首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophytes influence the physical, chemical, and biological characteristics of lowland streams, so may be critically important in stream management. We investigated the role of macrophytes in regulating metabolism and nutrient cycling in three lowland, agricultural streams. We measured stream metabolism over the growing season and following experimental macrophyte removal, and used short-term nutrient additions of phosphate (P) and ammonium to assess macrophyte influences on nutrient uptake. Primary production was closely correlated with macrophyte cover across all streams and dates, and decreased greatly with macrophyte removal, whereas ecosystem respiration was not correlated with macrophyte cover and was not altered by macrophyte removal. Phosphate uptake velocity was negatively related to primary production, suggesting that macrophyte activity actually slowed P uptake. Ammonium uptake was not correlated with macrophyte cover or metabolism metrics. Stream nitrate concentrations typically exceeded concentrations of incoming groundwater, suggesting little net nitrate retention in these macrophyte-dominated streams. Phosphorous demand by macrophytes was 10-fold lower than observed uptake rates, indicating that macrophyte P demand was much lower than that of other stream biota. Nitrogen demand by macrophytes was nearly equal to ammonium uptake and was not sufficient to affect the high nitrate flux. These results indicate that macrophytes drive ecosystem metabolism but have limited influence on water column nutrient concentrations because macrophyte demand is much lower than the supply available from the water column. Thus macrophytes in our streams had a large impact on stream trophic state, but offered little potential to influence nutrient removal via management.  相似文献   

2.
1. Numerous interacting abiotic and biotic factors influence niche use and assemblage structure of freshwater fishes, but the strength of each factor changes with spatial scale. Few studies have examined the role of interspecific competition in structuring stream fish assemblages across spatial scales. We used field and laboratory approaches to examine microhabitat partitioning and the effect of interspecific competition on microhabitat use in two sympatric stream fishes (Galaxias‘southern’ and Galaxias gollumoides) at large (among streams and among sites within streams) and small (within artificial stream channels) spatial scales. 2. Diurnal microhabitat partitioning and interspecific competition at large spatial scales were analysed among three sympatry streams (streams with allotopic and syntopic sites; three separate catchments) and four allopatry streams (streams with only allotopic sites; two separate catchments). Electro‐fishing was used to sample habitat use of fishes at 30 random points within each site by quantifying four variables for each individual: water velocity, depth, distance to nearest cover and substratum size. Habitat availability was then quantified for each site by measuring those variables at each of 50 random points. Diet and stable isotope partitioning was analysed from syntopic sites only. Diel cycles of microhabitat use and interspecific competition at small spatial scales were examined by monitoring water velocity use over 48 h in artificial stream channels for three treatments: (i) allopatric G. ‘southern’ (10 G. ‘southern’); (ii) allopatric G. gollumoides (10 G. gollumoides) and (iii) sympatry (five individuals of each species). 3. One hundred and ninety‐four G. ‘southern’ and 239 G. gollumoides were sampled across all seven streams, and habitat availability between the two species was similar among all sites. Galaxias‘southern’ utilised faster water velocities than G. gollumoides in both the field and in channel experiments. Both species utilised faster water velocities in channels at night than during the day. Diet differences were observed and were supported by isotopic differences (two of three sites). No interspecific differences were observed for the other three microhabitat variables in the field, and multivariate habitat selection did not differ between species. Interspecific competition had no effect on microhabitat use of either species against any variable either in the field (large scale) or in channels (small scale). 4. The results suggest that niche partitioning occurs along a subset of microhabitat variables (water velocity use and diet). Interspecific competition does not appear to be a major biotic factor controlling microhabitat use by these sympatric taxa at any spatial scale. The results further suggest that stream fish assemblages are not primarily structured by biotic factors, reinforcing other studies de‐emphasising interspecific competition.  相似文献   

