首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. Limiting dilution culture of cell fractions obtained by discontinuous density gradient centrifugation was used to establish six different cell clones from HOC-7 ovarian adenocarcinoma cells (D1-D3, N1-N3). Clones D1-D3 revealed a phenotype similar to that seen in parental cells exposed to differentiation inducers such as dimethyl sulfoxide (DMSO, 0.8% [v/v]). They were flattened, slowly growing cells (doubling times: 42–46 h). The cells developed long cytoplasmic extensions and adopted a complicated growth pattern. Fixed-cell enzyme-linked immunosorbent assay (ELISA) and Western blotting demonstrated that these cells contained high levels of epidermal growth factor-receptor (EGF-R), carbohydrate antigen 125 (CA 125), fibronectin and desmoplakin, but low levels of myc oncoproteins. However, untreated parental cells and clones N1–N3 were fastgrowing (doubling times: 23–28 h), regularly shaped, polygonal cells ("cobblestone'monolayer) with low levels of EGF-R, CA 125, fibronectin and desmoplakin, but relatively higher amounts of myc oncoproteins. The similarity of the sublines to either untreated or inducertreated parental cells indicated that clones D1–D3 represented spontaneously differentiated HOC-7 cells, whereas clones N1–N3 originated from less-differentiated cells. The features examined in this model cell system proved to be closely related to ovarian cancer cell proliferation and differentiation. The observation of a tumorinherent propensity for spontaneous differentiation suggests that exogenous stimulation of existing differentiation pathways may represent an alternative approach for tackling the problem of growth control and differentiation in malignant tissues.  相似文献   

2.
At least one member of the TGF-beta family, TGF-beta 1, has been previously shown to inhibit the anchorage-independent growth of some human breast cancer cell lines (Knabbe et al., 1987; Arteaga et al., 1988). Members of the TGF-beta family might, therefore, provide new strategies for breast cancer therapy. We have studied the inhibitory effects of TGF-beta 1 and TGF-beta 2 on the anchorage-independent growth of the oestrogen receptor-negative cell lines MDA-MB-231, SK-BR-3, Hs578T, MDA-MB-468, and MDA-MB-468-S4 (an MDA-MB-468 clone not growth inhibited by EGF) and the estrogen receptor-positive cell lines MCF7, ZR-75-1, T-47D. TGF-beta 1 and TGF-beta 2 caused a 75-90% growth inhibition of MDA-MB-231, SK-BR-3, Hs578T, and MDA-MB-468 cells and a 50% growth inhibition of ZR-75-1 and early passage (less than 100) MCF7 cells. T-47D cells responded to TGF-beta only in serum-free conditions in the presence of IGF-1 or EGF. The growth of MDA-MB-468-S4 cells and late passage (greater than 500) MCF7 cells was not inhibited by TGF-beta 1 or TGF-beta 2. TGF-beta-sensitive MCF7 and MDA-MB-231 cells did not respond to Muellerian inhibiting substance (MIS), a TGF-beta-related polypeptide. TGF-beta 1 or TGF-beta 2 were mutually competitive for receptor binding with a similar affinity (Kd 25-130 pM, 1,000-13,000 sites per cell). To determine the time course of the TGF-beta effect, an anchorage-dependent growth assay was carried out using MDA-MB-231 cells. Growth inhibition occurred at 6 days, and cell-cycle changes were seen 12 hr after the addition of TGF-beta. Cells accumulated in the G1 phase and were thus inhibited from entering the S-phase. These data indicate that TGF-beta is a potent growth inhibitor in most breast cancer cell lines and provide a basis for studying TGF-beta effects in vivo.  相似文献   

3.
Alterations in the binding of transforming growth factor-beta (TGF-beta) to the MOSER human colon carcinoma cell line caused by N,N-dimethylformamide (DMF) or extracellular matrix (ECM) were examined. DMF induced a more differentiated phenotype in the MOSER cells and resulted in a twofold increase in TGF-beta binding to the cells. This was due to an increase in receptor number with no significant alteration in the KD. The extent of increased TGF-beta binding was dependent on the dose and time of exposure to DMF. Upon removal of DMF, the receptor level returned to that of untreated cells within 6 hr. The binding of TGF-beta 1 and TGF-beta 2 to the cells was increased equally. Despite this increase in TGF-beta binding in the presence of DMF, the sensitivity of the MOSER cells to the growth inhibitory effects of TGF-beta was unaltered. Growth of the MOSER cells on ECM derived from a well-differentiated colon cell line increased the TGF-beta receptor number twofold without altering the KD. No change was observed if the MOSER cells were grown on ECM derived from a poorly differentiated cell line. While no alteration in sensitivity to TGF-beta was observed on cells grown in the presence of DMF, MOSER cells grown on the ECM derived from well-differentiated colon carcinoma cell lines were twofold more sensitive to the growth inhibitory effects of TGF-beta. These results indicated that growth conditions which resulted in a more differentiated phenotype resulted in an increase in the cellular receptors for TGF-beta.  相似文献   

