首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Derivatives of 3H-1,2-dithiole-3-thione (D3T) decrease the incidence and multiplicity of tumours in animals exposed to chemical carcinogens by a mechanism that is believed to involve their ability to increase tissue activities of Phase II detoxification enzymes. One D3T derivative, 4-methyl-5-pyrazinyl-3H-1,2-dithiole-3-thione (oltipraz) has been investigated as a chemopreventative agent in humans, although large-scale trials of this substance were abandoned because of toxicity problems. While detailed information on the inductive ability of oltipraz is available, little is known of the relative activity of other D3T derivatives in vivo. In the present study, the effects of 10 dithiolethiones on the activities of two Phase II enzymes, NAD(P)H:quinone acceptor oxidoreductase and glutathione S-transferase, have been determined in a number of rat tissues. In all tissues, oltipraz was a relatively weak inducer. D3T itself and 5-methyl-, 4-chloro-5-methyl-, 4-phenyl- and 5,6-dihydrocyclopenta[c]-1,2-dithiole-3-thione (cyclopenta) were the most active compounds, both in terms of degree of induction and the number of organs in which enzyme induction occurred. Cyclopenta was a potent enzyme inducer in the urinary bladder, whereas 4-chloro-5-methyl-3H-1,2-dithiole-3-thione was particularly effective in the liver and the 4-phenyl derivative showed high inductive activity in the lungs. Comparison of the inducer activities of selected dithiolethiones, including cyclopenta, in cultured bladder carcinoma cells in vitro showed strong correlation with the in vivo data, suggesting that the different inducer activity of the dithiolethiones in vivo, at least in the bladder, is an intrinsic property of these compounds. In view of the evidence that Phase II enzyme induction plays a major role in the chemoprotective action of dithiolethiones, evaluation of the anti-cancer activity of the more potent inducers identified in this study would be of interest.  相似文献   

2.
One dithiolthione and two new methanethiosulfonate derivatives of valproic acid (VPA) were synthesized and tested in vitro as histone deacetylase (HDAC) inhibitors. The new molecules, as well as their sulfurated moieties, exhibited a much stronger inhibition of HDAC enzymatic and antiproliferative activities and histone hyperacetylation than VPA. ACS 2 is the most interesting compound among the new VPA derivatives and its sulfurated moiety, 5-(4-hydroxyphenyl)-3H-1,2-dithiole-3-thione, also known to be a metabolite of anethole trithione, seems to contribute significantly to its activity. This is the first time that HDAC inhibitory activity is described for dithiolethiones and thiosulfonates.  相似文献   

3.
4.
A simple and rapid method for the preparation of N-methylamides ( - CONHCH3) of sialic acids in gangliosides and biochemical properties of the modified gangliosides are described. The sialic acid carboxyl groups of gangliosides were esterified with CH3I-dimethylsulfoxide, followed by heating with monomethylamine. The modified gangliosides were chemically identified by TLC, IR spectroscopy, GLC-mass spectrometry and NMR spectroscopy. The N-methylamide derivative of GM1 produced a high titer IgG antibody. The antibody weakly cross-reacted with the methylester of GM1 and its reductive derivative but did not react with the intact GM1. A monoclonal antibody (M2590) specific for GM3 did not react with carboxyl-modified GM3 (methylester, N-methylamide, and reduced GM3), but it reacted with modified GM3 which contains the C7-analog of the sialic acid. Clostridium perfringens and Arthrobacter ureafaciens sialidases did not hydrolyze the N-methylamide derivatives, methylesters or reductive derivatives of the gangliosides and, furthermore, these derivatives did not inhibit the actions of these sialidases.  相似文献   

5.
Zhu  Hong  Bui  An  Santo  Arben  Li  Y. Robert 《Molecular and cellular biochemistry》2022,477(5):1499-1506
Molecular and Cellular Biochemistry - Previously, we reported that 3H-1,2-dithiole-3-thione (D3T), an Nrf2 activator, acted as a potential chemoprotectant against lipopolysaccharide (LPS)-induced...  相似文献   

