首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete glutathione system in probiotic Lactobacillus fermentum ME-3   总被引:1,自引:0,他引:1  
There is much information about glutathione (GSH) in eukaryotic cells, but relatively little is known about GSH in prokaryotes. Without GSH and glutathione redox cycle lactic acid bacteria (LAB) cannot protect themselves against reactive oxygen species. Previously we have shown the presence of GSH in Lactobacillus fermentum ME-3 (DSM14241). Results of this study show that probiotic L. fermentum ME-3 contains both glutathione peroxidase and glutathione reductase. We also present that L. fermentum ME-3 can transport GSH from environment and synthesize GSH. This means that it is characterized by a complete glutathione system: synthesis, uptake and redox turnover ability that makes L. fermentum ME-3 a perfect protector against oxidative stress. To our best knowledge studies on existence of the complete glutathione system in probiotic LAB strains are still absent and glutathione synthesis in them has not been demonstrated.  相似文献   

2.

Background  

The aim of the study was to detect whether in experimental Salmonella enterica Typhimurium infection the probiotic Lactobacillus fermentum ME-3 in combination with fluoroquinolone therapy would eradicate S. Typhimurium, prevent the development of liver and spleen granulomas and improve the indices of oxidative stress in the ileum mucosa.  相似文献   

3.
Reducing postprandial oxidative stress (OxS), decreasing postprandial blood triglyceride level (TG) and improving lipoprotein status is likely to have a preventive impact on the development of cardiovascular disease (CVD). Previously we have shown that the antioxidant probiotic Lactobacillus fermentum ME-3 (DSM14241) is characterized by antiatherogenic effects. This randomized double-blind placebo-controlled study evaluated the influence of kefir enriched with an antioxidative probiotic L. fermentum ME-3 (LfKef) on postprandial OxS, blood TG response and lipoprotein status. 100 clinically healthy subjects were recruited into the study. Blood parameters of postprandial OxS, TG and lipoprotein status were determined by oxidized LDL, baseline diene conjugation in LDL (BDC-LDL), oxidized LDL complex with beta-2 glycoprotein (Beta2-GPI-oxLDL), paraoxonase (PON) activity, LDL-Chol, HDL-Chol and TG. To evaluate general body postprandial OxS-load we measured 8-isoprostanes (8-EPI) in the urine. Consumption of LfKef significantly reduced the postprandial level of oxidized LDL, BDC-LDL, Beta2-GPI-oxLDL, urinary 8-isoprostanes and postprandial TG and caused a significant increase in HDL-Chol and PON activity. This is the first evidence that kefir enriched with an antioxidant probiotic may have a positive effect on both postprandial OxS and TG response as well as on lipoprotein status.  相似文献   

4.
The effect of stress pretreatment on survival of probiotic Lactobacillus acidophilus La-5, Lactobacillus rhamnosus GG, and Lactobacillus fermentum ME-3 cultures was investigated in the single bioreactor gastrointestinal tract simulator (GITS). The cultures were pregrown in pH-auxostat, subjected to temperature, acid, or bile stress treatment, fast frozen in liquid nitrogen (LN2), and tested for survival in GITS. After LN2 freezing the colony forming ability of L. rhamnosus GG and L. fermentum ME-3 nonstressed and stressed cells was well retained (average survival of 75.4 ± 18.3% and 88.0 ± 7.2%, respectively). L. acidophilus La-5 strain showed good survival of auxostat nonstressed cells after fast freezing (94.2 ± 15.0), however the survival of stress pretreated cells was considerably lower (30.8 ± 8.5%). All LN2 frozen auxostat cultures survived well in the acid phase of the GIT simulation (survival 81 ± 21%); however, after the bile phase, the colony formation ability of L. acidophilus La-5, L. rhamnosus GG, and L. fermentum ME-3 decreased by approximately 1.4 ± 0.2, 3.8 ± 0.3, and 3.5 ± 1.2 logarithmic units, respectively. No statistically relevant positive effect of stress pretreatments on survival of LN2 frozen L. acidophilus La-5, L. rhamnosus GG, and L. fermentum ME-3 in GITS was observed.  相似文献   