3.
The effect of grazing on primary productivity and phosphorus cycling in autotrophic streams was studied using the snail Goniobasis clavaeformes. Snails were added to each of three replicate laboratory stream channels, receiving once-through flow of groundwater, in densities of 2.1, 3.0, and 4.2 g ash free dry mass (AFDM)/m2. A fourth channel received no snails and served as an ungrazed control. Presence of snail grazers resulted in a large reduction in aufwuchs biomass, primary productivity, and biotic phosphorus uptake; a modest reduction in fine particulate organic matter (FPOM); and an increase in the fraction of stream particulate organic matter (POM) exported as seston. Although primary production and aufwuchs biomass continued to decline with increasing snail density, phosphorus uptake increased. This increased phosphorus uptake is attributed to abiotic sorption to inorganic surfaces exposed as a result of efficient removal of aufwuchs at high snail densities. Although snail densities were chosen to bracket the density measured in a natural stream, the experimental densities may result in considerably higher grazing pressure on aufwuchs due to the absence of alternate food sources (e.g., coarse particulate organic matter) usually found in natural streams. Presence of snail grazers increased the spiralling length of phosphorus, primarily by reducing aufwuchs biomass and consequently reducing uptake of phosphorus from the water. Presence of snails also increased downstream transport velocity of phosphorus bound to organic particles. These results follow the patterns predicted in a previous theoretical analysis for mildly phosphorus-limited streams.  相似文献   

4.
Quantitative data on the habitat characteristics of stream crayfish have been generally lacking and competing demands on water resources has created a need to address this knowledge gap. We investigated day-time habitat relationships of stream crayfish (Paranephrops planifrons White) from 793 quadrats at 30 rivers and streams in the North Island, New Zealand to develop models of koura presence–absence and abundance. The model (stepwise GAM) included width, cover, median substrate size, edge location, velocity and depth, and correctly predicted presence–absence of crayfish (8–39 mm OCL) at 73.4% of quadrats and of young-of-the-year (YOY) ≤8 mm OCL at 83.4% of quadrats. Streams ranged from 1.6 to 11.5 m in width and the probability of finding both crayfish size classes reduced sharply as streams became wider than 6 m and as the substrate became large (i.e., boulder > 256 mm). Crayfish, particularly YOY, were most likely to be found in association with cover and at the stream edge. YOY were associated with shallow depths and fine substrates, whereas larger crayfish showed a preference for cobble substrate. Undercut banks, leaf litter, tree roots, and woody debris were strongly related to the presence–absence of crayfish. The model for crayfish abundance (log-linear Poisson GAM) explained 50% of the variation between quadrats with cover, velocity, edge location, depth, and the overall crayfish abundance at each particular stream being significant variables. Highest crayfish numbers were recorded in still or slow flowing water, with the majority occurring where velocities were below 0.4 m/s. Water depths up to 0.7 m were sampled, but highest numbers were found in depths of 0.2–0.3 m. Our presence–absence model determined variables that were significant over all streams, whereas our abundance model determined variables that were significant within streams. Use of the GAMs models enabled us to untangle the multiple factors contributing to habitat selection. Cover, velocity, and locations at the stream edge were important determinants of both presence–absence and abundance. Generally, substrate was important when comparing between streams, but not within streams, whereas depth was a significant determinant of abundance within streams, but not presence–absence between streams. Handling editor: K. Martens  相似文献   

