental niche. Here, we integrated the predictions of fundamental and realized distributions of the freshwater turtle Trachemys dorbigni. Fundamental distribution was estimated using data of T. dorbigni's egg incubation temperature, and realized distribution was estimated using species occurrence records. Both types of distributions were estimated using the same regression approaches (logistic regression and support vector machines), both considering macroclimatic and microclimatic temperatures. The realized distribution of T. dorbigni was generally nested in its fundamental distribution reinforcing theoretical assumptions that the species' realized niche is a subset of its fundamental niche. Both modelling algorithms produced similar results but microtemperature generated better results than macrotemperature for the incubation model. Finally, our results reinforce the conclusion that species realized distributions are constrained by other factors other than just thermal tolerances.  相似文献   

6.
A hierarchical view of niche relations reconciles the scale‐dependent effects of abiotic and biotic processes on species distribution patterns and underlies most current approaches to distribution modeling. A key prediction of this framework is that the effects of biotic interactions will be averaged out at macroscales – an idea termed the Eltonian noise hypothesis (ENH). We test this prediction by quantifying regional variation in local abiotic and biotic niche relations and assess the role of macroclimate in structuring biotic interactions, using a non‐native invasive grass, Microstegium vimineum, in its introduced range. Consistent with hierarchical niche relations and the ENH, macroclimate structures local biotic interactions, while local abiotic relations are regionally conserved. Biotic interactions suppress M. vimineum in drier climates but have little effect in wetter climates. A similar approach could be used to identify the macroclimatic conditions under which biotic interactions affect the accuracy of local predictions of species distributions.  相似文献   

7.
Methods derived from ecological niche modeling allow to define species distribution based on presence-only data. This is particularly useful to develop models from literature records such as available for the Anopheles dirus complex, a major group of malaria mosquito vectors in Asia. This research defines an innovative modeling design based on presence-only model and hierarchical framework to define the distribution of the complex and attempt to delineate sibling species distribution and environmental preferences. At coarse resolution, the potential distribution was defined using slow changing abiotic factors such as topography and climate representative for the timescale covered by literature records of the species. The distribution area was then refined in a second step using a mask of current suitable land cover. Distribution area and ecological niche were compared between species and environmental factors tested for relevance. Alternatively, extreme values at occurrence points were used to delimit environmental envelopes. The spatial distribution for the complex was broadly consistent with its known distribution and influencing factors included temperature and rainfall. If maps developed from environmental envelopes gave similar results to modeling when the number of sites was high, the results were less similar for species with low number of recorded presences. Using presence-only models and hierarchical framework this study not only predicts the distribution of a major malaria vector, but also improved ecological modeling analysis design and proposed final products better adapted to malaria control decision makers. The resulting maps can help prioritizing areas which need further investigation and help simulate distribution under changing conditions such as climate change or reforestation. The hierarchical framework results in two products one abiotic based model describes the potential maximal distribution and remains valid for decades and the other including a biotic mask easy to update with frequently available information gives current species distribution.  相似文献   

8.
Biotic interactions influence species niches and may thus shape distributions. Nevertheless, species distribution modelling has traditionally relied exclusively on environmental factors to predict species distributions, while biotic interactions have only seldom been incorporated into models. This study tested the ability of incorporating biotic interactions, in the form of host plant distributions, to increase model performance for two host‐dependent lepidopterans of economic interest, namely the African silk moth species, Gonometa postica and Gonometa rufobrunnea (Lasiocampidae). Both species are dependent on a small number of host tree species for the completion of their life cycle. We thus expected the host plant distribution to be an important predictor of Gonometa distributions. Model performance of a species distribution model trained only on abiotic predictors was compared to four species distribution models that additionally incorporated biotic interactions in the form of four different representations of host plant distributions as predictors. We found that incorporating the moth–host plant interactions improved G. rufobrunnea model performance for all representations of host plant distribution, while for G. postica model performance only improved for one representation of host plant distribution. The best performing representation of host plant distribution differed for the two Gonometa species. While these results suggest that incorporating biotic interactions into species distribution models can improve model performance, there is inconsistency in which representation of the host tree distribution best improves predictions. Therefore, the ability of biotic interactions to improve species distribution models may be context‐specific, even for species which have obligatory interactions with other organisms.  相似文献   