5.
Culture-based technique was used to study the population dynamics of the bacteria and determine the dominant lactic acid bacteria (LAB) during cassava fermentation. LAB was consistently isolated from the fermented mash with an initial viable count of 6.00 log c.f.u. g−1 observed at 12 h. The aerobic viable count of amylolytic lactic acid bacteria (ALAB) was higher than other group of LAB throughout the fermentation up to 96 h with the highest viable count of 8.08 log c.f.u. g−1. Combination of phenotypic parameters and 16S rDNA gene sequencing identified the dominant group of LAB as Lactobacillus plantarum, L. fermentum and Leuconostoc mesenteroides while the pulse field gel electrophoresis determined that the strains were genotypically heterogeneous. The sugar fermentation profile of the isolates showed that indigestible sugars such as raffinose and stachyose can be fermented by the strains. Information was also generated about the functional properties of the strains. Only strain L. plantarum 9st0 isolate at 0 h of the fermentation produced bacteriocin with antagonism against closely related indicator strains. Quantitatively, the highest amylase activity was produced by strain L. plantarum 7st12, while appreciable amylase was also produced by L. fermentum 1st96. The result of this work showed that selection of mixed starter cultures of bacteriocin- and amylase-producing L. plantarum and L. fermentum will be highly relevant as starter cultures during the intermediate and large scale gari production.  相似文献   

6.
Aims: To evaluate the probiotic properties of strains isolated from smoked salmon and previously identified as bacteriocin producers. Methods and Results: Strains Lactobacillus curvatus ET06, ET30 and ET31, Lactobacillus fermentum ET35, Lactobacillus delbrueckii ET32, Pediococcus acidilactici ET34 and Enterococcus faecium ET05, ET12 and ET88 survived conditions simulating the gastrointestinal tract (GIT) and produced bacteriocins active against several strains of Listeria monocytogenes, but presented very low activity against other lactic acid bacteria (LAB). Cell‐free supernatants containing bacteriocins, added to 3‐h‐old cultures of L. monocytogenes 603, suppressed growth over 12 h. Auto‐aggregation was strain‐specific, and values ranged from 7·2% for ET35 to 12·1% for ET05. Various degrees of co‐aggregation with L. monocytogenes 603, Lactobacillus sakei ATCC 15521 and Enterococcus faecalis ATCC 19443 were observed. Adherence of the bacteriocinogenic strains to Caco‐2 cells was within the range reported for Lactobacillus rhamnosus GG, a well‐known probiotic. The highest levels of hydrophobicity were recorded for Lact. curvatus (61·9–64·6%), Lact. fermentum (78·9%), Lact. delbrueckii (43·7%) and Ped. acidilactici (51·3%), which are higher than the one recorded for Lact. rhamnosus GG (53·3%). These strains were highly sensitive to several antibiotics and affected by several drugs from different generic groups in a strain‐dependent manner. Conclusions: Smoked salmon is a rich source of probiotic LAB. All strains survived conditions simulating the GIT and produced bacteriocins active against various pathogens. Adherence to Caco‐2 cells was within the range reported for Lact. rhamnosus GG, a well‐known probiotic. In addition, the high hydrophobicity readings recorded define the strains as good probiotics. Significance and Impact of the Study: Smoked salmon contains a number of different probiotic LAB and could be marketed as having a potential beneficial effect.  相似文献   

7.