5.
The population sizes of three bacterial species, Acinetobacter calcoaceticus, Burkholderia cepacia, and Pseudomonas putida, were examined in water and sediment from nine streams in different parts of the United States using fluorescent in situ hybridization (FISH). Population sizes were determined from three sites (upstream, midstream, and downstream) in each stream to compare differences in the occurrence and distribution of the species within each stream and among streams. Physical and chemical variables measured reflected differences in environmental conditions among the streams. In the water, B. cepacia numbers were highest in the agricultural, Iowa stream. P. putida numbers were highest in the southern coastal plain streams, Black Creek (GA) and Meyers Branch (SC). Compared to the other two species, the abundance of A. calcoaceticus was similar in all the streams. In sediment, the greatest abundance of all three species was found in the Iowa stream, while the lowest was in Hugh White Creek (NC). Detrended correspondence analysis (DCA) explained 95.8% and 83.9% of the total variation in bacterial numbers in water and sediment of the streams, respectively. In sediments and water, B. cepacia numbers were related to nitrate concentrations. A. calcoaceticus in water clustered with several environmental variables (i.e., SRP, pH, and conductivity) but benthic populations were less well correlated with these variables. This study reveals the potential influence of various environmental conditions on different bacterial populations in stream communities.  相似文献   

6.
The purpose of this study was to examine the primary production rates of phytolithic communities found in the major different habitats of streams and determine the effects of physical and chemical parameters associated with each habitat on periphyton community spatial structure. The project was designed to study natural, intact communities within stream systems.A comparative analysis was made of phytolithic communities found in Camel Hump and Husky Branch streams in the Great Smoky Mountains National Park. Camel Hump flows through virgin forest area and Husky Branch flows through an area logged approximately 60 y ago. The effects of logging on Husky Branch stream and the surrounding watershed are discussed.Seasonal data were collected from July, 1981 through May, 1982 from fast flow, slow flow and pool areas within each stream. An incubation chamber designed for use in lotic systems was used for in situ measurements of 14C uptake. Rock samples collected at each site were used as substrates for community structure observations utilizing a scanning electron microscope.The algal communities of Camel Hump and Husky Branch streams were found to be predominantly composed of diatoms. The dominant genera in the fast, slow and pool areas included Achnanthes, Eunotia, Meridion, Navicula and Gomphonema. Fast flow areas were dominated by diatom species growing in a prostrate position. Slow flow areas were more densely populated by diatoms than the fast flow areas. Diatoms in the slow flow areas appeared mainly in prostrate position with a few stalked forms present. Pool area communities were less densely packed than slow flow areas and contained stalked and chain formations of diatoms.Results indicate that the physical and chemical parameters associated with each habitat affect the primary production rates and community structure found at the experimental sites. Measurements of carbon assimilation and chlorophyll a concentration were significantly greater in habitats of higher current velocity and light availability. Cell densities tend to increase with a decrease in current velocity. Habitats of high density showed a decrease in diversity and evenness. Correlations between productivity in the various habitats of each stream and other parameters measured in the study are discussed.  相似文献   

7.
1. Agriculture is a major contributor of non‐point source pollution to surface waters in the midwestern United States, resulting in eutrophication of freshwater aquatic ecosystems and development of hypoxia in the Gulf of Mexico. Agriculturally influenced streams are diverse in morphology and have variable nutrient concentrations. Understanding how nutrients are transformed and retained within agricultural streams may aid in mitigating increased nutrient export to downstream ecosystems. 2. We studied six agriculturally influenced streams in Indiana and Michigan to develop a more comprehensive understanding of the factors controlling nutrient retention and export in agricultural streams using nutrient addition and isotopic tracer studies. 3. Metrics of nutrient uptake indicated that nitrate uptake was saturated in these streams whereas ammonium and phosphorus uptake increased with higher concentrations. Phosphorus uptake was likely approaching saturation as evidenced by decreasing uptake velocities with concentration; ammonium uptake velocity also declined with concentration, though not significantly. 4. Higher whole‐stream uptake rates of phosphorus and ammonium were associated with the observed presence of stream autotrophs (e.g. algae and macrophytes). However, there was no significant relationship between measures of nutrient uptake and stream metabolism. Water‐column nutrient concentrations were positively correlated with gross primary production but not community respiration. 5. Overall, nutrient uptake and metabolism were affected by nutrient concentrations in these agriculturally influenced streams. Biological uptake of ammonium and phosphorus was not saturated, although nitrate uptake did appear to be saturated in these ecosystems. Biological activity in agriculturally influenced streams is higher relative to more pristine streams and this increased biological activity likely influences nutrient retention and transport to downstream ecosystems.  相似文献   