4.
5.
Ovarian cancer is the fifth most common cause of cancer-related death in women. Current interventional approaches, including debulking surgery, chemotherapy, and/or radiation have proven minimally effective in preventing the recurrence and/or mortality associated with this malignancy. Subtraction hybridization applied to terminally differentiating human melanoma cells identified melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24), whose unique properties include the ability to selectively induce growth suppression, apoptosis, and radiosensitization in diverse cancer cells, without causing any harmful effects in normal cells. Previously, it has been shown that adenovirus-mediated mda-7/IL-24 therapy (Ad.mda-7) induces apoptosis in ovarian cancer cells, however, the apoptosis induction was relatively low. We now document that apoptosis can be enhanced by treating ovarian cancer cells with ionizing radiation (IR) in combination with Ad.mda-7. Additionally, we demonstrate that mda-7/IL-24 gene delivery, under the control of a minimal promoter region of progression elevated gene-3 (PEG-3), which functions selectively in diverse cancer cells with minimal activity in normal cells, displays a selective radiosensitization effect in ovarian cancer cells. The present studies support the use of IR in combination with mda-7/IL-24 as a means of augmenting the therapeutic benefit of this gene in ovarian cancer, particularly in the context of tumors displaying resistance to radiation therapy.  相似文献   

6.
TGF-beta 1 as an enhancer of Fas-mediated apoptosis of lung epithelial cells   总被引:10,自引:0,他引:10  
Transforming growth factor-beta 1 (TGF-beta 1) has important roles in lung fibrosis and the potential to induce apoptosis in several types of cells. We previously demonstrated that apoptosis of lung epithelial cells induced by Fas ligation may be involved in the development of pulmonary fibrosis. In this study, we show that TGF-beta1 induces apoptosis of primary cultured bronchiolar epithelial cells via caspase-3 activation and down-regulation of cyclin-dependent kinase inhibitor p21. Concentrations of TGF-beta 1 that were not sufficient to induce apoptosis alone could enhance agonistic anti-Fas Ab or rFas ligand-mediated apoptosis of cultured bronchiolar epithelial cells. Soluble Fas ligand in the bronchoalveolar lavage fluid (BALF) from patients with idiopathic pulmonary fibrosis (IPF) also induced apoptosis of cultured bronchiolar epithelial cells that was significantly attenuated by anti-TGF-beta Ab. Otherwise, BALF from patients with hypersensitivity pneumonitis (HP) could not induce apoptosis on bronchiolar epithelial cells, despite its comparable amounts of soluble Fas ligand. The concentrations of TGF-beta 1 in BALF from patients with IPF were significantly higher compared with those in BALF from patients with HP or controls. Furthermore, coincubation with the low concentration of TGF-beta 1 and HP BALF created proapoptotic effects comparable with the IPF BALF. In vivo, the administration of TGF-beta 1 could enhance Fas-mediated epithelial cell apoptosis and lung injury via caspase-3 activation in mice. Our results demonstrate a novel role of TGF-beta 1 in the pathophysiology of pulmonary fibrosis as an enhancer of Fas-mediated apoptosis of lung epithelial cells.  相似文献   

7.
The release of Notch intracellular domain (NICD) is mediated by γ-secretase. γ-Secretase inhibitors have been shown to be potent inhibitors of NICD. We hypothesized that Notch1 is acting as an oncogene in ovarian cancer and that inhibition of Notch1 would lead to inhibition of cell growth and apoptotic cell death in ovarian cancer cells. In this study, expressions of Notch1 and hes1 in four human ovarian cancer (A2780, SKOV3, HO-8910, and HO-8910PM), and one ovarian surface (IOSE 144) cell lines were detected by Western blot and quantitative real-time RT-PCR. The effects of γ-secretase inhibition (N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, DAPT) were measured by MTT assay, flow cytometry, ELISA and colony-forming assay. Our results showed that Notch1 and hes1 were found in all the four human ovarian cancer and IOSE 144 cell lines, and they were significantly higher in ovarian cancer cells A2780 compared to another four ovarian cells. Down-regulation of Notch1 expression by DAPT was able to substantially inhibit cell growth, induce G1 cell cycle arrest and induce cell apoptosis in A2780 in dose- and time-dependent manner. In addition, hes1 was found to be down-regulated in dose- and time-dependent manner by DAPT in A2780. These results demonstrate that treatment with DAPT leads to growth inhibition and apoptosis of A2780 cells in dose- and time-dependent manner. These findings also support the conclusion that blocking of the Notch1 activity by γ-secretase inhibitors represents a potentially attractive strategy of targeted therapy for ovarian cancer.  相似文献   