6.
7.
A microscopically pure enrichment culture of a gram-negative anaerobic bacterium, in the present article referred to as PER-K23, was isolated from an anaerobic packed-bed column in which tetrachloroethene (PCE) was reductively transformed to ethane via trichloroethene (TCE), cis-1,2-dichloroethene (cis-1,2-DCE), chloroethene, and ethene. PER-K23 catalyzes the dechlorination of PCE via TCE to cis-1,2-DCE and couples this reductive dechlorination to growth. H2 and formate were the only electron donors that supported growth with PCE or TCE as an electron acceptor. The culture did not grow in the absence of PCE or TCE. Neither O2, NO3-, NO2-, SO4(2-), SO3(2-), S2O3(2-), S, nor CO2 could replace PCE or TCE as an electron acceptor with H2 as an electron donor. Also, organic electron acceptors such as acetoin, acetol, dimethyl sulfoxide, fumarate, and trimethylamine N-oxide and chlorinated ethanes, DCEs, and chloroethene were not utilized. PER-K23 was not able to grow fermentatively on any of the organic compounds tested. Transferring the culture to a rich medium revealed that a contaminant was still present. Dechlorination was optimal between pH 6.8 and 7.6 and a temperature of 25 to 35 degrees C. H2 consumption was paralleled by chloride production, PCE degradation, cis-1,2-DCE formation, and growth of PER-K23. Electron balances showed that all electrons derived from H2 or formate consumption were recovered in dechlorination products and biomass. Exponential growth could be achieved only in gently shaken cultures.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
10.
1. A chromatographic investigation of the products of the metabolism of 3-methylcholanthrene by rat-liver homogenates showed the formation of compounds with the properties of 1- and 2-hydroxy-3-methylcholanthrene, cis- and trans-1,2-dihydroxy-3-methylcholanthrene and 11,12-dihydro-11,12-dihydroxy-3-methylcholanthrene. A glutathione conjugate that is probably S-(11,12-dihydro-12-hydroxy-3-methyl-11-cholanthrenyl)glutathione was also detected. 3-Methylcholanthrene-1- and -2-one and -1,2-quinone were also present, but these products may have arisen by the chemical oxidation of the corresponding hydroxy compounds. 2. Other metabolic products were tentatively identified as 9- and 10-hydroxy-3-methylcholanthrene, 4,5-dihydro-4,5-dihydroxy-3-methylcholanthrene and 3-hydroxymethylcholanthrene. 3. 1- and 2-Hydroxy-3-methylcholanthrene were converted by homogenates into the related ketones and into products with the properties of cis- and trans-1,2-dihydroxy-3-methylcholanthrene: 3-methylcholanthren-1- and -2-one were converted into their related hydroxy compounds and into the isomeric 1,2-dihydroxy compounds. The isomeric 1,2-dihydroxy compounds were each partly converted into the other isomer by these homogenates. All the above substrates also yielded products that appeared to be derivatives of 3-hydroxymethylcholanthrene. 4. 3-Methylcholanthrylene was converted by rat-liver homogenates into products with the properties of trans-1,2-dihydroxy-3-methylcholanthrene, 2-hydroxy-3-methylcholanthrene and 3-methylcholanthren-2-one. A small amount of the cis-1,2-dihydroxy compound was also formed, together with a glutathione conjugate that is possibly S-(2-hydroxy-3-methyl-1-cholanthrenyl)glutathione or its positional isomer. 5. An unidentified product was detected in the metabolism of 3-methylcholanthrene, the monohydroxy compounds, the ketones and the dihydroxy compounds, the formation of which appeared to involve metabolism at the 1,2-bond. 6. 11,12-Epoxy-11,12-dihydro-3-methylcholanthrene was converted by rat-liver homogenates into products with the properties of 11-hydroxy-3-methylcholanthrene (or, less likely, the 12-isomer), 11,12-dihydro-11,12-dihydroxy-3-methylcholanthrene and the glutathione conjugate described above. Products with the properties of these compounds were formed when the epoxide was allowed to react with glutathione in an aqueous medium. 7. Mouse-liver homogenate converted 3-methylcholanthrene into products with the chromatographic properties of 1- and 2-hydroxy-3-methylcholanthrene, cis- and trans-1,2-dihydroxy-3-methylcholanthrene, 11,12-dihydro-11,12-dihydroxy-3-methylcholanthrene, 3-methylcholanthrene-1- and -2-one and -1,2-quinone and the unidentified hydroxy-3-methylcholanthrenes. 8. The syntheses of cis- and trans-1,2-dihydroxy-3-methylcholanthrene, 3-methylcholanthren-2-one, 2-hydroxy-3-methylcholanthrene, 3-methylcholanthrylene, 11,12-epoxy-11,12-dihydro-3-methylcholanthrene and trans-11,12-dihydro-11,12-dihydroxy-3-methylcholanthrene are described.  相似文献   