8.
陆源碳经内陆水体生态系统输出是全球碳循环的关键一环,其中溪流碳排放超过内陆水体平均碳排放,影响区域乃至全球碳收支.本文通过对前人的研究结果进行总结,归纳了当前溪流二氧化碳分压(pCO2)、二氧化碳排放通量(FCO2)的动态变化特征,二者均表现出明显的昼夜变化和季节变化特征,且随溪流分级的增大而减小;梳理了影响溪流pCO...  相似文献   

9.
Droughts and summer drying create unusual temporary aquatic habitats in the form of isolated pools in many small streams around the world. To examine spatial and temporal variation in fish community structure of drying stream pools, their relation to abiotic environmental variables, and associations among species, fish were sampled during summer 1995 and 1996 from pools of four streams in the Ozark mountains, Arkansas, USA. Redundancy analysis of physical-chemical variables showed significant differences among stream sites, but no significant difference between years or stream site by year interaction. Stream sites separated consistently along axes one (habitat heterogeneity) and two (temperature/canopy cover) in both years. Redundancy analysis of fish species-size class densities showed a significant stream site by year interaction. Groupings of stream sites based on fish assemblages were not well explained by physical-chemical variables measured at the pool scale, but were related to location within the drainage basin, and these groupings differed between years. There were 27 (15.8%) and 10 (5.8%) significant associations found among fish species-size classes in 1995 and 1996, respectively, and all but two significant associations in 1995 were positive. Pool depth, habitat heterogeneity, pool size and dissolved oxygen/canopy cover were important local abiotic factors depending on response variables examined. In both years, large fish total density, large central stoneroller density (80 mm TL), and small sunfish (<80 mm TL) density were positively related to pool depth. Otherwise, there was no consistent relationship between physical-chemical variables and dependent variables (fish density and species richness) within a year or between years for a given dependent variable. These results support the hypothesis that local abiotic factors are important in structuring fish assemblages in harsh environments, but the importance of those factors varies temporally, and regional influences appear to override local abiotic conditions as factors structuring fish assemblages in drying stream pools. Predation by terrestrial vertebrates may also be an important factor structuring these fish assemblages that has been largely overlooked.  相似文献   

10.
Over 70% of the total channel length in all river basins is formed by low order streams, many of which originate on mountaintops. Headwater streams play fundamental roles in processing and transporting terrestrial and aquatic organic matter, often harboring high biodiversity in bottom leaf patches deposited from riparian vegetation. The objective of this study was to assess the variation in taxonomic composition (measured by beta diversity of aquatic macroinvertebrates) among stream sites located in the Espinhaço Meridional Mountain Range, part of a UNESCO Biosphere Reserve in eastern Brazil. We tested two hypotheses. (a) Taxa turnover is the main reason for differences in aquatic insect assemblages within stream sites; we predicted that turnover would be higher than nestedness in all stream sites. (b) Stream site altitude and catchment elevation range are the main explanatory variables for the differences in beta diversity; we predicted that local stream site variables would account for only minor amounts of variation. In both dry and wet seasons, we sampled twice in two habitat types (five leaf patches in pools and five in riffles) in each of nine stream sites distributed in three different river basins. We computed average pairwise beta diversity among sampling stations and seasons in each stream site by using Jaccard and Bray–Curtis indices, and calculated the percentages of diversity resulting from turnover and nestedness. Finally, we tested the degree that local‐ or catchment‐level predictor variables explained beta diversity. We found that turnover was the main component of beta diversity and that both dissolved oxygen and elevation range best explained Bray–Curtis beta diversity. These results reinforce the importance of leaf patches in montane (sky islands) Neotropical savanna streams as biodiversity hotbeds for macroinvertebrates, and that both local and landscape variables explained beta diversity.  相似文献   

