首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gordo I  Campos PR 《Genetics》2008,179(1):621-626
The evolutionary advantage of sexual reproduction has been considered as one of the most pressing questions in evolutionary biology. While a pluralistic view of the evolution of sex and recombination has been suggested by some, here we take a simpler view and try to quantify the conditions under which sex can evolve given a set of minimal assumptions. Since real populations are finite and also subject to recurrent deleterious mutations, this minimal model should apply generally to all populations. We show that the maximum advantage of recombination occurs for an intermediate value of the deleterious effect of mutations. Furthermore we show that the conditions under which the biggest advantage of sex is achieved are those that produce the fastest fitness decline in the corresponding asexual population and are therefore the conditions for which Muller's ratchet has the strongest effect. We also show that the selective advantage of a modifier of the recombination rate depends on its strength. The quantification of the range of selective effects that favors recombination then leads us to suggest that, if in stressful environments the effect of deleterious mutations is enhanced, a connection between sex and stress could be expected, as it is found in several species.  相似文献   

2.
Asexual reproduction is believed to be detrimental, mainly because of the accumulation of deleterious mutations over time, a hypothesis known as Muller's ratchet. In seed plants, most asexually reproducing genetic systems are polyploid, with apomictic species (plants forming seeds without fertilization) as well as plastids and mitochondria providing prominent examples. Whether or not polyploidy helps asexual genetic systems to escape Muller's ratchet is unknown. Gene conversion, particularly when slightly biased, represents a potential mechanism that could allow asexual genetic systems to reduce their mutation load in a genome copy number-dependent manner. However, direct experimental evidence for the operation of gene conversion between genome molecules to correct mutations is largely lacking. Here we describe an experimental system based on transgenic tobacco chloroplasts that allows us to analyze gene conversion events in higher plant plastid genomes. We provide evidence for gene conversion acting as a highly efficient mechanism by which the polyploid plastid genetic system can correct deleterious mutations and make one good genome out of two bad ones. Our finding that gene conversion can be biased may provide a molecular link between asexual reproduction, high genome copy numbers and low mutation rates.  相似文献   

3.
The vast majority of mutations are deleterious and are eliminated by purifying selection. Yet in finite asexual populations, purifying selection cannot completely prevent the accumulation of deleterious mutations due to Muller's ratchet: once lost by stochastic drift, the most-fit class of genotypes is lost forever. If deleterious mutations are weakly selected, Muller's ratchet can lead to a rapid degradation of population fitness. Evidently, the long-term stability of an asexual population requires an influx of beneficial mutations that continuously compensate for the accumulation of the weakly deleterious ones. Hence any stable evolutionary state of a population in a static environment must involve a dynamic mutation-selection balance, where accumulation of deleterious mutations is on average offset by the influx of beneficial mutations. We argue that such a state can exist for any population size N and mutation rate U and calculate the fraction of beneficial mutations, ε, that maintains the balanced state. We find that a surprisingly low ε suffices to achieve stability, even in small populations in the face of high mutation rates and weak selection, maintaining a well-adapted population in spite of Muller's ratchet. This may explain the maintenance of mitochondria and other asexual genomes.  相似文献   

4.
Engelstädter J 《Genetics》2008,180(2):957-967
A typical pattern in sex chromosome evolution is that Y chromosomes are small and have lost many of their genes. One mechanism that might explain the degeneration of Y chromosomes is Muller's ratchet, the perpetual stochastic loss of linkage groups carrying the fewest number of deleterious mutations. This process has been investigated theoretically mainly for asexual, haploid populations. Here, I construct a model of a sexual population where deleterious mutations arise on both X and Y chromosomes. Simulation results of this model demonstrate that mutations on the X chromosome can considerably slow down the ratchet. On the other hand, a lower mutation rate in females than in males, background selection, and the emergence of dosage compensation are expected to accelerate the process.  相似文献   

5.
Under the influence of recurrent deleterious mutation and selection, asexual and sexual populations reach a deterministic equilibrium with individuals carrying 0,1,2,. . . harmful mutations. When a favourable mutation (aA) occurs in an asexual population it will usually occur in an individual who has one or more (k) deleterious mutations. Muller's ratchet then applies as A will thereafter never occur in an individual with less than k mutations. If the selective advantage of A is less than the selective disadvantage of k harmful mutations then A will not spread. If it is greater it may spread carrying k deleterious mutations to fixation. Sexual populations are not affected in this way. A will spread through the population experiencing genomes with 0,1,2,. . . deleterious mutations in accordance with the deterministic equilibrium.  相似文献   