9.
The determinants of a species' geographic distribution are a combination of both abiotic and biotic factors. Environmental niche modeling of climatic factors has been instrumental in documenting the role of abiotic factors in a species' niche. Integrating this approach with data from species interactions provides a means to assess the relative roles of abiotic and biotic components. Here, we examine whether the high host specificity typically exhibited in the active pollination mutualism between yuccas and yucca moths is the result of differences in climatic niche requirements that limit yucca moth distributions or the result of competition among mutualistic moths that would co‐occur on the same yucca species. We compared the species distribution models of two Tegeticula pollinator moths that use the geographically widespread plant Yucca filamentosa. Tegeticula yuccasella occurs throughout eastern North America whereas T. cassandra is restricted to the southeastern portion of the range, primarily occurring in Florida. Species distribution models demonstrate that T. cassandra is restricted climatically to the southeastern United States and T. yuccasella is predicted to be able to live across all of eastern North America. Data on moth abundances in Florida demonstrate that both moth species are present on Y. filamentosa; however, T. cassandra is numerically dominant. Taken together, the results suggest that moth geographic distributions are heavily influenced by climate, but competition among pollinating congeners will act to restrict populations of moth species that co‐occur.  相似文献   

10.
Forecasting the effects of climate change on species and populations is a fundamental goal of conservation biology, especially for montane endemics which seemingly are under the greatest threat of extinction given their association with cool, high elevation habitats. Species distribution models (also known as niche models) predict where on the landscape there is suitable habitat for a species of interest. Correlative niche modeling, the most commonly employed approach to predict species' distributions, relies on correlations between species' localities and current environmental data. This type of model could spuriously forecast less future suitable habitat because species' current distributions may not adequately represent their thermal tolerance, and future climate conditions may not be analogous to current conditions. We compared the predicted distributions for three montane species of Plethodon salamanders in the southern Appalachian Mountains of North America using a correlative modeling approach and a mechanistic model. The mechanistic model incorporates species-specific physiology, morphology and behavior to predict an annual energy budget on the landscape. Both modeling approaches performed well at predicting the species' current distributions and predicted that all species could persist in habitats at higher elevation through 2085. The mechanistic model predicted more future suitable habitat than the correlative model. We attribute these differences to the mechanistic approach being able to model shifts in key range-limiting biological processes (changes in surface activity time and energy costs) that the correlative approach cannot. Choice of global circulation model (GCM) contributed significantly to distribution predictions, with a tenfold difference in future suitability based on GCM, indicating that GCM variability should be either directly included in models of species distributions or, indirectly, through the use of multi-model ensemble averages. Our results indicate that correlative models are over-predicting habitat loss for montane species, suggesting a critical need to incorporate mechanisms into forecasts of species' range dynamics.  相似文献   

11.
Macroecological models for predicting species distributions usually only include abiotic environmental conditions as explanatory variables, despite knowledge from community ecology that all species are linked to other species through biotic interactions. This disconnect is largely due to the different spatial scales considered by the two sub‐disciplines: macroecologists study patterns at large extents and coarse resolutions, while community ecologists focus on small extents and fine resolutions. A general framework for including biotic interactions in macroecological models would help bridge this divide, as it would allow for rigorous testing of the role that biotic interactions play in determining species ranges. Here, we present an approach that combines species distribution models with Bayesian networks, which enables the direct and indirect effects of biotic interactions to be modelled as propagating conditional dependencies among species’ presences. We show that including biotic interactions in distribution models for species from a California grassland community results in better range predictions across the western USA. This new approach will be important for improving estimates of species distributions and their dynamics under environmental change.  相似文献   