Thirty-four isolates of Lactobacillus spp. (LAB) from 34 curd samples were evaluated for their aflatoxin B1 (AFB1) binding and probiotic properties. Upon characterization, four LAB isolates (LC3/a, LC4/c, LC/5a, and LM13/b) were found to be effective in removing AFB1 from culture media with a capacity of above 75%. Staining reaction, biochemical tests, pattern of sugar utilization, and 16s rRNA gene sequence analysis revealed the identity of all the four isolates as L. fermentum. All of them could tolerate acidic pH, salt, and bile, which promise the use of these probiotic bacterial isolates for human applications. These isolates showed poor hydrophobicity and higher auto-aggregation properties. All L. fermentum isolates were found susceptible to gentamycin, chloramphenicol, cefoperazone, ampicillin, and resistant to ciprofloxacin and vancomycin. Results of hemolytic and DNase activity indicated their nonpathogenic nature. Though all L. fermentum isolates found inhibiting the growth of Salmonella ebony, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, maximum inhibition was obtained with isolate LC5/a. Kinetic studies revealed that all four bacteria required a minimum of 2 h to reach stationary phase of AFB1 binding. AFB1 binding ability varied from 66 to 85.2% among these four isolates. Bile (0.4%) was significant (P ≤ 0.05) in reducing the AFB1 binding property of isolates LC3/a, LC4/c, and LM13/b, while increased AFB1 binding ability was recorded at acidic pH (2.0). AFB1 binding properties of isolate LC5/a were found least affected by acidic pH and bile. The findings of our study revealed the higher efficiency of L. fermentum isolate LC5/a in reducing the bioavailability of AFB1 in gut, and additionally, it improves the consumers’ health by its various probiotic characters. These beneficial characters, L. fermentum isolates, promise them to use as probiotic formulations alone or in combinations with other beneficial probiotic-bacterial isolates.

  相似文献   

8.
吴琼  李伟程  李敏  李瑜  孙天松 《微生物学报》2022,62(4):1438-1451
【目的】Limosilactobacillus fermentum具有增强免疫力、产胞外多糖(exopolysaccharide,EPS)等多种功能特性,广泛应用于食品领域,具有较高经济价值。本文从群体遗传学角度,解析L. fermentum F-6的遗传背景和功能基因特征,为其开发利用提供遗传学基础。【方法】本研究对NCBI已公开的23株L. fermentum全基因组序列和1株模式菌株ATCC 14931T的基因组序列进行比较基因组学分析。利用Roary软件识别核心基因集与泛基因集;采用rapid annotation using subsystem technology(RAST)网站对基因组进行功能注释,以探究F-6基因组特征。【结果】以识别到的997个核心基因构建系统发育树,发现聚类趋势与分离源无关,但F-6与3株食品分离株聚在同一分支。功能注释分析发现,24株L. fermentum中仅F-6含有参与支链氨基酸合成途径的基因(ilvD、leuA等),可为机体提供必需氨基酸。F-6含有大量编码糖基转移酶和UDP-葡萄糖4-表异构酶的基因,且含有1个完整的eps基因簇。与其他L...  相似文献   

9.
Temperature modulates the metabolism in both fish and bacteria and therefore the effect of probiotic bacteria on its host may vary accordingly. The current study aim was to evaluate the effect of probiotic supplementation (Bacillus sp., Lactobacillus sp., Enterococcus sp., Pediococcus sp.) in juvenile seabass, Dicentrarchus labrax, when reared under different temperatures (17, 20 and 23°C). A control diet was tested against a probiotic‐supplemented diet, with a concentration of 3 × 109 CFU probiotic/kg diet. Antioxidant responses (TG, GSH, GSSG, GR, CAT and GSTs) and lipid peroxidation (LPO) were evaluated after 70 days of dietary probiotic supplementation. An effect of temperature was observed on LPO, which increased significantly in fish reared at 17°C (p < .05) compared to the 20 and 23°C groups. Total glutathione (TG) was significantly higher in the probiotic treatments in fish reared at 17 and 20°C (p < .05). In addition, a probiotic temperature interaction was observed for TG, reduced glutathione (GSH) levels, and for reduction of the oxidized glutathione ratio (GSH/GSSG; p < .05). In conclusion, the current study showed a strong temperature effect on oxidative stress responses, with an anti‐oxidant role of dietary probiotic supplementation at different rearing temperatures.  相似文献   