6.
A variety of models propose that the accumulation of deleterious mutations plays an important role in the evolution of breeding systems. These models make predictions regarding the relative rates of protein evolution and deleterious mutation in taxa with contrasting modes of reproduction. Here we compare available coding sequences from one obligately outcrossing and two primarily selfing species of Caenorhabditis to explore the potential for mutational models to explain the evolution of breeding system in this clade. If deleterious mutations interact synergistically, the mutational deterministic hypothesis predicts that a high genomic deleterious mutation rate (U) will offset the reproductive disadvantage of outcrossing relative to asexual or selfing reproduction. Therefore, C. elegans and C. briggsae (both largely selfing) should both exhibit lower rates of deleterious mutation than the obligately outcrossing relative C. remanei. Using a comparative approach, we estimate U to be equivalent (and < 1) among all three related species. Stochastic mutational models, Muller's ratchet and Hill-Robertson interference, are expected to cause reductions in the effective population size in species that rarely outcross, thereby allowing deleterious mutations to accumulate at an elevated rate. We find only limited support for more rapid molecular evolution in selfing lineages. Overall, our analyses indicate that the evolution of breeding system in this group is unlikely to be explained solely by available mutational models.  相似文献   

7.
The prevalence of sexual reproduction in most animal species despite its considerable costs such as useless males, energy spent on mating, the cost of meiosis and genome dilution remains a puzzle in evolutionary theory. One prominent single factor attempt to solve this persistent puzzle is the claim that sexual reproduction is instrumental in eliminating deleterious alleles from the species genome by the mechanism of recombination. There are three major versions of the deleterious allele hypothesis: First, the mutational deterministic hypothesis (MDH), which rests on the assumption of negative epistasis, predicts that recombination will help to purge the species genome of deleterious alleles by breaking apart linkages between these alleles. The assumption is that the joint negative effects of linked deleterious alleles is sometimes greater than the effects of the alleles considered separately. Second, there is the hypothesis that sexual reproduction speeds up purifying (negative) selection, which purges the genome of deleterious alleles. Alleles that are less deleterious than the wild type are naturally selected. These alleles, attained via recombination, are sometimes ‘leaky’ mutations giving rise to reduced functionality of attendant proteins. This hypothesis does not necessarily rest on the assumption of negative epistasis, which some argue is relatively rare in nature (Kouyos, Silander and Bonhoeffer (2012)) and which arguably could be seen as a virtue of the purifying selection hypothesis vs. the MDH. Third, Muller's ratchet hypothesis predicts that recombination will help to prevent the buildup of deleterious mutations by the mechanism of recombination. In this study, we focus primarily on testing the purifying selection hypothesis. We performed an individual-based model computer simulation using the program EcoSim to test this hypothesis. The experimental runs for sexual reproduction, asexual reproduction and facultative reproduction involved introducing a deleterious allele into the genome, which exacts an intermediate-level energy penalty on individuals. It was found that whereas on average, deleteriousness consistently declined over 18,000 time-steps due to recombination in sexual reproduction, deleteriousness did not decline for asexual and facultative runs. These results corroborate the hypothesis that recombination due to sexual reproduction helps to eliminate deleterious alleles from the genome through the selection of reduced function mutations.  相似文献   

8.
Sexual selection is a powerful and ubiquitous force in sexual populations. It has recently been argued that sexual selection can eliminate the twofold cost of sex even with low genomic mutation rates. By means of differential male mating success, deleterious mutations in males become more deleterious than in females, and it has been shown that sexual selection can drastically reduce the mutational load in a sexual population, with or without any form of epistasis. However, any mechanism that claims to maintain sexual reproduction must be able to prevent the fixation of an asexual mutant clone with a twofold fitness advantage. Here, I show that despite very strong sexual selection, the fixation of an asexual mutant cannot be prevented under reasonable genomic mutation rates. Sexual selection can have a strong effect on the average mutational load in a sexual population, but as it cannot prevent the fixation of an asexual mutant, it is unlikely to play a key role on the maintenance of sexual reproduction.  相似文献   

