首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Brachiola (Nosema) algerae is a microsporidian species generally believed to be an intracellular parasite of insects, especially mosquitoes. However, both mosquito and human isolates have been shown to infect mammalian cells. The present study was undertaken to determine if spores of two insect and two human isolates of B. algerae cultured at 30 degrees C and 37 degrees C differed in their ability to germinate and infect cultured green monkey kidney cells at these two temperatures. Spores from all four isolates exhibited an optimum pH of 9.5 for germination. Mercury (Hg2+) inhibited germination of all isolates equally. Germination of spores from all four isolates was significantly greater when the parasite was cultured at 30 degrees C than when cultured at 37 degrees C. However, spores from the insect isolates cultivated at 30 degrees C or 37 degrees C infected significantly fewer mammalian cells at 37 degrees C than did spores from the human isolates under the same conditions. Thus, there is no correlation between the effects of temperature on the germination and the infectivity of an isolate. In addition, while exposure of B. algerae to 37 degrees C has been reported to cause spore dysmorphism, we failed to observe any consistent ultrastructural changes that explained the greater infectivity of the human isolates at 37 degrees C.  相似文献   

2.
Nosema algerae, a microsporidan parasite of mosquitoes, can infect pig kidney cell cultures. Sores germinated in the culture medium, infected the cells within 30 min of germination, multiplied, and produced spores. The early developmental stages in the N. algerae life cycle are discribed.  相似文献   

3.
SYNOPSIS Nosema algerae , a microsporidan parasite of anopheline mosquitoes, was successfully replicated in 3 insect cell culture lines: Trichoplusia ni (TN-368); Heliothis zea (IPLB-1075); and Mamestra brassicae (IZD-Mb-0503). Infectious spores were produced in vitro. Spores were observed at 48 h postinfection, and some cells were filled with sproes by 72 h.
The number of parasites per cell increased with time. At 72 h postinfection, the infection rates for the 3 cell lines ranged from 23 to 32%. Infected cell lines were subcultured, and by the 6th passage spore production had ceased.  相似文献   

4.
Tubulinosema ratisbonensis is a microsporidian pathogen of Drosophila melanogaster belonging to the family Tubulinosematidae. The microsporidia in this family mainly cause infections in invertebrate hosts, but two members of this family, Brachiola vesicularum and Brachiola algerae, have been found to cause infections in humans as well. Moreover, B. algerae can be transmitted to immunodeficient mice and grows in mammalian cell cultures. Thus, the examination of the opportunistic properties of other members of the family Tubulinosematidae is important. Spores of T. ratisbonensis, isolated from infected fruit flies, were used to inoculate mammalian and insect cell cultures. Parasite growth was only seen in human lung fibroblasts. No growth was seen in Vero cells or insect cell cultures. Comparison of growth kinetics at 31 degrees C and 37 degrees C showed that there were fewer and smaller parasitic foci in cultures incubated at 37 degrees C. Transmission electron microscopy revealed the typical ultrastructure of T. ratisbonensis, and scanning electron microscopy showed oval or slightly pyriform spores, with some spores having extruded their polar tubes. The PCR-amplified sequences of rDNA fragments from infected cell cultures were 100% identical to the original T. ratisbonensis rRNA sequence. As T. ratisbonensis is able to proliferate in mammalian cell cultures, it may have the opportunistic properties of other members of the family Tubulinosematidae.  相似文献   

5.
Brachiola vesicularum, n. g., n. sp., is a new microsporidium associated with AIDS and myositis. Biopsied muscle tissue, examined by light and electron microscopy, revealed the presence of organisms developing in direct contact with muscle cell cytoplasm and fibers. No other tissue types were infected. All parasite stages contain diplokaryotic nuclei and all cell division is by binary fission. Sporogony is disporoblastic, producing 2.9 times 2 μm diplokaryotic spores containing 8-10 coils of the polar filament arranged in one to three rows, usually two. Additionally, this microsporidium produces electron-dense extracellular secretions and vesiculotubular appendages similar to Nosema algerae. However, the production of protoplasmic extensions which may branch and terminate in extensive vesiculotubular structures is unique to this parasite. Additionally, unlike Nosema algerae , its development occurred at warm blooded host temperature (37-38° C) and unlike Nosema connori , which disseminates to all tissue types, B. vesicularum infected only muscle cells. Thus, a new genus and species is proposed. Because of the similarities with the genus Nosema , this new genus is placed in the family Nosematidae. Successful clearing of this infection (both clinically and histologically) resulted from treatment with albendazole and itraconozole.  相似文献   