10.
The effect of exogenous application of 28-Homobrassinolide (HBR) on radish (Raphanus sativus L.) seedlings under zinc (Zn2+) stress on glutathione (GSH) production, consumption and changes in redox status was investigated. Zinc toxicity resulted in oxidative burst as evidenced by increased accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA) content. These stress indices were significantly decreased by HBR supplementation. Under Zn2+ stress, GSH pool was decreased, while the contribution of oxidized glutathione (GSSG) to total GSH increased (GSSH/GSH ratio), this translated into significant reduction of GSH redox homeostasis. In addition, an increase of phytochelatins (PCs) was observed. In radish seedlings under Zn2+ stress, the activities of gamma-glutamylcysteine synthetase (γ-ECS), glutathione synthetase (GS), glutathione peroxidase (GPX), glutathione-S-transferase (GST) and cysteine (Cys) levels increased but the activity of glutathione reductase (GR) decreased. However, application of HBR increased the GSH pool and maintained their redox ratio by increasing the enzyme activities of GSH biosynthesis (γ-ECS and GS) and GSH metabolism (GR, GPX and GST). The results of present study are novel in being the first to demonstrate that exogenous application of HBR modulates the GSH synthesis, metabolism and redox homeostasis to confer resistance against Zn2+ induced oxidative stress.  相似文献   

11.
12.
The ability of the human isolate Lactobacillus fermentum UCO-979C to form biofilm and synthesize exopolysaccharide on abiotic and biotic models is described. These properties were compared with the well-known Lactobacillus casei Shirota to better understand their anti-Helicobacter pylori probiotic activities. The two strains of lactobacilli synthesized exopolysaccharide as detected by the Dubois method and formed biofilm on abiotic and biotic surfaces visualized by crystal violet staining and scanning electron microscopy. Concomitantly, these strains inhibited H. pylori urease activity by up to 80.4% (strain UCO-979C) and 66.8% (strain Shirota) in gastric adenocarcinoma (AGS) cells, but the two species showed equal levels of inhibition (~84%) in colorectal adenocarcinoma (Caco-2) cells. The results suggest that L. fermentum UCO-979C has probiotic potential against H. pylori infections. However, further analyses are needed to explain the increased activity observed against the pathogen in AGS cells as compared to L. casei Shirota.  相似文献   

13.
Malaria parasites contain a complete glutathione (GSH) redox system, and several enzymes of this system are considered potential targets for antimalarial drugs. Through generation of a γ-glutamylcysteine synthetase (γ-GCS)-null mutant of the rodent parasite Plasmodium berghei, we previously showed that de novo GSH synthesis is not critical for blood stage multiplication but is essential for oocyst development. In this study, phenotype analyses of mutant parasites lacking expression of glutathione reductase (GR) confirmed that GSH metabolism is critical for the mosquito oocyst stage. Similar to what was found for γ-GCS, GR is not essential for blood stage growth. GR-null parasites showed the same sensitivity to methylene blue and eosin B as wild type parasites, demonstrating that these compounds target molecules other than GR in Plasmodium. Attempts to generate parasites lacking both GR and γ-GCS by simultaneous disruption of gr and γ-gcs were unsuccessful. This demonstrates that the maintenance of total GSH levels required for blood stage survival is dependent on either de novo GSH synthesis or glutathione disulfide (GSSG) reduction by Plasmodium GR. Our studies provide new insights into the role of the GSH system in malaria parasites with implications for the development of drugs targeting GSH metabolism.  相似文献   

14.
Purpose

Ogi is an indigenous edible fermented cereal slurry but the steep liquor is usually wasted or administered as therapeutic to suppress certain illnesses. The combination of lemon juice and ogi steep liquor (OSL) is known to possess bioactive metabolites.

Method

This study evaluated potential probiotic lactic acid bacteria (LAB) in different OSL (Zea mays, Sorghum bicolor, and Pennisetum glaucum L.) and lemon juice-ogi steep liquor (LJOSL) based on low pH, bile and lysozyme tolerances, hydrophobicity and auto-aggregation, antibiotic, cholesterol removal, exopolysaccharide production, β-galactosidase, and antimicrobial and hemolytic activities using standard methods. Presumptive LAB were sequenced and assayed for radical scavenging using 2,2-diphenyl-1-picrylhydrazyl (DPPH) and lipid peroxidation inhibitory (LPI) tests.

