首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The parental origin of the additional sex chromosome was studied in 47 cases with an XXY sex chromosome consitution. In 23 cases (49%), the error occurred during the first paternal meiotic division. Maternal origin of the additional chromosome was found in the remaining 24 cases (51%). Centromeric homo- versus heterozygosity could be determined in 18 out of the 24 maternally derived cases. According to the centromeric status and recombination rate, the nondisjunction was attributable in 9 cases (50%) to an error at the first maternal meiotic division, in 7 cases (39%) to an error at the second maternal meiotic division and in 2 cases (11%) to a nullo-chiasmata nondisjunction at meiosis II or to postzygotic mitotic error. No recombination, and in particular none in the pericentromeric region, was found in any of the 9 cases due to nondisjunction at the first maternal meiotic division. Significantly increased paternal age was found in the paternally derived cases. Maternal age was significantly higher in the maternally derived cases due to a meiotic I error compared with those due to a meiotic II error. There were no significant clinical differences between patients with respect to the origin of the additional X chromosome.  相似文献   

2.
Two meiotic genes from natural populations are described. A female meiotic mutation,mei(1)g13, mapped to 17.4 on the X chromosome, causes nondisjunction of all homologs except for the fourth chromosomes. In addition, it reduces recombination by 10% in the homozygotes and causes 18% increased recombination in the heterozygotes. A male meiotic mutation,mei-1223 m144 , is located on the third chromosome. Although this mutation causes nondisjunction of all chromosomes, each chromosome pair exhibits a different nondisjunction frequency. Large variations in the sizes of the premature sperm heads observed in the homozygotes may reflect irregular meiotic pairing and the subsequent abnormal segregation, resulting in aneuploid chromosome complements.  相似文献   

3.
Within the last decade, aberrant meiotic recombination has been confirmed as a molecular risk factor for chromosome nondisjunction in humans. Recombination tethers homologous chromosomes, linking and guiding them through proper segregation at meiosis I. In model organisms, mutations that disturb the recombination pathway increase the frequency of chromosome malsegregation and alterations in both the amount and placement of meiotic recombination are associated with nondisjunction. This association has been established for humans as well. Significant alterations in recombination have been found for all meiosis I-derived trisomies studied to date and a subset of so called "meiosis II" trisomy. Often exchange levels are reduced in a subset of cases where the nondisjoining chromosome fails to undergo recombination. For other trisomies, the placement of meiotic recombination has been altered. It appears that recombination too near the centromere or too far from the centromere imparts an increased risk for nondisjunction. Recent evidence from trisomy 21 also suggests an association may exist between recombination and maternal age, the most widely identified risk factor for aneuploidy. Among cases of maternal meiosis I-derived trisomy 21, increasing maternal age is associated with a decreasing frequency of recombination in the susceptible pericentromeric and telomeric regions. It is likely that multiple risk factors lead to nondisjunction, some age dependent and others age independent, some that act globally and others that are chromosome specific. Future studies are expected to shed new light on the timing and placement of recombination, providing additional clues to the link between altered recombination and chromosome nondisjunction.  相似文献   

4.
A total of 209 ethyl methanesulfonate-treated X chromosomes were screened for meiotic mutants that either (1) increased sex or fourth chromosome nondisjunction at either meiotic division in males; (2) allowed recombination in such males; (3) increased nondisjunction of the X chromosome at either meiotic division in females; or (4) caused such females, when mated to males heterozygous for Segregation-Distorter (SD) and a sensitive homolog to alter the strength of meiotic drive in males.-Twenty male-specific meiotic mutants were found. Though the rates of nondisjunction differed, all twenty mutants were qualitatively similar in that (1) they alter the disjunction of the X chromosome from the Y chromosome; (2) among the recovered sex-chromosome exceptional progeny, there is a large excess of those derived from nullo-XY as compared to XY gametes; (3) there is a negative correlation between the frequency of sex-chromosome exceptional progeny and the frequency of males among the regular progeny. In their effects on meiosis these mutants are similar to In(1)sc(4L)sc(8R), which is deleted for the basal heterochromatin. These mutants, however, have normal phenotypes and viabilities when examined as X/0 males, and furthermore, a mapping of two of the mutants places them in the euchromatin of the X chromosome. It is suggested that these mutants are in genes whose products are involved in insuring the proper functioning of the basal pairing sites which are deleted in In(1)sc(4L)sc(8R), and in addition that there is a close connection, perhaps causal, between the disruption of normal X-Y pairing (and, therefore, disjunction) and the occurrence of meiotic drive in the male.-Eleven mutants were found which increased nondisjunction in females. These mutants were characterized as to (1) the division at which they acted; (2) their effect on recombination; (3) their dominance; (4) their effects on disjunction of all four chromosome pairs. Five female mutants caused a nonuniform decrease in recombination, being most pronounced in distal regions, and an increase in first division nondisjunction of all chromosome pairs. Their behavior is consistent with the hypothesis that these mutants are defective in a process which is a precondition for exchange. Two female mutants were allelic and caused a uniform reduction in recombination for all intervals (though to different extents for the two alleles) and an increase in first-division nondisjunction of all chromosomes. Limited recombination data suggest that these mutants do not alter coincidence, and thus, following the arguments of Sandler et al. (1968), are defective in exchange rather than a precondiiton for exchange. A single female mutant behaves in a manner that is consistent with it being a defect in a gene whose functioning is essential for distributive pairing. Three of the female meiotic mutants cause abnormal chromosome behavior at a number of times in meiosis. Thus, nondisjunction at both meiotic divisions is increased, recombinant chromosomes nondisjoin, and there is a polarized alteration in recombination.-The striking differences between the types of control of meiosis in the two sexes is discussed and attention is drawn to the possible similarities between (1) the disjunction functions of exchange and the process specified by the chromosome-specific male mutants; and (2) the prevention of functional aneuploid gamete formation by distributive disjunction and meiotic drive.  相似文献   