8.
9.
Although most biological activities of transforming growth factor-beta s 1 and 2 (TGF-beta 1 and TGF-beta 2) examined in vitro are similar or identical, recent studies suggest that each of these factors may be independently regulated in vivo. In this study we have used highly sensitive and specific sandwich enzyme-linked immunosorbent assays for TGF-beta 1 and TGF-beta 2 to examine the effects of a variety of treatments on expression of these two TGF-beta isoforms. We show that epidermal growth factor (EGF) induces secretion of TGF-beta 1 and not TGF-beta 2, whereas retinoic acid (RA) induces secretion of TGF-beta 2 and not TGF-beta 1 in NRK-49F normal rat kidney fibroblasts and A549 human lung carcinoma cells. Moreover, treatment with EGF diminishes the levels of TGF-beta 2, while RA decreases the levels of TGF-beta 1 in both cell lines. Dexamethasone (Dex), on the other hand, inhibits the secretion of both TGF-beta 1 and TGF-beta 2 in A549 cells, while selectively inhibiting TGF-beta 1 secretion in NRK-49F cells. The interactive effects of EGF, RA, and Dex on the production of TGF-beta 1 and TGF-beta 2, which were studied on NRK-49F cells, demonstrate that EGF blocks the induction of TGF-beta 2 mRNA and peptide by RA, while Dex inhibits the induction of TGF-beta 1 mRNA and peptide by EGF. These results demonstrate that RA, EGF and Dex are each unique, differential, and interactive regulators of the expression of TGF-beta s 1 and 2.  相似文献   

10.
11.
Long-term biological effects of epidermal growth factor (EGF), insulin, insulin-like growth factor-I (IGF-I), and transforming growth factor-beta (TGF-beta) were examined with human epidermoid carcinoma KB cells. EGF inhibited the growth of KB cells in both serum-containing and serum-free synthetic media by reducing the growth rate and by lowering the saturation density. The cells cultured with EGF showed relatively high motility and grew dispersely as single cells, whereas the cells cultured in the absence of EGF grew in clusters. Although TGF-beta itself did not inhibit the growth of KB cells, it augmented the growth inhibition by EGF. TGF-beta also affected the cell morphology. In the presence of TGF-beta, the cells became flattened and actin stress fibers were well developed compared to those cultured in its absence. The effects of EGF on growth, cell motility, and cell morphology were reversible. Tyrosine phosphorylation of EGF receptors was continuously observed for at least 50 h in the presence of EGF. TGF-beta did not increase the phosphorylation induced by EGF. These results suggested that signals continuously transmitted through EGF receptors caused the changes in cell growth and morphology and that TGF-beta did not act on the cells by modulating binding of EGF to its receptors or activation of the receptor kinase. In contrast to EGF and TGF-beta, neither insulin nor IGF-I affected cell morphology or growth, although KB cells express their receptors and the receptor kinases were also continuously activated during exposure of the cells to insulin or IGF-I.  相似文献   

12.
We previously found that bikunin (bik), a Kunitz-type protease inhibitor, suppresses transforming growth factor-beta1 (TGF-beta1)-stimulated expression of urokinase-type plasminogen activator (uPA) in human ovarian cancer cells that lack endogenous bik. In the present study, we tried to elucidate the mechanism by which bik also inhibits plasminogen activator inhibitor type-1 (PAI-1) and collagen synthesis using human ovarian cancer cells. Here, we show that (a) there was an enhanced production of both uPA and PAI-1 in HRA cells in response to TGF-beta1; (b) the overexpression of bik in the cells or exogenous bik results in the inhibition of TGF-beta1 signaling as measured by phosphorylation of the downstream signaling effector Smad2, nuclear translocation of Smad3, and production of PAI-1 and collagen; (c) bik neither decreased expression of TGF-beta receptors (TbetaRI and TbetaRII) in either cell types nor altered the specific binding of 125I TGF-beta1 to the cells, indicating that the effects of bik in these cells are not mediated by ligand sequestration; (d) TbetaRI and TbetaRII present on the same cells exclusively form aggregates in TGF-beta1-stimulated cells; (e) co-treatment of TGF-beta1-stimulated cells with bik suppresses TGF-beta1-induced complex formation of TbetaRI and TbetaRII; and (f) a chondroitin-4-sulfate side chain-deleted bik (deglycosylated bik) does not inhibit TGF-beta1 signaling or association of type I/type II receptor. We conclude that glycosylated bik attenuates TGF-beta1-elicited signaling cascades in cells possibly by abrogating the coupling between TbetaRI and TbetaRII and that this probably provides the mechanism for the suppression of uPA and PAI-1 expression.  相似文献   