Results

Presumptive LAB counts were higher in maize OSL (0 h:5.09 log CFU/ml) and combined cereal OSL (24–48 h:7.65 and 7.72 log CFU/ml) but decreased in all steep liquors at 72 h, except in millet OSL (7.72 log CFU/ml). A total of 120 LAB isolates were randomly selected. Based on pH and bile tolerances, 14 isolates were comparable to reference strains. All these isolates demonstrated probiotics properties except for three that did not show γ-hemolysis. Sequenced LAB isolates were identified as Lactobacillus plantarum, Lactobacillus fermentum, Pediococcus pentosaceus, and Weissella cibara. DPPH activities of LAB gradually increased during fermentation with the highest activity of DPPH (58.77%) and LPI (57.94%) activity in L. plantarum. Strong correlations were found between DPPH and LPI in all the selected isolates.

Conclusion

The antioxidant property of probiotic LAB in OSL and LJOSL could contribute to its therapeutic nature.

  相似文献   

15.
The probiotic potential of Lactobacillus species isolated from infant feces was investigated. For this study, the antibiotic susceptibility, tolerance in gut‐related conditions, antimicrobial activity, and ability to adhere to a human colorectal adenocarcinoma cell line (Caco‐2 cells) of four common Lactobacillus species (Lactobacillus paracasei [n = 15], Lactobacillus rhamnosus [n = 45], Lactobacillus gasseri [n = 20] and Lactobacillus fermentum [n = 18]) were assessed. Most isolates that which were sensitive to imipenem, ampicillin, gentamycin, erythromycin and tetracycline were selected for other tests. L. gasseri isolates had the greatest sensitivity to gastric and intestinal fluids (<10% viability). L. fermentum (FH5, FH13 and FH18) had the highest adhesion to Caco‐2 cells. The lowest antibacterial activity against pathogenic bacteria was shown by L. gasseri strains in spot tests. Furthermore, non‐adjusted cell‐free culture supernatants with low pH had greater antimicrobial activity, which was related to organic acid. The results showed that some isolates of L. rhamnosus and L. fermentum are suitable for use as a probiotic.  相似文献   

16.
In this study, Lactobacillus fermentum (L. fermentum) F1 reduced cholesterol 48.87%. The strain was screened from cattle feces using an API 50 CHL system and the 16S rRNA sequence contrasting method. L. fermentum F1 showed acid and bile tolerance, and antimicrobial activity against pathogenic Escherichia coli and Staphylococcus aureus. L. fermentum F1 deconjugated 0.186 mM of free cholalic acid after it was incubated at 37°C in 0.20% sodium taurocholate (TCA) broth for 24 h. Heat-killed and resting cells of L. fermentum F1 showed small amounts of cholesterol removal (6.85 and 25.19 mg/g, respectively, of dry weight) compared with growing cells (33.21 mg/g of dry weight). The supernatant fluid of the broth contained 50.85% of the total cholesterol, while the washing buffer and cell extracts had 13.53 and 35.39%, respectively. These findings suggest that L. fermentum F1 may remove cholesterol by co-precipitating with deconjugated bile salt, assimilating with cells and by incorporation into cellular membranes. Cholesterol assimilated by cells held 72.0% of the reduced cholesterol, while 21.65% of the reduced cholesterol was coprecipitated with deconjugated bile salt and 5.89% was adsorbed into the surface of the cells.  相似文献   