5.
A centromere (CEN) in Saccharomyces cerevisiae consists of approximately 150 bp of DNA and contains 3 conserved sequence elements: a high A + T region 78-86 bp in length (element II), flanked on the left by a conserved 8-bp element I sequence (PuTCACPuTG), and on the right by a conserved 25-bp element III sequence. We have carried out a structure-function analysis of the element I and II regions of CEN3 by constructing mutations in these sequences and subsequently determining their effect on mitotic and meiotic chromosome segregation. We have also examined the mitotic and meiotic segregation behavior of ARS plasmids containing the structurally altered CEN3 sequences. Replacing the periodic tracts of A residues within element II with random A + T sequences of equal length increases the frequency of mitotic chromosome nondisjunction only 4-fold; whereas, reducing the A + T content of element II while preserving the length results in a 40-fold increase in the frequence of chromosome nondisjunction. Structural alterations in the element II region that do not decrease the overall length have little effect on the meiotic segregation behavior of the altered chromosomes. Centromeres containing a deletion of element I or a portion of element II retain considerable mitotic activity, yet plasmids carrying these same mutations segregate randomly during meiosis I, indicating these sequences to be essential for maintaining attachment of the replicated sister chromatids during the first meiotic division. The presence of an intact element I sequence properly spaced from the element III region is absolutely essential for proper meiotic function of the centromere.  相似文献   

6.
B. Rockmill  S. Fogel 《Genetics》1988,119(2):261-272
Mutants at a newly identified locus, DIS1 (disjunction), were detected by screening for mutants that generate aneuploid spores (chromosome VIII disomes) at an increased frequency. Strains carrying the partially dominant alleles, DIS1-1 or DIS1-2, generate disomes at rates up to 100 times the background level. Mitotic nondisjunction is also increased 10- to 50-fold over background. Half-tetrad analysis of disomes for a marked interval on chromosome VIII yields wild-type map distances, indicating that a general recombination deficiency is not the cause of nondisjunction. Meiotic nondisjunction in DIS1 mutants is not chromosome specific; 5% of the spores disomic for chromosome VIII are also disomic for chromosome III. Although only one disomic spore is found per exceptional ascus most of the disomes appear to be generated in the first meiotic division because recovered chromosome VIII disomes contain mostly nonsister chromosomes. We propose that disome generation in the DIS1 mutants results from precocious separation of sister centromeres.  相似文献   

7.
Thirty-two cases of uniparental disomy (UPD), ascertained from Prader-Willi syndrome patients (N = 27) and Angelman syndrome patients (N = 5), are used to investigate the pattern of recombination associated with nondisjunction of chromosome 15. In addition, the meiotic stage of nondisjunction is inferred by using markers mapping near the centromere. Two basic approaches to the analysis of recombination are utilized. Standard methods of centromere mapping are employed to determine the level of recombination in specific pairwise intervals along the chromosome. This method shows a significant reduction in recombination for two of five intervals examined. Second, the observed frequency of each recombinant class (i.e., zero, one, two, three, or more observable crossovers) is compared with expected values. This is useful for testing whether the reduction in recombination can be attributed solely to a proportion of cases with no recombination at all (because of asynapsis), with the remaining groups showing normal recombination (or even excess recombination), or whether recombination is uniformly reduced. Analysis of maternal UPD(15) data shows a slight reduction in the multiple-recombinant classes, with a corresponding increase in both the zero- and one-recombinant classes over expected values. The majority, more than 82%, of the extra chromosomes in maternal UPD(15) cases are due to meiotic I nondisjunction events. In contrast, most paternal UPD(15) cases so far examined appear to have a postzygotic origin of the extra paternal chromosome.  相似文献   