11.
In blood, peroxynitrite (ONOO- ) and CO2 react to form NO2* and CO3* through the short-lived adduct ONOOCO2-, leading to protein-bound tyrosine nitration. ONOO(-) -modified LDL is atherogenic. Oxidatively modified LDL generally appears in the vessel wall surrounded by antioxidants. Human serum albumin (HSA) is one of them, partly associated to LDL as a LDL-albumin complex (LAC). The purpose was to study the effect of a mild nitration on LAC and whether albumin may interfere with LDL nitration. To do so, SIN-1 was used as ONOO- generator in the presence or absence of 25 mM HCO3-. The human serum albumin (HSA)-bound tyrosine nitration rate was found to be 4.4 x 10(-3) mol/mol in the presence of HCO3-. HSA decreased the LAC-tyrosine nitration rate from 2.5 x 10(-3) to 0.6 x 10(-3) mol/mol. It was concluded that HSA impaired the apoB-bound tyrosine nitration. These findings raise the question of the patho-physiological significance of these nitrations and their interactions which may potentially prevent both atheromatous plaque formation and endothelium dysfunction in particular and appear to be beneficial in terms of atherogenic risk.  相似文献   

12.
Bacterial cultures were enriched from sediments in Germany and Vietnam reductively dechlorinating hexachlorobenzene and the highly persistent 1,3,5-trichlorobenzene to monochlorobenzene. The main products of the reductive dechlorination of hexachlorobenzene were monochlorobenzene and dichlorobenzenes (1,2-; 1,3- and 1,4-dichlorobenzene) while no trichlorobenzenes accumulated. For the reductive dechlorination of 1,3,5-trichlorobenzene with the mixed culture from Vietnam sediment, 1,3- dichlorobenzene and monochlorobenzene were produced as intermediate and final end-product, respectively. The pattern of dechlorination did not change when the cultures were repeatedly exposed to oxygen over seven transfers demonstrating oxygen tolerance of the dechlorinating bacteria. However, reductive dechlorination of 1,3,5-trichlorobenzene was inhibited by vancomycin at a concentration of 5 mg L?1. Vancomycin delayed reductive dechlorination of hexachlorobenzene in mixed cultures by about 6 months. When repeatedly applied, vancomycin completely abolished the ability of the mixed culture to transform hexachlorobenzene. Sensitivity to vancomycin and insensitivity to brief exposure of oxygen indicates that the dechlorinating bacteria in the mixed cultures did not belong to the genus Dehalococcoides.  相似文献   

13.
Studies on modeling of lipophilicity (logP) quinone reductase specific activity (logCDQR) and production of growth hormone (logCDGH) of 1,2-dithiole-3-thiones have been carried out using distance-based topological indices. The regression analysis of the data has shown that the set of compounds exhibit 'familial' relationships in that excellent results are obtained by dividing the data set into two or more classes (families).  相似文献   