11.
Swan CM  Palmer MA 《Oecologia》2006,147(3):469-478
Leaf litter derived from riparian trees can control secondary production of detritivores in forested streams. Species-rich assemblages of leaf litter reflect riparian plant species richness and represent a heterogeneous resource for stream consumers. Such variation in resource quality may alter consumer growth and thus the feedback on leaf breakdown rate via changes in feeding activity. To assess the consequences of this type of resource heterogeneity on both consumer growth and subsequent litter breakdown, we performed a laboratory experiment where we offered a leaf-shredding stream detritivore (the stonefly Tallaperla maria, Peltoperlidae) ten treatments of either single- or mixed-species leaf litter. We measured consumer growth rate, breakdown rate and feeding activity both with and without consumers for each treatment and showed that all three variables responded to speciose leaf litter. However, the number of leaf species was not responsible for these results, but leaf species composition explained the apparent non-additive effects. T. maria growth responded both positively and negatively to litter composition, and growth on mixed-litter could not always be predicted by averaging estimates of growth in single-species treatments. Furthermore, breakdown and feeding rates in mixed litter treatments could not always be predicted from estimates of single-species rates. Given that species richness and composition of senesced leaves in streams reflects riparian plant species richness, in-stream secondary production of detritivores and organic matter dynamics may be related to species loss of trees in the riparian zone. Loss of key species may be more critical to maintaining such processes than species richness per se.  相似文献   

12.
As leaves enter woodland streams, they are colonized by both fungi and bacteria. To determine the contribution of each of these microbial groups to the decomposition process, comparisons of fungal and bacterial production are needed. Recently, a new method for estimating fungal production based on rates of [(sup14)C]acetate incorporation into ergosterol was described. Bacterial production in environmental samples has been determined from rates of [(sup3)H]leucine incorporation into protein. In this study, we evaluated conditions necessary to use these methods for estimating fungal and bacterial production associated with leaves decomposing in a stream. During incubation of leaf disks with radiolabeled substrates, aeration increased rates of fungal incorporation but decreased bacterial production. Incorporation of both radiolabeled substrates by microorganisms associated with leaf litter was linear over the time periods examined (2 h for bacteria and 4 h for fungi). Incorporation of radiolabeled substrates present at different concentrations indicated that 400 nM leucine and 5 mM acetate maximized uptake for bacteria and fungi, respectively. Growth rates and rates of acetate incorporation into ergosterol followed similar patterns when fungi were grown on leaf disks in the laboratory. Three species of stream fungi exhibited similar ratios of rates of biomass increase to rates of acetate incorporation into ergosterol, with a mean of 19.3 (mu)g of biomass per nmol of acetate incorporated. Both bacterial and fungal production increased exponentially with increasing temperature. In the stream that we examined, fungal carbon production was 11 to 26 times greater than bacterial carbon production on leaves colonized for 21 days.  相似文献   

13.
Uptake rate of calcium, potassium, nitrate-N and phosphorus were measured in a second order Mediterranean temporary stream, in February and March 1992. This study analyzed a period of continuous surface flow between two hydrologic disturbance events (flood and drought) of an annual hydrological cycle (1991–92).The lowest values of uptake length were recorded for nitrate-N in February 92 and calcium in March 92. Nitrate had the highest uptake rate in both release performances, and potassium showed the lowest uptake rate values. The increase of calcium and nitrate uptake rate between February 92 and March 92 suggested a higher ecosystem efficiency in nutrient retention with a higher temperature and light intensity and slower water velocity, discharge and water depth. These results obtained were similar to those reported in permanent streams, indicating that in periods of continuous surface flow (without extreme hydrologic disturbance), abiotic factors can influence nutrient retention in temporary streams.  相似文献   