13.
14.
15.
Transforming growth factor-beta (TGF-beta) is a potent mitogen that effects a wide variety of cells by blocking cell growth. TGF-beta acts by interacting with components of cell cycle machinery to cause G1 arrest and in mink lung epithelial cells (Mv1Lu) it does so by inhibiting Cdk4 synthesis. Overexpression of Cdk4 in these cells (B7) renders them resistant to the effects of TGF-beta. Here we report that two novel Cdk inhibitors (pyridopyrimidines) that not only inhibit Cdk4 and Cdk2 in an in vitro kinase assay but also, in the absence of TGF-beta, block growth of Mv1Lu cells in G1 more efficiently than their B7 (overexpressing Cdk4) counterparts. Interestingly, these inhibitors restored sensitivity of B7 cells towards TGF-beta. This may have implications for the treatment of tumors that have lost TGF-beta responsiveness due to deregulated cellular growth in vivo. These Cdk inhibitors could therefore be used in conjunction with TGF-beta to understand the mechanism of growth arrest in normal versus tumour cells.  相似文献   

16.
Ovarian cancer metastasis involves the sloughing of epithelial cells from the ovary into the peritoneal cavity, where the cells can survive and proliferate in peritoneal ascites under anchorage-independent conditions. For normal epithelial cells and fibroblasts, cell adhesion to the extracellular matrix is required to prevent apoptosis and for proper activation and nuclear signaling of the ERK MAP kinase. The mechanisms of ERK regulation by adhesion have been determined by our lab and others. In this report, we elucidate a novel means of ERK regulation by cellular adhesion in ovarian cancer cells. We demonstrate that ERK and its activator MEK are robustly stimulated after cell detachment from a substratum in several ovarian cancer cell lines, but not a benign ovarian cell line, independent of serum and FAK or PAK activity. MEK and ERK activation was sustained for 48 h after detachment, while activation by serum or growth factors in adherent cells was transient. Re-attachment of suspended ovarian cells to fibronectin restored basal levels of MEK and ERK activity. ERK activity in suspended cells was dynamically controlled through an autocrine stimulatory pathway and prevalent phosphatase activity. Suspended cells demonstrated higher levels of ERK nuclear signaling to Elk1 compared to adherent cells. Inhibition of ERK activation with the MEK inhibitor U0126 had minor effects on adherent cell growth, but greatly decreased growth in soft agar. These data demonstrate a unique regulation of ERK by cellular adhesion and suggest a mechanism by which ERK may regulate anchorage-independent growth of metastatic ovarian cancer cells.  相似文献   

17.
Role of transforming growth factor beta in cancer   总被引:37,自引:0,他引:37  
Transforming growth factor beta (TGF-beta) is an effective and ubiquitous mediator of cell growth. The significance of this cytokine in cancer susceptibility, cancer development and progression has become apparent over the past few years. TGF-beta plays various roles in the process of malignant progression. It is a potent inhibitor of normal stromal, hematopoietic, and epithelial cell growth. However, at some point during cancer development the majority of transformed cells become either partly or completely resistant to TGF-beta growth inhibition. There is growing evidence that in the later stages of cancer development TGF-beta is actively secreted by tumor cells and not merely acts as a bystander but rather contributes to cell growth, invasion, and metastasis and decreases host-tumor immune responses. Subtle alteration of TGF-beta signaling may also contribute to the development of cancer. These various effects are tissue and tumor dependent. Identifying and understanding TGF-beta signaling pathway abnormalities in various malignancies is a promising avenue of study that may yield new modalities to both prevent and treat cancer. The nature, prevalence, and significance of TGF-beta signaling pathway alterations in various forms of human cancer as well as potential preventive and therapeutic interventions are discussed in this review.  相似文献   