14.
Liu D  Zhu T  Fan L  Quan J  Guo H  Ni J 《Biotechnology letters》2007,29(10):1529-1535
A 1,125-bp long ORF encoding a novel gentisate 1,2-dioxygenase with two-domain bicupins was cloned from Silicibacter pomeroyi DSS-3 and expressed in Escherichia coli. The resulting product was purified to homogeneity and partially characterized. Non-reductive SDS-PAGE and gel filtration showed that the active recombinant gentisate 1,2-dioxygenase had an estimated molecular mass of 132 kDa, and reductive SDS-PAGE indicated an approximate size of 45 kDa. The enzyme thus appears to be a homotrimeric protein. This is in contrast to the homotetrameric or dimeric protein of the gentisate 1,2-dioxygenases that have been characterized thus far. The K (m) and K (cat)/K (m) for gentisate were 12 muM and 653 x 10(4) M(-1 )s(-1); the pI was 4.6-4.8. It was optimally active at 40 degrees C and pH 8.0.  相似文献   

15.
The transformation of 1,2-dichloropropane (1,2-D) was observed in anaerobic microcosms and enrichment cultures derived from Red Cedar Creek sediment. 1-Chloropropane (1-CP) and 2-CP were detected after an incubation period of 4 weeks. After 4 months the initial amount of 1,2-D was stoichiometrically converted to propene, which was not further transformed. Dechlorination of 1,2-D was not inhibited by 2-bromoethanesulfonate. Sequential 5% (vol/vol) transfers from active microcosms yielded a sediment-free, nonmethanogenic culture, which completely dechlorinated 1,2-D to propene at a rate of 5 nmol min(sup-1) mg of protein(sup-1). No intermediate formation of 1-CP or 2-CP was detected in the sediment-free enrichment culture. A variety of electron donors, including hydrogen, supported reductive dechlorination of 1,2-D. The highest dechlorination rates were observed between 20(deg) and 25(deg)C. In the presence of 1,2-D, the hydrogen threshold concentration was below 1 ppm by volume (ppmv). In addition to 1,2-D, the enrichment culture transformed 1,1-D, 2-bromo-1-CP, tetrachloroethene, 1,1,2,2-tetrachloroethane, and 1,2-dichloroethane to less halogenated compounds. These findings extend our knowledge of the reductive dechlorination process and show that halogenated propanes can be completely dechlorinated by anaerobic bacteria.  相似文献   

16.
Sphingosine 1-phosphate, a bioactive signaling molecule with diverse cellular functions, is irreversibly degraded by the endoplasmic reticulum enzyme sphingosine 1-phosphate lyase, generating trans-2-hexadecenal and phosphoethanolamine. We recently demonstrated that trans-2-hexadecenal causes cytoskeletal reorganization, detachment, and apoptosis in multiple cell types via a JNK-dependent pathway. These findings and the known chemistry of related α,β-unsaturated aldehydes raise the possibility that trans-2-hexadecenal may interact with additional cellular components. In this study, we show that it reacts readily with deoxyguanosine and DNA to produce the diastereomeric cyclic 1,N(2)-deoxyguanosine adducts 3-(2-deoxy-β-d-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8R-hydroxy-6R-tridecylpyrimido[1,2-a]purine-10(3H)one and 3-(2-deoxy-β-d-erythro-pentofuranosyl)-5,6,7,8-tetrahydro-8S-hydroxy-6S-tridecylpyrimido[1,2-a]purine-10(3H)one. Thus, our findings suggest that trans-2-hexadecenal produced endogenously by sphingosine 1-phosphate lyase can react directly with DNA forming aldehyde-derived DNA adducts with potentially mutagenic consequences.  相似文献   

17.
Microbial reductive dechlorination of [1,2-14C]trichloroethene to [14C]cis-dichloroethene and [14C]vinyl chloride was observed at 4 degrees C in anoxic microcosms prepared with cold temperature-adapted aquifer and river sediments from Alaska. Microbial anaerobic oxidation of [1,2-14C]cis-dichloroethene and [1,2-14C]vinyl chloride to 14CO2 also was observed under these conditions.  相似文献   