6.
Nosema locustae, a microsporidian parasite of locusts and grasshoppers, was successfully propagated in a fat body cell line from Mythimna convecta (BPMNU-MyCo-1). The fat body cells were grown in MGM-448 medium supplemented with 5% fetal bovine serum and 3% Bombyx mori serum at 25 degrees C. Cultures were inoculated with Nosema spores and agitated for 2 min. Infection appeared 3 days post-inoculation and by 7th day, some cells were filled with spores. At the 15th day post-inoculation, 32% of the fat body cells were infected. After isolation, the spore yield ranged from 1.4 x 10(6) spores/ml. Infected cells were subcultured and by the 4th passage spore production decreased. Harvested spores were found infectious to Locusta migratoria.  相似文献   

7.
Lewis-Hughes P. H. and Howell M. J. 1984. In vitro culture of Plasmodium yoelii blood stages. International Journal for Parasitology14: 447–451. Plasmodium yoelii infected reticulocytes were cultured for 72 h at either 37 or 20°C in MEM (Eagle's modification) medium containing, in addition, glucose, para-aminobenzoic acid and 5% foetal calf serum, buffered at pH 7.3 with sodium bicarbonate/ HEPES and maintained under 10% CO2 in air. Red blood cell numbers were more stable at 20°C than at 37°C. Culture at both temperatures resulted in an increase in parasitaemia of the reticulocyte population over the initial 36 h at 37°C and for at least 72 h at 20°C. The effects of different temperatures appeared to be related to the continued presence of target cells. Parasites were not detected after 72 h culture at 37°C, but persisted for up to 120 h at 20°C. Increasing parasitaemia at both temperatures was associated with changes in the numbers of some parasite development types. Early falls in schizont numbers were associated with an increase in the numbers of ring forms. Trophozoite numbers tended to remain constant throughout the culture period. Viability of parasites cultured for 36 h was confirmed by their infectivity to CBA mice. In addition, parasites progressively incorporated H3-leucine into TCA-precipitable material over the initial 36 h of culture.  相似文献   

8.
The developmental stages of a recently described microsporidian from the nucleus of hematopoietic cells of salmonid fish were found to be unique among the Microsporida. All observed stages, including meronts, sporonts, and spores were in direct contact with the host cell nucleus (principally hematopoietic cells) of chinook salmon (Oncorhynchus tshawytscha). There is no parasitophorous vacuole and sporogony does not involve formation of a pansporoblastic membrane as with other members of the suborder Apansporoblastina. The extrusion apparatus differentiates prior to division of sporogonial plasmodia. The spores are ovoid (1 x 2 microns) and uninucleate, and possess a coiled polar tube with 8-12 turns. Developmental stages of the salmonid microsporidian are similar to those described for Enterocytozoon bieneusi as found in the intestinal mucosa of human AIDS patients. However, the intranuclear development, different cell types, and host infected clearly separate the salmonid and human parasites. Accordingly, the intranuclear parasite of salmonids is given the name Enterocytozoon salmonis n. sp. within the suborder Apansporoblastina.  相似文献   

9.
Spironucleus vortens were cultivated in either an artificial medium at different temperatures, or in medium at various pH conditions or supplemented with different bile concentrations at 25 degrees C. Temperature, pH and bile requirements for the optimal growth of the parasite were determined. Parasites multiplied quickly at 28 and 31 degrees C and reached maximum numbers on Day 4 of cultivation, whereafter they did not survive. At 25 degrees C, parasites survived longer than those at 28 and 31 degrees C with no difference in multiplication rate during the exponential phase. The longest survival period was seen at 22 degrees C, although the growth rate of the parasite was not as high as those at 25 degrees C. At a higher temperature of 37 degrees C, no parasites were observed alive after the second day of cultivation. Optimal pH range for the parasite's growth was 6.5 to 7.5, with the highest cell number at pH 7.5. Parasites survived longest (15 d) at pH 6.0, although the maximum number of cells was lower than those at the optimal pH. Parasites were dead within 24 h at pH levels above 8.5 or below 5.5. All cultures supplemented with either bovine or fish bile yielded numbers of parasites lower than cultures with no bile. In addition, parasite growth was significantly suppressed in medium supplemented with higher concentrations of bile. These results indicate that the optimal condition for the in vitro cultivation of S. vortens is 25 degrees C and pH 6.5 to 7.5 without supplementation with bile.  相似文献   