8.
D. D. Sears  P. Hieter    G. Simchen 《Genetics》1994,138(4):1055-1065
Heterologous yeast artificial chromosomes (YACs) do not recombine with each other and missegregate in 25% of meiosis I events. Recombination hot spots in the yeast Saccharomyces cerevisiae have previously been shown to be associated with sites of meiosis-induced double-strand breaks (DSBs). A 6-kb fragment containing a recombination hot spot/DSB site was implanted onto two heterologous human DNA YACs and was shown to cause the YACs to undergo meiotic recombination in 5-8% of tetrads. Reciprocal exchanges initiated and resolved within the 6-kb insert. Presence of the insert had no detectable effect on meiosis I nondisjunction. Surprisingly, the recombination hot spots acted in cis to significantly reduce precocious sister-chromatid segregation. This novel observation suggests that DSBs are instrumental in maintaining cohesion between sister chromatids in meiosis I. We propose that this previously unknown function of DSBs is mediated by the stimulation of sister-chromatid exchange and/or its intermediates.  相似文献   

9.
Summary Ten families (Down syndrome children and their parents) showing evidence of meiotic recombination between intraparental chromosomes transmitted after nondisjunction were studied. Cytogenetic polymorphisms and a cassette of RFLP markers distributed along chromosome 21 were used to analyze these families to localize the regions of meiotic recombination. Results indicated that only one crossover occurred per meiotic division and that nine of ten nondisjunctions appeared to be of maternal origin. In one family the crossover had taken place in the pericentromeric region, proximal to marker D21S13, which is quite exceptional. A chance of meiotic recombination within region 21q21, flanked by marker D21S72 and the amyloid gene, could be demonstrated in seven of the ten families. Most strikingly, this chance significantly decreased distal to q21, with frequencies of 0.3 and 0.1 in regions q22.2 and q22.3-qter, respectively. It is hypothesized that decreased chiasmata formation in the most distal part of chromosome 21q might promote nondisjunction. Furthermore, data from the ten crossovers made it possible to map provisionally two previously undefined markers, D21S24 and D21S82, to regions q21-qter and q22.1-qter, respectively.  相似文献   

10.
Meiotic Recombination on Artificial Chromosomes in Yeast   总被引:5,自引:0,他引:5       下载免费PDF全文
We have examined the meiotic recombination characteristics of artificial chromosomes in Saccharomyces cerevisiae. Our experiments were carried out using minichromosome derivatives of yeast chromosome III and yeast artificial chromosomes composed primarily of bacteriophage lambda DNA. Tetrad analysis revealed that the artificial chromosomes exhibit very low levels of meiotic recombination. However, when a 12.5-kbp fragment from yeast chromosome VIII was inserted into the right arm of the artificial chromosome, recombination within that arm mimicked the recombination characteristics of the fragment in its natural context including the ability of crossovers to ensure meiotic disjunction. Both crossing over and gene conversion (within the ARG4 gene contained within the fragment) were measured in the experiments. Similarly, a 55-kbp region from chromosome III carried on a minichromosome showed crossover behavior indistinguishable from that seen when it is carried on chromosome III. We discuss the notion that, in yeast, meiotic recombination behavior is determined locally by small chromosomal regions that function free of the influence of the chromosome as a whole.  相似文献   

11.
We have integrated a plasmid containing a yeast centromere, CEN5, into the HIS4 region of chromosome III by transformation. Of the three transformant colonies examined, none contained a dicentric chromosome, but all contained a rearranged chromosome III. In one transformant, rearrangement occurred by homologous recombination between two Ty elements; one on the left arm and the other on the right arm of chromosome III. This event produced a ring chromosome (ring chromosome III) of about 60 kb consisting of CEN3 and all other sequences between the two Ty elements. In addition, a linear chromosome (chromosome IIIA) consisting of sequences distal to the two Ty elements including CEN5, but lacking 60 kb of sequences from the centromeric region, was produced. Two other transformants also contain a similarly altered linear chromosome III as well as an apparently normal copy of chromosome III. These results suggest that dicentric chromosomes cannot be maintained in yeast and that dicentric structures must be resolved for the cell to survive.--The meiotic segregation properties of ring chromosome III and linear chromosome IIIA were examined in diploid cells which also contained a normal chromosome III. Chromosome IIIA and normal chromosome III disjoined normally, indicating that homology or parallel location of the centromeric regions of these chromosomes are not essential for proper meiotic segregation. In contrast, the 60-kb ring chromosome III, which is homologous to the centromeric region of the normal chromosome III, did not appear to pair with fidelity with chromosome III.  相似文献   