14.
River systems are important regulators of anthropogenic nitrogen flux between land and ocean. Nitrogen dynamics in small headwater streams have been extensively measured, whereas less is known about contributions of other components of stream networks to nitrogen removal, including larger streams or fluvial wetlands. Here, we quantified nitrate reaction rates in higher-order stream channels and in surface transient storage (STS) zones (sub-systems with greater water residence time than the main channel) of the Ipswich River watershed, a temperate basin characterized by suburban development. We characterized uptake in STS both within higher-order stream channels and in fluvial wetlands that remain connected to advective fluxes but not constrained within channels. We compare reaction rates in these systems to those previously measured in headwater streams in the same basin. We found that (1) nitrate reaction rates (as uptake velocity, υf) in higher-order streams (n = 2) differed from each other but were consistent with previous estimates from headwater streams, (2) nitrate reaction rates in STS zones within higher-order stream channels (n = 2) were higher than rates estimated at the whole-stream scale, (3) ambient nitrate reaction rates in fluvial wetland STS (n = 7) were high but comparable to headwater streams with low nitrate concentration, (4) nitrate reaction rates were higher in fluvial wetland STS compared to headwater stream channels at elevated nitrate concentration, and (5) efficiency loss (EL) similar to that found in headwater streams was also apparent in fluvial wetlands. These results indicate that STS are potential hotspots of biogeochemical activity and should be explicitly integrated into network scale biogeochemical models. Further, experimental evidence of EL in fluvial wetlands suggests that the effectiveness of STS to retain N may decline if N loading increases.  相似文献   

15.
Urbanization has resulted in the extensive burial and channelization of headwater streams, yet little is known about the impacts of stream burial on ecosystem functions critical for reducing downstream nitrogen (N) and carbon (C) exports. In order to characterize the biogeochemical effects of stream burial on N and C, we measured NO3 ? uptake (using 15N-NO3 ? isotope tracer releases) and gross primary productivity (GPP) and ecosystem respiration (ER) (using whole stream metabolism measurements). Experiments were carried out during four seasons, in three paired buried and open stream reaches, within the Baltimore Ecosystem Study Long-term Ecological Research site. Stream burial increased NO3 ? uptake lengths by a factor of 7.5 (p < 0.01) and decreased NO3 ? uptake velocity and areal NO3 ? uptake rate by factors of 8.2 (p < 0.05) and 9.6 (p < 0.001), respectively. Stream burial decreased GPP by a factor of 11.0 (p < 0.01) and decreased ER by a factor of 5.0 (p < 0.05). From fluorescence Excitation Emissions Matrices analysis, buried streams were found to have significantly altered C quality, showing less labile dissolved organic matter. Furthermore, buried streams had significantly lower transient storage (TS) and water temperatures. Differences in NO3 ? uptake, GPP, and ER in buried streams, were primarily explained by decreased TS, light availability, and C quality, respectively. At the watershed scale, we estimate that stream burial decreases NO3 ? uptake by 39 % and C production by 194 %. Overall, our results suggest that stream burial significantly impacts NO3 ? uptake, stream metabolism, and the quality of organic C exported from watersheds. Given the large impacts of stream burial on stream ecosystem processes, daylighting or de-channelization of streams, through hydrologic floodplain reconnection, may have the potential to alter ecosystem functions in urban watersheds, when used appropriately.  相似文献   