17.
Lactic acid bacteria from healthy breast-fed infants were isolated and screened for β-galactosidase production in MRS broth. Among 49 isolates that exhibited the yellow clear zone on MRS agar supplemented with bromocresol blue, the isolate CM33 was selected as being the highest β-galactosidase producer and was identified as Lactobacillus fermentum based on its morphological characteristics and 16S rDNA nucleotide sequence. L. fermentum CM33 exhibited a good survival rate under the simulated stomach passage model, comparable to known probiotic strains L. gallinarum JCM2011 and L. agilis JCM1187. L. fermentum CM33 was antagonistic to pathogenic bacteria Listeria monocytogenes, Escherichia coli 0157:H7, Salmonella typhi, and Salmonella enteriditis, using the well diffusion method. In addition, the selected lactobacilli exhibited a high growth rate when cultivated in modified MRS containing commercial galactooligosaccharide (GOS) as a sole carbon source, as well as in glucose. A preliminary study on the enzymatic synthesis of oligosaccharide using crude β-galactosidase revealed the capability for oligosaccharide synthesis by the transgalactosylation activity.  相似文献   

18.
Pyrrolizidine alkaloid (PA) clivorine, isolated from traditional Chinese medicinal plant Ligularia hodgsonii Hook, has been shown to induce apoptosis in hepatocytes via mitochondrial‐mediated apoptotic pathway in our previous research. The present study was designed to observe the protection of N‐acetyl‐cysteine (NAC) on clivorine‐induced hepatocytes apoptosis. Our results showed that 5 mM NAC significantly reversed clivorine‐induced cytotoxicity via MTT and Trypan Blue staining assay. DNA apoptotic fragmentation analysis and Western‐blot results showed that NAC decreased clivorine‐induced apoptotic DNA ladder and caspase‐3 activation. Further results showed that NAC inhibited clivorine‐induced Bcl‐xL decrease, mitochondrial cytochrome c release and caspase‐9 activation. Intracellular glutathione (GSH) is an important ubiquitous redox‐active reducing sulfhydryl (? SH) tripeptide, and our results showed that clivorine (50 µM) decreased cellular GSH amounts and the ratio of GSH/GSSG in the time‐dependent manner, while 5 mM NAC obviously reversed this depletion. Further results showed that GSH synthesis inhibitor BSO augmented clivorine‐induced cytotoxicity, while exogenous GSH reversed its cytotoxicity on hepatocytes. Clivorine (50 µM) significantly induced cellular reactive oxygen species (ROS) generation. Further results showed that 50 µM Clivorine decreased glutathione peroxidase (GPx) activity and increased glutathione S transferase (GST) activity, which are both GSH‐related antioxidant enzymes. Thioredoxin‐1 (Trx) is also a ubiquitous redox‐active reducing (? SH) protein, and clivorine (50 µM) decreased cellular expression of Trx in a time‐dependent manner, while 5 mM NAC reversed this decrease. Taken together, our results demonstrate that the protection of NAC is major via maintaining cellular reduced environment and thus prevents clivorine‐induced mitochondrial‐mediated hepatocytes apoptosis. J. Cell. Biochem. 108: 424–432, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Aim: To study the role of β‐glucosidase producing probiotic bacteria and yeast in the biotransformation of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk. Methods and Results: Five isolates of probiotic lactic acid bacteria (LAB), Lactobacillus acidophilus B4496, Lactobacillus bulgaricus CFR2028, Lactobacillus casei B1922, Lactobacillus plantarum B4495 and Lactobacillus fermentum B4655 with yeast Saccharomyces boulardii were used to ferment soymilk to obtain the bioactive isoflavones, genistein and daidzein. High‐performance liquid chromatography was used to analyse the concentration of isoflavones. Bioactive aglycones genistein and daidzein after 24 and 48 h of fermentation ranged from 97·49 to 98·49% and 62·71 to 92·31% respectively with different combinations of LAB with yeast. Increase in bioavailability of minerals and vitamin B complex were also observed in fermented soymilk. Conclusions: LAB in combination with yeast S. boulardii has great potential for the enrichment of bioactive isoflavones, enhancing the viability of LAB strains, decreasing the antinutrient phytic acid and increasing the mineral bioavailability in soymilk fermentation. Significance and Impact of the Study: Fermentation of soymilk with probiotic organisms improves the bioavailability of isoflavones, assists in digestion of protein, provides more soluble calcium, enhances intestinal health and supports immune system. Increased isoflavone aglycone content in fermented soymilk improves the biological functionality of soymilk.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号