9.
We study the population genetics of adaptation in nonequilibrium haploid asexual populations. We find that the accumulation of deleterious mutations, due to the operation of Muller's ratchet, can considerably reduce the rate of fixation of advantageous alleles. Such reduction can be approximated reasonably well by a reduction in the effective population size. In the absence of Muller's ratchet, a beneficial mutation can only become fixed if it creates the best possible genotype; if Muller's ratchet operates, however, mutations initially arising in a nonoptimal genotype can also become fixed in the population, since the loss of the least-loaded class implies that an initially nonoptimal background can become optimal. We show that, while the rate at which adaptive mutations become fixed is reduced, the rate of fixation of deleterious mutations due to the ratchet is not changed by the presence of beneficial mutations as long as the rate of their occurrence is low and the deleterious effects of mutations (s(d)) are higher than the beneficial effects (s(a)). When s(a) > s(d), the advantage of a beneficial mutation can outweigh the deleterious effects of associated mutations. Under these conditions, a beneficial allele can drag to fixation deleterious mutations initially associated with it at a higher rate than in the absence of advantageous alleles. We propose analytical approximations for the rates of accumulation of deleterious and beneficial mutations. Furthermore, when allowing for the possible occurrence of interference between beneficial alleles, we find that the presence of deleterious mutations of either very weak or very strong effect can marginally increase the rate of accumulation of beneficial mutations over that observed in the absence of such deleterious mutations.  相似文献   

10.
Evolution of sex in RNA viruses   总被引:5,自引:0,他引:5  
The distribution of deleterious mutations in a population of organisms is determined by the opposing effects of two forces, mutation pressure and selection. If mutation rates are high, the resulting mutation-selection balance can generate a substantial mutational load in the population. Sex can be advantageous to organisms experiencing high mutation rates because it can either buffer the mutation-selection balance from genetic drift, thus preventing any increases in the mutational load (Muller, 1964: Mut. Res. 1, 2), or decrease the mutational load by increasing the efficiency of selection (Crow, 1970: Biomathematics 1, 128). Muller's hypothesis assumes that deleterious mutations act independently, whereas Crow's hypothesis assumes that deleterious mutations interact synergistically, i.e., the acquisition of a deleterious mutation is proportionately more harmful to a genome with many mutations than it is to a genome with a few mutations. RNA viruses provide a test for these two hypotheses because they have extremely high mutation rates and appear to have evolved specific adaptations to reproduce sexually. Population genetic models for RNA viruses show that Muller's and Crow's hypotheses are also possible explanations for why sex is advantageous to these viruses. A re-analysis of published data on RNA viruses that are cultured by undiluted passage suggests that deleterious mutations in such viruses interact synergistically and that sex evolved there as a mechanism to reduce the mutational load.  相似文献   

11.
Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation‐based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness‐related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time‐dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.  相似文献   

12.
Henry H Q Heng 《Génome》2007,50(5):517-524
Resolving the persistence of sexual reproduction despite its overwhelming costs (known as the paradox of sex) is one of the most persistent challenges of evolutionary biology. In thinking about this paradox, the focus has traditionally been on the evolutionary benefits of genetic recombination in generating offspring diversity and purging deleterious mutations. The similarity of pattern between evolution of organisms and evolution among cancer cells suggests that the asexual process generates more diverse genomes owing to less controlled reproduction systems, while sexual reproduction generates more stable genomes because the sexual process can serve as a mechanism to "filter out" aberrations at the chromosome level. Our reinterpretation of data from the literature strongly supports this hypothesis. Thus, the principal consequence of sexual reproduction is the reduction of drastic genetic diversity at the genome or chromosome level, resulting in the preservation of species identity rather than the provision of evolutionary diversity for future environmental challenges. Genetic recombination does contribute to genetic diversity, but it does so secondarily and within the framework of the chromosomally defined genome.  相似文献   

13.
The adaptive value of sexual reproduction is still debated in evolutionary theory. It has been proposed that the advantage of sexual reproduction over asexual reproduction is to promote genetic diversity, to prevent the accumulation of harmful mutations or to preserve heterozygosity. Since these hypothetical advantages depend on the type of asexual reproduction, understanding how selection affects the taxonomic distribution of each type could help us discriminate between existing hypotheses. Here, I argue that soft selection, competition among embryos or offspring in selection arenas prior to the hard selection of the adult phase, reduces loss of heterozygosity in certain types of asexual reproduction. Since loss of heterozygosity leads to the unmasking of recessive deleterious mutations in the progeny of asexual individuals, soft selection facilitates the evolution of these types of asexual reproduction. Using a population genetics model, I calculate how loss of heterozygosity affects fitness for different types of apomixis and automixis, and I show that soft selection significantly reduces loss of heterozygosity, hence increases fitness, in apomixis with suppression of the first meiotic division and in automixis with central fusion, the most common types of asexual reproduction. Therefore, if sexual reproduction evolved to preserve heterozygosity, soft selection should be associated with these types of asexual reproduction. I discuss the evidence for this prediction and how this and other observations on the distribution of different types of asexual reproduction in nature is consistent with the heterozygosity hypothesis.  相似文献   