16.
1. Leaves that fall into the water represent a new habitat for microorganisms to colonise in streams, providing an opportunity to study colonisation and the subsequent regulation of community structure. We explored community composition of bacteria and fungi on decomposing alder leaves in nine streams in central Sweden, and describe their relationship with environmental variables. Succession of the microbial community was studied in one of the streams for 118 days. Microbial community composition was examined by denaturing gradient gel electrophoresis on replicate samples of leaves from each stream. 2. During succession in one stream, maximum taxon richness was reached after 34 days for bacteria and 20 days for fungi respectively. Replicate samples within this stream differed between each other earlier in colonisation, while subsequently such variation among replicate communities was low and remained stable for several weeks. Replicate samples taken from all the nine streams after 34 days of succession showed striking similarities in microbial communities within‐streams, although communities differed more strongly between streams. 3. Canonical analysis of microbial communities and environmental variables revealed that water chemistry had a significant influence on community composition. This influence was superimposed on a statistical relationship between the properties of stream catchments and microbial community composition. 4. The catchment regulates microbial communities in two different ways. It harbours the species pool from which the in‐stream microbial community is drawn and it governs stream chemistry and the composition of organic substrates that further shape the communities. We suggest that there is a random element to colonisation early in succession, whereas other factors such as species interactions, stream chemistry and organic substrate properties, result in a more deterministic regulation of communities during later stages.  相似文献   

17.
I examined the activity of fungi associated with yellow poplar (Liriodendron tulipifera) and white oak (Quercus alba) leaves in two streams that differed in pH and alkalinity (a hard water stream [pH 8.0] and a soft water stream [pH 6.7]) and contained low concentrations of dissolved nitrogen (<35 microg liter(-1)) and phosphorus (<3 microg liter(-1)). The leaves of each species decomposed faster in the hard water stream (decomposition rates, 0.010 and 0.007 day(-1) for yellow poplar and oak, respectively) than in the soft water stream (decomposition rates, 0.005 and 0.004 day(-1) for yellow poplar and oak, respectively). However, within each stream, the rates of decomposition of the leaves of the two species were not significantly different. During the decomposition of leaves, the fungal biomasses determined from ergosterol concentrations, the production rates determined from rates of incorporation of [(14)C]acetate into ergosterol, and the sporulation rates associated with leaves were dynamic, typically increasing to maxima and then declining. The maximum rates of fungal production and sporulation associated with yellow poplar leaves were greater than the corresponding rates associated with white oak leaves in the hard water stream but not in the soft water stream. The maximum rates of fungal production associated with the leaves of the two species were higher in the hard water stream (5.8 mg g(-1) day(-1) on yellow poplar leaves and 3.1 mg g(-1) day(-1) on oak leaves) than in the soft water stream (1.6 mg g(-1) day(-1) on yellow poplar leaves and 0.9 mg g(-1) day(-1) on oak leaves), suggesting that effects of water chemistry other than the N and P concentrations, such as pH or alkalinity, may be important in regulating fungal activity in streams. In contrast, the amount of fungal biomass (as determined from ergosterol concentrations) on yellow poplar leaves was greater in the soft water stream (12.8% of detrital mass) than in the hard water stream (9.6% of detrital mass). This appeared to be due to the decreased amount of fungal biomass that was converted to conidia and released from the leaf detritus in the soft water stream.  相似文献   

18.
Defining the reference condition is one of the most critical aspects of ecosystem investigations since it describes the baseline against which the experimental sites will be evaluated and compared. In large-scale ecosystem experiments, this reference is ideally another ecosystem which is similar to the experimental system. We investigated two streams for their potential as experimental sites for a full-size pairwise ecosystem experiment. Temporal (2 years) and spatial (pool, riffle) variabilities of abiotic factors and as biotic element the structure of the macroinvertebrate communities were investigated. Criteria of similarity that we applied at the two streams were: (1) high similarity in abiotic factors, (2) only small differences in the faunal assemblages (abundance structures, composition, feeding types), and (3) that the differences between the two systems should not exceed the temporal and spatial differences within each system. Among the abiotic factors investigated, only the inorganic nutrients (nitrate and soluble reactive phosphorus), major ions (magnesium, calcium), electric conductivity, and pH showed significant differences between the two streams. Discharge rate, current velocity, temperature, and oxygen concentrations did not significantly differ between the streams. Also, the community structure did not differ in species richness, abundance, and biomass; and only small differences in dominance structure and feeding-type composition were observed. The differences between habitats within each stream were always higher than those between the streams. Thus, both the streams are characterized by a similar structure of the macroinvertebrate community, a main component of the stream food-web, which make them suitable for a full size pairwise ecosystem experiment. The present case study can form a basis for other full-size field experiments.  相似文献   