10.
In vitro growth kinetics of two Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae) clones in myocardial cells from rodents of different susceptibility. Two Trypanosoma cruzi isolates, TCR-4 from Costa Rica and UES-1 from El Salvador, were studied in vitro to compare their infectivity or resistance and intracellular replication in myocardial cells in three strains of mice and rats: NGP white mice, C3 H mice and Sprague Dowley rats. Myocardial cells were cultured on coverslips at 37 degrees C in a humid 10% CO2 atmosphere and then infected at a ratio of one tripomastigote per cell. Samples were studied after 24, 72, 96 and 120 h of infection to determine parasite infection capacity and intracellular multiplication. Both parasites had the highest infection capacity in C3 H mice, followed by NGP mice cells with a very low infection rate. Lastly, almost no Trypanosoma cruzi multiplication was observed in Sprague Dowley rats, suggesting a strong natural resistance in this animal to both strains of the parasite. The UES-1 isolate presented higher multiplication and greater invasion than the TCR-4 strain, showing greater virulence of UES-1 in heart cells, at least in vitro.  相似文献   

11.
When chickens are infected with the coccidial parasite Eimeria necatrix, the plasma membrane of intestinal cells harbouring second-generation schizonts becomes refractory to mechanical shearing, hypotonic shock and ultrasonication. Plasma membrane from these infected cells was isolated to high purity as judged by enriched levels of ouabain-sensitive (Na+ + K+)-stimulated Mg2-dependent ATPase activity and sialic acid content, the lack of detectable cytochrome oxidase and glucose-6-phosphatase activities and electron microscopic analysis of the final preparation. Wide-angle X-ray diffraction patterns recorded from the isolated membranes revealed that during the later stages of parasite maturation the host cell plasma membrane acquires increasing proportions of gel-phase lipid. By contrast, purified membrane from isolated parasites is in a liquid-crystalline state. The transition temperature of host cell plasmalemma at 100 h postinfection is 61 degrees C, about 20 degrees C above physiological temperature. By contrast, liposomes of plasma membranes from infected cells undergo a thermal transition at about 28 degrees C. The accumulation of gel-phase lipid in the host cell plasma membrane is not attributable either to an increase in the constituent ratio of saturated to unsaturated fatty acids or to a significant change in the cholesterol to phospholipid ratio. During the late stages of infection, the cells become stainable with trypan blue which suggests that the acquisition of crystalline phase lipid disrupts the permeability of the host cell plasmalemma.  相似文献   

12.
Morris DJ  Adams A 《Parasitology》2008,135(9):1075-1092
Tetracapsuloides bryosalmonae is the myxozoan that causes the commercially and ecologically important proliferative kidney disease of salmonid fish species. Immunohistochemistry and electron microscopy were used to examine the development of this parasite within the kidney of the brown trout Salmo trutta. The main replicative phase of T. bryosalmonae is a cell doublet composed of a primary cell and a single secondary cell. Engulfment of one secondary cell by another to form a secondary-tertiary doublet (S-T doublet) heralded the onset of sporogony whereupon the parasite migrated to the kidney tubule lumen. Within the tubule, the parasite transformed into a pseudoplasmodium and anchored to the tubule epithelial cells via pseudopodial extensions. Within each pseudoplasmodium developed a single spore, composed of 4 valve cells, 2 polar capsules and 1 sporoplasm. The pseudoplasmodia formed clusters suggesting that large numbers of spores develop within the fish. This examination of T. bryosalmonae suggests that the main replicative phase of freshwater myxozoans within vertebrates is via direct replication of cell doublets rather than through the rupturing of extrasporogonic stages, while tertiary cell formation relates only to sporogony. Taken in conjunction with existing phylogenetic data, 5 distinct sporogonial sequences are identified for the Myxozoa.  相似文献   

13.
Microsporidia form a large and ubiquitous group of obligately intracellular parasitic eukaryotes, increasingly recognized as pathogens in humans. Transmission of invertebrate microsporidia to mammals has been considered impossible because temperature seemed to be a limiting factor for development. Nosema algerae, a microsporidian of anopheline mosquitoes, was cultured in human muscle fibroblasts at temperatures of 31 degrees C and 38 degrees C. This is the first record of an invertebrate microsporidian developing in human cells at a temperature above 36 degrees C. The ultrastructure of N. algerae growing in human muscle fibroblasts is similar to that of Brachiola vesicularum, a microsporidian species previously described in the muscle of an AIDS patient.  相似文献   