12.
It is increasingly recognized that species distributions are driven by both abiotic factors and biotic interactions. Despite much recent work incorporating competition, predation, and mutualism into species distribution models (SDMs), the focus has been confined to aboveground macroscopic interactions. Biotic interactions between plants and soil microbial communities are understudied as potentially important drivers of plant distributions. Some soil bacteria promote plant growth by cycling nutrients, while others are pathogenic; thus they have a high potential for influencing plant occurrence. We investigated the influence of soil bacterial clades on the distributions of bryophytes and 12 vascular plant species in a high elevation talus‐field ecosystem in the Rocky Mountain Front Range, Colorado, USA. We used an information‐theoretic criterion (AICc) modeling approach to compare SDMs with the following different sets of predictors: abiotic variables, abiotic variables and other plant abundances, abiotic variables and soil bacteria clade relative abundances, and a full model with abiotic factors, plant abundances, and bacteria relative abundances. We predicted that bacteria would influence plant distributions both positively and negatively, and that these interactions would improve prediction of plant species distributions. We found that inclusion of either plant or bacteria biotic predictors generally improved the fit, deviance explained, and predictive power of the SDMs, and for the majority of the species, adding information on both other plants and bacteria yielded the best model. Interactions between the modeled species and biotic predictors were both positive and negative, suggesting the presence of competition, parasitism, and facilitation. While our results indicate that plant–plant co‐occurrences are a stronger driver of plant distributions than plant–bacteria co‐occurrences, they also show that bacteria can explain parts of plant distributions that remain unexplained by abiotic and plant predictors. Our results provide further support for including biotic factors in SDMs, and suggest that belowground factors be considered as well.  相似文献   

13.
Based on our own empirical data and a literature review, we explore the possibility that biotic interactions, specifically competition, might be responsible for creating, and/or maintaining, geographic isolation. Ecological niche modeling was first used to test whether the distributions of 2 species of Neotropical marsupials (Marmosa robinsoni and M. xerophila) fit the predicted geographic pattern of competitive exclusion: one species predominates in areas environmentally suitable for both species along real contact zones. Secondly, we examined the connectivity among populations of each species, interpreted in the light of the niche models. The results show predominance of M. xerophila along its contact zone with M. robinsoni in the Península de Paraguaná in northwestern Venezuela. There, M. robinsoni has an extremely restricted distribution despite climatic conditions suitable for both species across the peninsula and its isthmus. The latter two results suggest that M. xerophila may be responsible for the geographic isolation of the peninsular populations of M. robinsoni with respect to other populations of the latter species in northwestern Venezuela. These results may represent an example of allopatry caused, or at least maintained, by competition. Our results and a review of numerous studies in which biotic interactions restrict species distributions (including at the continental scale) support a previously overlooked phenomenon: biotic interactions can isolate populations of a species. We propose 2 general mechanisms, intrusion and contraction, to classify allopatric conditions caused by various classes of biotic interactions. We present a necessary modification of the concept of ecological vicariance to include biotic interactions as possible vicariant agents regardless of whether genetic differentiation occurs or not.  相似文献   

14.
物种分布模型理论研究进展   总被引:23,自引:12,他引:23  
李国庆  刘长成  刘玉国  杨军  张新时  郭柯 《生态学报》2013,33(16):4827-4835
利用物种分布模型估计物种的真实和潜在分布区,已成为区域生态学与生物地理学中非常活跃的研究领域。然而,到目前为止,这项技术的理论基础仍然存在不足之处,一些关键的生态过程未能被有效纳入到物种分布模型的理论框架中,从而为解释物种分布模型预测的结果带来了诸多困惑。鉴于此,总结了物种分布模型的理论基础;系统探讨了物种分布模型与物种分布区的关系;特别指出了物种分布模型研究中存在的理论问题;重点阐述了物种分布模型未来的发展方向。研究认为,物种分布模型与生态位理论、源-库理论、种群动态理论、集合种群理论、进化理论等具有重要的联系;正确理解物种分布模型的预测结果与物种分布区的关系,有赖于对影响物种分布的3个主要因素(环境条件、物种相互作用与物种迁移能力)做出定量的分离;目前物种分布模型主要存在的问题是未能将物种的相互作用和物种的迁移能力有效纳入到模型的构建过程中;未来物种分布模型的发展应该加强模型背后理论框架的研究,并进一步加强整合物种相互作用过程、种群动态过程、迁移过程和物种进化过程等内容。研究还认为,从更高的理论层次模拟功能群和群落结构将是未来物种分布模型的重要发展方向。  相似文献   