18.
In human breast carcinoma MCF-7 cells, phorbol diesters inhibit proliferation and induce cell maturation. We have recently reported that exogenous TGF-beta 1 reverses the resistance of a breast adenocarcinoma MCF-7 subline (MCF-7:RPh-4) to these phorbol ester effects. Here, we investigated the involvement of TGF-beta 1 in the PKC-mediated inhibition of breast-cancer cell proliferation. Parental MCF-7-conditioned medium contained a 20-fold higher transforming activity on NRK-49F fibroblasts than the TPA-resistant subline. TPA increased TGF-beta activity in MCF-7 conditioned medium. MCF-7 cells also expressed more TGF-beta 1 mRNA than the resistant subline. TPA induced a dose-dependent increase in TGF-beta 1 mRNA levels that paralleled the inhibitory effect on MCF-7 proliferation. The lower level of TGF-beta mRNA expression in TPA resistant subline was not modified after addition of TPA, but was significantly increased in the presence of exogenous TGF-beta 1. These data argue in favor of a role of endogenous TGF-beta 1 in the maturation process induced by protein kinase C activation.  相似文献   

19.
Two recombinant Listeria monocytogenes (rLm) strains were produced that secrete the human papilloma virus-16 (HPV-16) E7 protein expressed in HPV-16-associated cervical cancer cells. One, Lm-E7, expresses and secretes E7 protein, whereas a second, Lm-LLO-E7, secretes E7 as a fusion protein joined to a nonhemolytic listeriolysin O (LLO). Lm-LLO-E7, but not Lm-E7, induces the regression of the E7-expressing tumor, TC-1, established in syngeneic C57BL/6 mice. Both recombinant E7-expressing rLm vaccines induce measurable anti-E7 CTL responses that stain positively for H-2D(b) E7 tetramers. Depletion of the CD8+ T cell subset before treatment abrogates the ability of Lm-LLO-E7 to impact on tumor growth. In addition, the rLm strains induce markedly different CD4+ T cell subsets. Depletion of the CD4+ T cell subset considerably reduces the ability of Lm-LLO-E7 to eliminate established TC-1 tumors. Surprisingly, the reverse is the case for Lm-E7, which becomes an effective anti-tumor immunotherapeutic in mice lacking this T cell subset. Ab-mediated depletion of TGF-beta and CD25+ cells improves the effectiveness of Lm-E7 treatment, suggesting that TGF-beta and CD25+ cells are in part responsible for this suppressive response. CD4+ T cells from mice immunized with Lm-E7 are capable of suppressing the ability of Lm-LLO-E7 to induce the regression of TC-1 when transferred to tumor-bearing mice. These studies demonstrate the complexity of L. monocytogenes-mediated tumor immunotherapy targeting the human tumor Ag, HPV-16 E7.  相似文献   

20.
This study was designed to address three specific questions in human B cells. First, to determine whether transforming growth factor-beta (TGF-beta)2 has similar biologic effects on B cell function as does TGF-beta 1. Second, to test the hypothesis that TGF-beta 1 is an autocrine growth and differentiation inhibitor. Finally, because multiple receptor species for TGF-beta have been identified on other cell types, to determine by chemical cross-linking and competitive binding studies the nature of the TGF-beta 1 R present on normal and transformed B cells. Exogenous TGF-beta 2 was found to be functionally similar to TGF-beta 1 in its inhibition of factor dependent normal B cell proliferation and Ig secretion. When an antibody, specific for the active form of TGF-beta 1, was added in conjunction with IL-2 to previously stimulated B cell cultures, there was a 14.4 +/- 4.2% increase in B cell proliferation, a 22 +/- 6% increase in IgG production, and a 33 +/- 8.6% increase in IgM production when compared to control cultures. Chemical cross-linking of 125I-TGF-beta 1 to normal B cell membranes identified two major cross-linked species of 65 and 90 kDa. A fivefold excess of unlabeled TGF-beta 1 competitively inhibited the detection of both of these bands while a 50-fold excess of unlabeled TGF-beta 2 did not inhibit the 90-kDa band and only partially inhibited (60%) of the 65-kDa band. Chemical cross-linking of 125I-TGF-beta 1 to transformed B cell membranes identified only a single band of 60 kDa. Scatchard plot analysis of 125I-TGF-beta 1 binding to normal B cells that was competitively inhibited with increasing concentrations of unlabeled TGF-beta 1 revealed both high and low affinity binding sites whereas analysis of 125I-TGF-beta 1 binding in the presence of increasing concentrations of unlabeled TGF-beta 2 revealed only low affinity sites. These findings demonstrate that TGF-beta 2 is as effective as TGF-beta 1 in inhibiting human B cell function, that small amounts of active TGF-beta 1 are present endogenously in in vitro cultures which partially inhibit B cell function, that two major TGF-beta 1 R cross-linked complexes of 65 and 90 kDa are present on normal B cells, and that transformation of B cells may be accompanied by changes in the TGF-beta 1 R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号