14.
Microsporidia are unusual amongst eukaryotic parasites in that they utilize both vertical and horizontal transmission and vertically transmitted species can cause sex ratio distortion in their host. Here we study vertical transmission in two species of feminising microsporidia, Nosema granulosis and Dictyocoela duebenum, infecting a single population of the crustacean host Gammarus duebeni and measure the effect of temperature on parasite transmission and replication. N. granulosis was vertically transmitted to 82% of the host embryos and D. duebenum was transmitted to 72% of host embryos. For both parasites, we report relatively low parasite burdens in developing host embryos. However, the parasites differ in their pattern of replication and burden within developing embryos. Whilst N. granulosis undergoes replication during host development, the burden of D. duebenum declines, leading us to propose that parasite dosage and feminisation efficiency underlie the different parasite frequencies in the field. We also examine the effect of temperature on parasite transmission and replication. Temperature does not affect the percentage of young that inherit the infection. However, low temperatures inhibit parasite replication relative to host cell division, resulting in a reduction in parasite burden in infected embryos. The reduced parasite burden at low temperatures may underpin reduced feminization at low temperatures and so limit the spread of sex ratio distorters through the host population.  相似文献   

15.
Intracellular particle movements, of both saltatory and streaming types, in HeLa S-3 cells were simultaneously interrupted after 1 h exposure of cells to 43 degrees C, within 10 min at 44 degrees C and within 5 min at 45 degrees C. Intracellular movement inhibited after 15 min at 44 degrees C and 10 min at 45 degrees C was not reversible in cells rescued at 37 degrees C. Brownian motion was not observed in heat-treated cells while they were maintained at elevated temperatures, but became pronounced in blebbing which occurred shortly after they were returned to 37 degrees C. Returning these cells to 45 degrees C intensified the Brownian activity inside blebs, and rapidly induced cell lysis. The same heat-treated cells were simultaneously studied by laser-Doppler microscopy, which confirmed: a) that flow (cytoplasmic streaming) is completely arrested at 44 degrees C within 10 min, b) flow recovered in 10-15 min in cells rescued after 10-15 min at 44 degrees C, c) submicroscopic particles down to the size of water molecules had faster self-diffusion coefficients at 44 degrees C than at 37 degrees C. Proton nmr studies on cells exposed from 4 to 45 degrees C gave corrected relaxation times T1 and T2 which rose with temperature in a predictable manner. Inhibition of cellular movement at elevated temperatures was not specifically attributable to the depletion of intracellular ATP levels.  相似文献   

16.
The development of the triactinomyxon stage of Myxobolus cerebralis and release of mature spores from Tubifex tubifex were shown to be temperature dependent. In the present work, the effect of temperature over a range of 5-30 degrees C on the development and release of the triactinomyxon stages of M. cerebralis was studied. Infected T. tubifex stopped releasing triactinomyxon spores 4 days after transfer from 15 degrees C to 25 degrees C or 30 degrees C. Transmission electron microscopic examinations of the tubificids held at 25 degrees C and 30 degrees C for 3 days showed that all developmental stages degenerated and transformed to electron-dense clusters between the gut epithelial cells of T. tubifex. In contrast, tubificid worms held at 5 degrees C and 10 degrees C examined at the same time were heavily infected with many early developmental stages of triactinomyxon. At 15 degrees C, the optimal temperature for development, maturing and mature stages of the parasite were evident. Infected T. tubifex transferred from 15 degrees C to 20 degrees C stopped producing triactinomyxon spores after 15 days. However, 15 days at 20 degrees C was not sufficient to destroy all developmental stages of the parasite. When the tubificid worms were returned to 15 degrees C, the one-cell stages and the binucleate-cell stages resumed normal growth. It was also demonstrated that T. tubifex cured of infection by holding at 30 degrees C for 3 weeks and shifted to 15 degrees C could be re-infected with M. cerebralis spores. The waterborne triactinomyxon spores of M. cerebralis did not appear to be as short-lived as previously reported. More than 60% of experimentally produced waterborne triactinomyxon spores survived and maintained their infectivity for rainbow trout for 15 days at water temperatures up to 15 degrees C. In natural aquatic systems, the triactinomyxon spores may survive and keep their infectivity for periods even longer than 15 days.  相似文献   