19.
The objective of this work was to relate macroscopically measurable on-line fermentation parameters such as dissolved oxygen, off-gas oxygen and carbon dioxide, and cell mass, to the controlled production of key intracellular enzymes under carbon limited conditions. Both batch and perturbed batch aerobic fermentations were performed using two different strains of Escherichia coli, with glucose and lactose as the sole carbon sources. The two strains differed from each other only in the lac operon region of their genome. The parent strain, E. coli 3000, was inducible for the enzyme beta-galactosidase. The other strain, E. coli 3300, was a constitutive mutant in the production of beta-galactosidase. In all experiments, off-line assays of sugars and beta-galactosidase activity were performed. It was observed that there is a clear relationship between the macroscopic on-line measurements, dissolved oxygen tension, carbon dioxide evolution rate and oxygen uptake rate, and the microscopic control phenomena of catabolite repression, catabolite inhibition, and inducer repression.  相似文献   

20.
1. We measured NH4+ and PO4?3 uptake length (Sw), uptake velocity (Vf), uptake rate (U), biofilm respiration and enzyme activity and channel geomorphology in streams draining forested catchments in the northwestern (Northern California Coast Range and Cascade Mountains) and southeastern (Appalachian and Ouachita mountains) regions of the United States. Our goal was to use measures of biofilm enzyme activity and nutrient uptake to assess nutrient limitation in forested streams across broad regional scales. 2. Geomorphological attributes, biofilm enzyme activity and NH4+ uptake were significantly different among streams in the four study units. There was no study unit effect on PO4?3 uptake. The proportion of the stream channel in pools, % woody debris, % canopy closure, median substrate size (d50), stream width (w), stream velocity (v), discharge (Q), dispersion coefficient (D) and transient storage (As/A) were correlated with biofilm enzyme activity and nutrient uptake in some study units. 3. Canonical correlation analyses across study units revealed significant correlations of NH4Vf and PO4Vf with geomorphological attributes (w, d50, D, % woody debris, channel slope and % pools) and biofilm phosphatase activity. 4. The results did not support our expectation that carbon processing rates by biofilm microbial assemblages would be governed by stream nutrient availability or that resulting biofilm enzyme activity would be an indicator of nutrient uptake. However, the relative abundances of peptidases, phosphatase and glycosidases did yield insight into potential N‐, P‐ and C‐limitation of stream biofilm assemblages, and our use of biofilm enzyme activity represents a novel application for understanding nutrient limitations in forested streams. 5. Regressions of Vf and U against ambient NH4+ and PO4?3 indicated that none of our study streams was either NH4+ or PO4?3 saturated. The Appalachian, Ouachita and Coastal streams showed evidence of NH4+ limitation; the Ouachita and Coastal streams were PO4?3 limited. As a correlate of nutrient limitation and saturation in streams, ratios of total aminopeptidase and phosphatase activities and the ratio of NH4U to PO4U indicate these forested streams are predominantly N‐limited, with only the streams draining Ouachita and Coastal catchments demonstrating appreciable levels of P‐limitation. 6. Our results comparing the stoichiometry of microbial enzyme activity with nutrient uptake ratios and with the molar ratios N and P in stream waters suggest that biological limitations are not strictly the result of stream chemistry and that the assessments of nutrient limitations in stream ecosystems should not be based on chemistry alone. 7. Our present study, along with previous work in streams, rivers and wetlands, suggests that microbial enzyme activities, especially the ratios of total peptidases to phosphatase, are useful indicators of nutrient limitations in aquatic ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号