12.
M. Goldway  T. Arbel    G. Simchen 《Genetics》1993,133(2):149-158
A yeast strain, in which nondisjunction of chromosome III at the first-meiotic division could be assayed, was constructed. Using chromosome fragmentation plasmids, chromosomal fragments (CFs) were derived in isogenic strains from six sites along chromosome III and one site on chromosome VII. Whereas the presence of the CFs derived from chromosome III increased considerably the meiosis I nondisjunction of that chromosome, the CF derived from chromosome VII had no effect on chromosome III segregation. The effects of the chromosome III-derived fragments were not linearly related to fragment length. Two regions, one of 12 kb in size located at the left end of the chromosome, and the other of 5 kb, located at the center of the right arm, were found to have profound effects on chromosome III nondisjunction. Most disomics arising from meioses in strains containing chromosome III CFs did not contain the CF; thus it appears that the two chromosome III homologs had segregated away from the CF. Among the disomics, recombination between the homologous chromosomes III was lower than expected from the genetic distance, while recombination between one of the chromosomes III and the fragment was frequent. We suggest that there are sites along the chromosome that are more involved than others in the pairing of homologous chromosomes and that the pairing between fragment and homologs involves recombination among these latter elements.  相似文献   

13.
Hop1: A Yeast Meiotic Pairing Gene   总被引:36,自引:14,他引:22       下载免费PDF全文
The recessive mutation, hop1-1, was isolated by use of a screen designed to detect mutations defective in homologous chromosomal pairing during meiosis in Saccharomyces cerevisiae. Mutants in HOP1 displayed decreased levels of meiotic crossing over and intragenic recombination between markers on homologous chromosomes. In contrast, assays of the hop1-1 mutation in a spo13-1 haploid disomic for chromosome III demonstrated that intrachromosomal recombination between directly duplicated sequences was unaffected. The spores produced by SPO13 diploids homozygous for hop1 were largely inviable, as expected for a defect in interhomolog recombination that results in high levels of nondisjunction. HOP1 was cloned by complementation of the spore lethality phenotype and the cloned gene was used to map HOP1 to the LYS11-HIS6 interval on the left arm of chromosome IX. Electron microscopy revealed that diploids homozygous for hop1 fail to form synaptonemal complex, which normally provides the structural basis for homolog pairing. We propose that HOP1 acts in meiosis primarily to promote chromosomal pairing, perhaps by encoding a component of the synaptonemal complex.  相似文献   

14.
Chromosomal aneuploidy is a fundamental characteristic of the human species. In this review we summarize the knowledge about the origin and mechanisms of nondisjunction in human trisomy 21 that has accumulated during the last decade by using DNA polymorphism analysis. The first molecular correlate of nondisjunction in humans is altered recombination, meiosis I errors being associated with reduced recombination and maternal meiosis II errors with increased recombination between the nondisjoined chromosomes. Thus, virtually all maternal meiotic errors of chromosome 21 seem to be initiated in meiosis I. Advanced maternal age remains the only well documented risk factor for maternal meiotic nondisjunction, but there is, however, still a surprising lack of understanding of the basic mechanisms behind the maternal age effect.  相似文献   

15.
DNA was isolated from a circular derivative of chromosome III to prepare a library of recombinant plasmids enriched in chromosome III sequences. An ordered set of recombinant plasmids and bacteriophages carrying the contiguous 210-kilobase region of chromosome III between the HML and MAT loci was identified, and a complete restriction map was prepared with BamHI and EcoRI. Using the high frequency transformation assay and extensive subcloning, 13 ARS elements were mapped in the cloned region. Comparison of the physical maps of chromosome III from three strains revealed that the chromosomes differ in the number and positions of Ty elements and also show restriction site polymorphisms. A comparison of the physical map with the genetic map shows that meiotic recombination rates vary at least tenfold along the length of the chromosome.  相似文献   