17.
A cell-sorting method is described for the analysis and separation of red blood cells in Plasmodium berghei-infected mouse blood based on their DNA content. This method involves a selective uptake of the bis-benzimidazole dye 33258 Hoechst, a DNA-binding dye, by red blood cells containing parasites. Infected blood is incubated at 37 degrees C with the dye then washed at 4 degrees C to remove unbound dye. Uninfected cells are then non-fluorescent at the characteristic wavelengths for 33258 Hoechst excitation and emission, whereas parasitized cells display fluorescence intensities in approximately direct proportion tothe number of parasite nuclei (i.e. amount of parasite DNA) within the cell and can be sorted accordingly. Providing cells were incubated in a complex nutrient medium during dye uptake at 37 degrees C, the sorted parasite-infected cells produced lethal P. berghei infections when injected into BALB/c mice. The dye-labelling technique is simple and sufficient red blood cells at various stages of infection can be collected for biochemical or immunochemical studies by cell sorting.  相似文献   

18.
Sporulation and enterotoxin formation were determined for 17 strains of Clostridium perfringens type A in autoclaved chicken dark meat and in Duncan-Strong sporulation medium. The mean numbers of heat-resistant spores detected after 24 h at 37 degrees C were log10 1.13 to log10 7.64/ml in Duncan-Strong medium and log10 4.93 to log10 6.59/g in chicken. Of 17 strains, 7 formed enterotoxin in Duncan-Strong culture supernatant (1.0 to 60 microgram/ml) and 8 produced enterotoxin in chicken (0.21 to 24 microgram/g). Additional studies with chicken were conducted with C. perfringens NCTC 8239. With an inoculum of 10(6) cells per g, greater than log10 7.99 vegetative cells per g were detected by 4 h in chicken at 37 degrees C. Heat-resistant spores occurred by 4 and 6 h and enterotoxin occurred by 8 and 6 h in autoclaved chicken dark meat and barbecued chicken drumsticks, respectively. Enterotoxin was detected in autoclaved dark meat after incubation at 45 degrees C for 1.5 h followed by 37 degrees C for 4.5 h, but not after incubation at 45 degrees C for 1.5 to 8 h. With an inoculum of 10(2) cells per g in oven-cooked or autoclaved chicken, greater than log10 8.00 vegetative cells per g were detected by 6 to 8 h at 37 degrees C, heat-resistant spores were detected by 8 h, and enterotoxin was detected by 12 h. A statistical analysis of odor determinants of chicken after growth of C. perfringens indicated that, at the 95% confidence level, the product was considered spoiled (off or unwholesome odor) by the time spores or enterotoxin were formed.  相似文献   

19.
Invasion and intra-erythrocytic growth of two strains of Plasmodium berghei (ANKA and K173) were studied under different in vitro conditions. Some important limiting factors for the mass cultivation of this rodent malaria parasite were reconsidered. Parasites of both strains developed normally from ringforms into mature schizonts in RPMI1640 supplemented with Fetal Calf Serum (FCS). At a temperature of 37 degrees C the duration of the schizogonic cycle was comparable to that of the same parasites developing under in vivo conditions. At 27 degrees C, however, the asexual cycle took 60-72 h. In medium supplemented with mouse serum instead of FCS the growth of the parasites was severely inhibited. Parasites of both strains showed a strict preference for reticulocytes. Red blood cells from rats, mice and hamsters were readily invaded by merozoites from both strains. Erythrocytes from rabbits and guinea pigs were resistant to invasion by P. berghei. It is concluded that host cell specificity technically limits the possibilities for mass cultivation of P. berghei. The validity of recent publications, describing alternative culture systems for this rodent parasite, is discussed.  相似文献   

20.
Heat shock proteins (hsps) were identified in a cell line from the Mediterranean fruit fly, Ceratitis capitata Wiedemann (Diptera: Tephritidae) exposed to elevated temperatures. Cells produced three hsps (Mr 87,000, 69,000, and 34,000) in response to a temperature shift from 26 degrees C to 37 degrees C (30-60 min) with a concomitant decrease in synthesis of most other cellular proteins. Synthesis of low Mr hsps was not evident. The heat shock response is triggered within 30 min at temperatures from 33 degrees C to 41 degrees C. At temperatures greater than 41 degrees C protein synthesis was shut down. Within 2-3 h after return to 26 degrees C, synthesis of proteins repressed at the higher temperatures resumed production while the major hsps disappear. Heat shock proteins were not produced in the presence of actinomycin D. Evaluations on the role of hsps in conferring thermotolerance to the cells showed an increase in cell viability in heat-shocked cells over non-heat-shocked cells (after 3 and 10 days) when subsequently placed at 45 degrees C for 1 h, a normally lethal temperature. Heat shock alone had little effect on subsequent cell viability or growth at 26 degrees C. These results suggest that hsps produced by these cells may aid in the maintenance of cell integrity and thus play a transitory role in thermotolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号