18.
Following our search for antimalarial compounds, novel series of ferrocenic pyrrolo[1,2-a]quinoxaline derivatives 1-2 were synthesized from various substituted nitroanilines and tested for in vitro activity upon the erythrocytic development of Plasmodiumfalciparum strains with different chloroquine-resistance status. The pyrrolo[1,2-a]quinoxalines 1 were prepared in 6-8 steps through a regioselective palladium-catalyzed monoamination by coupling 4-chloropyrrolo[1,2-a]quinoxalines with 1,3-bis(aminopropyl)piperazine or -methylamine using Xantphos as the ligand. The ferrocenic bispyrrolo[1,2-a]quinoxalines 2 were prepared by reductive amination of previously described bispyrrolo[1,2-a]quinoxalines 9 with ferrocene-carboxaldehyde, by treatment with NaHB(OAc)(3). The best results were observed with ferrocenic pyrrolo[1,2-a]quinoxalines linked by a bis(3-aminopropyl)piperazine. Moreover, it was observed that a methoxy group on the pyrrolo[1,2-a]quinoxaline nucleus and no substitution on the terminal N-ferrocenylmethylamine function enhanced the pharmacological activity. Selected compounds 1b, 1f-h, 1l and 2a were tested for their ability to inhibit beta-haematin formation, the synthetic equivalent of hemozoin, by using the HPIA (heme polymerization inhibitory activity) assay. Of the tested compounds, only 2a showed a beta-haematin formation inhibition, but no inhibition of haem polymerization was observed with the other selected ferrocenic monopyrrolo[1,2-a]quinoxaline derivatives 1b, 1f-h and 1l, as the IC(50) values were superior to 10 equivalents.  相似文献   

19.
Culture forms of Trypanosoma rangeli could be agglutinated with Canavalia ensiformis (Con A) lectin and, less effectively with Pisum sativum agglutinin (PEA), at a concentration of 200 micrograms/ml. Ricinus communis agglutinin I (RCA I) agglutinated trypanosomes only if they were not previously washed with physiological Ringer's solution. Three other lectins did not react with the same parasite forms. Direct or indirect lectin-gold labeling techniques were applied to LR-White embedded thin sections of T. rangeli culture forms and to forms in the gut, hemolymph, and salivary glands of Rhodnius prolixus. Under these conditions, Con A was the only lectin out of 9 that bound to the surface of trypanosomes from culture and from the bug hemolymph. Con A did not react with any midgut or salivary gland forms. The preservation of the biological activity of the lectin-gold complexes that did not bind to the parasite surface was confirmed by reactions with structures of the invertebrate host.  相似文献   

20.
We have studied the effects of three chemopreventive agents alone or in binary combinations on benzo[a]pyrene (BaP)-induced mutagenesis in the oral cavity and esophagus of lacZ mice using galE(-) selection. The mice were fed diets supplemented with 1,4-phenylenebis(methylene)selenocyanate (p-XSC) at 2.5 and 10 ppm Se, selenium-enriched yeast (SeY) at 2.5 and 10 ppm Se, and 3H-1,2-dithiole-3-thione (D3T) at 65 and 250 ppm, for 6 weeks. Two weeks after the start of the dietary regimen, mice were gavaged with five doses of 125 mg/kg BaP over 2 weeks, and the experiment was terminated 2 weeks later. Mutagenesis was measured in tongue, other pooled oral tissues (OTs), and esophagus. In mice treated with BaP alone, mutagenesis in the above tissues was in the range of 21-32 mutants/10(5)pfu (ca. 6-10 background levels for the corresponding tissues). p-XSC modestly inhibited mutagenesis (10-33% inhibition) in all tissues, but statistical significance was only observed at the low dose in esophagus, and pooled OT. SeY was not inhibitory alone. Greater inhibitory effects were observed with D3T, and inhibition was statistically significant at the high dose in tongue and esophagus (ca. 33%). Two combinations of low doses of the inhibitors were tested, and the D3T + SeY mix was most effective, leading to statistically significant inhibition in all three tissues (ca. 30-40% inhibition). The mixture D3T + p-XSC was of similar effectiveness as the low dose of D3T alone. This study combined with those previously done in our laboratory demonstrates effectiveness of D3T and to a lesser extent, p-XSC in the inhibition of mutagenesis, and provides support for the use of certain combinations of inhibitors as a means to increase effectiveness and reduce the dose of chemopreventive agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号