14.
Transposable elements (TE) are prominent components of most eukaryotic genomes. In addition to their possible participation in the origin of sexual reproduction in eukaryotes, they may be also involved in its maintenance as important contributors to the deleterious mutation load. Comparative analyses of transposon content in the genomes of sexually reproducing and anciently asexual species may help to understand the contribution of different TE classes to the deleterious load. The apparent absence of deleterious retrotransposons from the genomes of ancient asexuals is in agreement with the hypothesis that they may play a special role in the maintenance of sexual reproduction and in early extinction for which most species are destined upon the abandonment of sex.  相似文献   

15.
Cyclically parthenogenetic organisms experience benefits of both sexual and asexual reproductive modes in a constant environment. Sexual reproduction generates new genotypes and may facilitate the purging of deleterious mutations whereas asexuality has a two-fold advantage and enables maintenance of well-fitted genotypes. Asexual reproduction can have a drawback as increased linkage may lead to the accumulation of deleterious mutations. This study presents the results of Monte Carlo simulations of small and infinite diploid populations, with deleterious mutations occurring at multiple loci. The recombination rate and the length of the asexual period, interrupted by sexual reproduction, are allowed to vary. Here I show that the fitness of cyclical parthenogenetic population is dependent on the length of the asexual period. Increased length of the asexual period can lead both to increased segregational load following sexual reproduction and to a stronger effect of deleterious mutations on variation at a linked neutral marker, either by reducing or increasing the variation.  相似文献   

16.
The advantage of sexual reproduction remains a puzzle for evolutionary biologists. Everything else being equal, asexual populations are expected to have twice the number of offspring produced by similar sexual populations. Yet, asexual species are uncommon among higher eukaryotes. In models assuming small populations, high mutation rates, or frequent environmental changes, sexual reproduction seems to have at least a two-fold advantage over asexuality. But the advantage of sex for large populations, low mutation rates, and rare or mild environmental changes remains a conundrum. Here we show that without recombination, rare advantageous mutations can result in increased accumulation of deleterious mutations ('evolutionary traction'), which explains the long-term advantage of sex under a wide parameter range.  相似文献   

17.
X Jiang  S Hu  Q Xu  Y Chang  S Tao 《Heredity》2013,111(6):505-512
The mechanism of reproducing more viable offspring in response to selection is a major factor influencing the advantages of sex. In diploids, sexual reproduction combines genotype by recombination and segregation. Theoretical studies of sexual reproduction have investigated the advantage of recombination in haploids. However, the potential advantage of segregation in diploids is less studied. This study aimed to quantify the relative contribution of recombination and segregation to the evolution of sex in finite diploids by using multilocus simulations. The mean fitness of a sexually or asexually reproduced population was calculated to describe the long-term effects of sex. The evolutionary fate of a sex or recombination modifier was also monitored to investigate the short-term effects of sex. Two different scenarios of mutations were considered: (1) only deleterious mutations were present and (2) a combination of deleterious and beneficial mutations. Results showed that the combined effects of segregation and recombination strongly contributed to the evolution of sex in diploids. If deleterious mutations were only present, segregation efficiently slowed down the speed of Muller''s ratchet. As the recombination level was increased, the accumulation of deleterious mutations was totally inhibited and recombination substantially contributed to the evolution of sex. The presence of beneficial mutations evidently increased the fixation rate of a recombination modifier. We also observed that the twofold cost of sex was easily to overcome in diploids if a sex modifier caused a moderate frequency of sex.  相似文献   

18.
Gordo I  Navarro A  Charlesworth B 《Genetics》2002,161(2):835-848
The levels and patterns of variation at a neutral locus are analyzed in a haploid asexual population undergoing accumulation of deleterious mutations due to Muller's ratchet. We find that the movement of Muller's ratchet can be associated with a considerable reduction in genetic diversity below classical neutral expectation. The extent to which variability is reduced is a function of the deleterious mutation rate, the fitness effects of the mutations, and the population size. Approximate analytical expressions for the expected genetic diversity are compared with simulation results under two different models of deleterious mutations: a model where all deleterious mutations have equal effects and a model where there are two classes of deleterious mutations. We also find that Muller's ratchet can produce a considerable distortion in the neutral frequency spectrum toward an excess of rare variants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号