15.
Biotic interactions have been considered as an important factor to be included in species distribution modelling, but little is known about how different types of interaction or different strategies for modelling affect model performance. This study compares different methods for including interspecific interactions in distribution models for bees, their brood parasites, and the plants they pollinate. Host–parasite interactions among bumble bees (genus Bombus: generalist pollinators and brood parasites) and specialist plant–pollinator interactions between Centris bees and Krameria flowers were used as case studies. We used 7 different modelling algorithms available in the BIOMOD R package. For Bombus, the inclusion of interacting species distributions generally increased model predictive accuracy. The improvement was better when the interacting species was included with its raw distribution rather than with its modeled suitability. However, incorporating the distributions of non‐interacting species sometimes resulted in similarly increased model accuracy despite their being no significance of any interaction for the distribution. For the Centris‐Krameria system the best strategy for modelling biotic interactions was to include the interacting species model‐predicted values. However, the results were less consistent than those for Bombus species, and most models including biotic interactions showed no significant improvement over abiotic models. Our results are consistent with previous studies showing that biotic interactions can be important in structuring species distributions at regional scales. However, correlations between species distributions are not necessarily indicative of interactions. Therefore, choosing the correct biotic information, based on biological and ecological knowledge, is critical to improve the accuracy of species distribution models and forecast distribution change.  相似文献   

16.
Null models have proven to be an important quantitative tool in the search for ecological processes driving local diversity and species distribution. However, there remains an important concern that different processes, such as environmental conditions and biotic interactions may produce similar patterns in species distributions. In this paper we present an analytical protocol for incorporating habitat suitability as an occupancy criterion in null models. Our approach involves modeling species presence or absence as a function of environmental conditions, and using the estimated site-specific probabilities of occurrence as the likelihood of species occupancy of a site during the generation of "null communities". We validated this approach by showing that type I error is not affected by the use of probabilities as a site occupancy criterion and is robust against a variety of predictive performances of the species-environmental models. We describe the expected differences when contrasting classical and the environmentally constrained null models, and illustrate our approach with a data set of Dutch dune hunting spider assemblages. Together, an environmentally constrained approach to null models will provide a more robust evaluation of species associations by facilitating the distinction between mutually exclusive processes that may shape species distributions and community assembly.  相似文献   

17.
Quantifying species distributions using species distribution models (SDMs) has emerged as a central method in modern biogeography. These empirical models link species occurrence data with spatial environmental information. Since their emergence in the 1990s, thousands of scientific papers have used SDMs to study organisms across the entire tree of life, with birds commanding considerable attention. Here, we review the current state of avian SDMs and point to challenges and future opportunities for specific applications, ranging from conservation biology, invasive species and predicting seabird distributions, to more general topics such as modeling avian diversity, niche evolution and seasonal distributions at a biogeographic scale. While SDMs have been criticized for being phenomenological in nature, and for their inability to explicitly account for a variety of processes affecting populations, we conclude that they remain a powerful tool to learn about past, current, and future species distributions – at least when their limitations and assumptions are recognized and addressed. We close our review by providing an outlook on prospects and synergies with other disciplines in which avian SDMs can play an important role.  相似文献   