16.
Robbins LG 《Genetics》1980,94(2):361-381
Heterozygosity for a deficiency for the entire zeste-white region of the X chromosome of Drosophila melanogaster females causes both reduced recombination and increased nondisjunction. The location of the dosage-sensitive sites responsible for these two meiotic defects has been studied by use of a set of deficiencies that subdivide the region. Recombination is reduced when the zw7-zw11 region is present in one dose, while nondisjunction is increased only if the doses of both the zw8-zw10 and zw6-zw11 segments are reduced. Examination of trans heterozygotes of two deficiencies explicitly demonstrates the compound nature of the meiotic dose effect and further delimits the location of the proximal disjunctional site to the zw12-zw11 interval. In inversion/deficiency heterozygotes, reduced dose of the zw8-zw10 region alone, without reduced dose of the proximal site, yields increased nondisjunction, suggesting that the proximal element that affects disjunction is the same as that which affects recombination. Thus, the zeste-white region contains at least two dosagesensitive loci that affect meiosis: reduced dosage of one locus, in the zw7-zw11 interval, causes reduced recombination; reduced dose of another, in the zw8-zw10 region, increases the probability that nonexchange chromosomes will nondisjoin. A slight effect on the regional distribution of exchange may also be a property of the zw8-zw10 region locus, but could be an effect of yet another locus or of structural heterozygosity. The implications of these results for understanding meiotic control and the prospects for further analysis of the structure of the zeste-white interval are considered.  相似文献   

17.
Attachment site of the genetic element e14.   总被引:5,自引:5,他引:5       下载免费PDF全文
The Escherichia coli K-12 genetic element, e14, contains a 216-base-pair region that is homologous to a portion of the host chromosome. This region serves as the integration site for the element. The 216-base-pair homology is interrupted by 28 mismatches distributed through the sequence. The actual integrative crossover occurs within the first 11 base pairs from one end of the region. To test factors which affect e14 site-specific recombination, we cloned the attachment sites of free e14 and the host chromosome into the same plasmid. The cloned attachment sites recombined intramolecularly in a process that required the presence of a chromosomal copy of e14 in the host cell as well as the induction of SOS. Recombination events that mimicked both integration and excision occurred under the same conditions and to roughly the same extent.  相似文献   

18.
Inversion heterozygosity has long been noted for its ability to suppress the transmission of recombinant chromosomes, as well as for altering the frequency and location of recombination events. In our search for meiotic situations with enrichment for nonexchange and/or single distal-exchange chromosome pairs, exchange configurations that are at higher risk for nondisjunction in humans and other organisms, we examined both exchange and segregation patterns in 2728 oocytes from mice heterozygous for paracentric inversions, as well as controls. We found dramatic alterations in exchange position in the heterozygotes, including an increased frequency of distal exchanges for two of the inversions studied. However, nondisjunction was not significantly increased in oocytes heterozygous for any inversion. When data from all inversion heterozygotes were pooled, meiotic nondisjunction was slightly but significantly higher in inversion heterozygotes (1.2%) than in controls (0%), although the frequency was still too low to justify the use of inversion heterozygotes as a model of human nondisjunction.  相似文献   

19.
Summary The illegitimate integration of plasmid pGG20 (the hybrid between Staphylococcus aureus plasmid pE194 and Escherichia coli plasmid pBR322) into the Bacillus subtilis chromosome was studied. It was found that nucleotide sequences of both parental plasmids could be involved in this process. The recombinant DNA junctions between plasmid pGG20 and the chromosome were cloned and their nucleotide sequences were determined. The site of recombination located on the pBR322 moiety carried a short region (8 bp) homologous with the site on the chromosome. The nucleotide sequences of the pE194 recombination sites did not share homology with chromosomal sequences involved in the integration process. Two different pathways of illegitimate recombination in B. subtilis are suggested.  相似文献   

20.
Chromosomal heteromorphisms and DNA polymorphisms have been utilized to identify the mechanisms that lead to formation of human ovarian teratomas and to construct a gene-centromere map of chromosome 1 by using those teratomas that arise by meiotic nondisjunction. Of 61 genetically informative ovarian teratomas, 21.3% arose by nondisjunction at meiosis I, and 39.3% arose by meiosis II nondisjunction. Eight polymorphic marker loci on chromosome 1p and one marker on 1q were used to estimate a gene-centromere map. The results show clear linkage of the most proximal 1p marker (NRAS) and the most proximal 1q marker (D1S61) to the centromere at a distance of 14 cM and 20 cM, respectively. Estimated gene-centromere distances suggest that, while recombination occurs normally in ovarian teratomas arising by meiosis II errors, ovarian teratomas arising by meiosis I nondisjunction have altered patterns of recombination. Furthermore, the estimated map demonstrates clear evidence of chiasma interference. Our results suggest that ovarian teratomas can provide a rapid method for mapping genes relative to the centromere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号