18.
Habitat heterogeneity and dispersal limitation are widely considered to be the two major mechanisms in determining tree species distributions. However, few studies have quantified the relative importance of these two mechanisms at different life stages of trees. Moreover, rigorous quantification of the effects of dominant tree species in determining species distributions has seldom been explored. In the present study, we tested the hypothesis that the distribution of tree species is regulated by different mechanisms at different life history stages. In particular, we hypothesised that dispersal limitation regulates the distribution of trees at early life stages and that environmental factors control the distribution of trees as they grow, because of niche differentiation resulting from environmental filtering. To test this, trees in 400‐m2 quadrats in a 20‐ha plot in Xishuangbanna, southwest China were grouped into four classes on the basis of the diameter at breast height (DBH) that roughly represent different stages in the life history of trees. A neighbourhood index was computed to represent a neutral spatial autocorrelation effect. We used both biotic (dominant species) and abiotic (topography and soil) predictor variables to model the distribution of each target species while controlling for spatial autocorrelation within each of the DBH classes. To determine which factors played the largest role in regulating target species distribution, the simulated annealing method was used in model selection based on Akaike information criterion (AIC) values. The results showed that the relative importance of neutral and niche processes in regulating species distribution varied across life stages. The neutral neighbourhood index played the most important role in determining the distributions of small trees (1 cm ≤ DBH ≤ 10 cm), and dominant species, as biotic environmental predictor variables, were the next most important regulators for trees of this size. Environmental predictor variables played the most important role in determining the distributions of large trees (10 cm ≤ DBH). This finding builds on previous research into the relative importance of neutral and niche processes in determining species distributions regardless of life stages or DBH classes.  相似文献   

19.
Species distribution models (SDMs) have traditionally been founded on the assumption that species distributions are in equilibrium with environmental conditions and that these species–environment relationships can be used to estimate species responses to environmental changes. Insight into the validity of this assumption can be obtained from comparing the performance of correlative species distribution models with more complex hybrid approaches, i.e. correlative and process‐based models that explicitly include ecological processes, thereby accounting for mismatches between habitat suitability and species occupancy patterns. Here we compared the ability of correlative SDMs and hybrid models, which can accommodate non‐equilibrium situations arising from dispersal constraints, to reproduce the distribution dynamics of the ortolan bunting Emberiza hortulana in highly dynamic, early successional, fire driven Mediterranean landscapes. Whereas, habitat availability was derived from a correlative statistical SDM, occupancy was modeled using a hybrid approach combining a grid‐based, spatially‐explicit population model that explicitly included bird dispersal with the correlative model. We compared species occupancy patterns under the equilibrium assumption and different scenarios of species dispersal capabilities. To evaluate the predictive capability of the different models, we used independent species data collected in areas affected to different degree by fires. In accordance with the view that disturbance leads to a disparity between the suitable habitat and the occupancy patterns of the ortolan bunting, our results indicated that hybrid modeling approaches were superior to correlative models in predicting species spatial dynamics. Furthermore, hybrid models that incorporated short dispersal distances were more likely to reproduce the observed changes in ortolan bunting distribution patterns, suggesting that dispersal plays a key role in limiting the colonization of recently burnt areas. We conclude that SDMs used in a dynamic context can be significantly improved by using combined hybrid modeling approaches that explicitly account for interactions between key ecological constraints such as dispersal and habitat suitability that drive species response to environmental changes.  相似文献   

20.
Ecological niche theory holds that species distributions are shaped by a large and complex suite of interacting factors. Species distribution models (SDMs) are increasingly used to describe species’ niches and predict the effects of future environmental change, including climate change. Currently, SDMs often fail to capture the complexity of species’ niches, resulting in predictions that are generally limited to climate‐occupancy interactions. Here, we explore the potential impact of climate change on the American pika using a replicated place‐based approach that incorporates climate, gene flow, habitat configuration, and microhabitat complexity into SDMs. Using contemporary presence–absence data from occupancy surveys, genetic data to infer connectivity between habitat patches, and 21 environmental niche variables, we built separate SDMs for pika populations inhabiting eight US National Park Service units representing the habitat and climatic breadth of the species across the western United States. We then predicted occurrence probability under current (1981–2010) and three future time periods (out to 2100). Occurrence probabilities and the relative importance of predictor variables varied widely among study areas, revealing important local‐scale differences in the realized niche of the American pika. This variation resulted in diverse and – in some cases – highly divergent future potential occupancy patterns for pikas, ranging from complete extirpation in some study areas to stable occupancy patterns in others. Habitat composition and connectivity, which are rarely incorporated in SDM projections, were influential in predicting pika occupancy in all study areas and frequently outranked climate variables. Our findings illustrate the importance of a place‐based approach to species distribution modeling that includes fine‐scale factors when assessing current and future climate impacts on species’ distributions, especially when predictions are intended to manage and conserve species of concern within individual protected areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号