首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The genus Maculinea is confined to the Palaearctic region. Four species occur from Central Europe to China and/or Japan, while M. rebeli is probably restricted to Europe. Although within many Western European countries the distribution of the species is well known, there are still many questions. The exact status of some of the species is still unclear and the amount of decline in this century is unknown. In Asia, especially within the nations of the former USSR, the distributions of species are even less well known and as a basis for good research and effective nature conservation, knowledge on these subjects is needed. © Rapid Science Ltd. 1998  相似文献   

2.
3.
《Current biology : CB》2023,33(2):381-388.e4
  1. Download : Download high-res image (212KB)
  2. Download : Download full-size image
  相似文献   

4.
5.
The fungus-growing ants (Tribe Attini) are a New World group of〉 200 species, all obligate symbionts with a fungus they use for food. Four attine taxa are known to be social parasites of other attines. Acromyrmex ( Pseudoatta) argentina argentina and Acromyrmex (Pseudoatta) argentina platensis (parasites of Acromyrmex lundi), and Acromyrmex sp. (a parasite of Acromyrmex rugosus) produce no worker caste. In contrast, the recently discovered Acromyrmex insinuator (a parasite of Acromyrmex echinatior) does produce workers. Here, we describe a new species, Acromyrmex ameliae, a social parasite of Acromyrmex subterraneus subterraneus and Acromyrmex subterraneus brunneus in Minas Gerais, Brasil. Like A. insinuator, it produces workers and appears to be closely related to its hosts. Similar social parasites may be fairly common in the fungus-growing ants, but overlooked due to the close resemblance between parasite and host workers.  相似文献   

6.
Abstract. The occurrence and abundance of indigenous plants with extrafloral nectaries was evaluated within local communities and regional floras along a north to south gradient from tundra in northeastern Russia (64–70°N) through temperate types in eastern Russia and Korea to subtropical vegetation in the Bonin Islands (26–27°N) south of Japan. Moving from tundra to subtropical vegetation, there is a pattern of increasing abundance of extrafloral bearing plants as a function of total plant cover (from 10.25 to 40.18%), number of species per sampled area (from 0.11 to 1.13/100 m), and proportion of species within regional floras (from 0.32 to 7.46%). There were some plants with extrafloral nectaries in all communities but their abundance varied greatly, c. 1–25% in the four northern latitudes and c. 7–70% in the subtropical region. Ants, the primary mutualists associated with plants bearing extrafloral nectaries, have a similar pattern of increasing abundance (species richness, nest density, and colony size) along the same north–south latitudinal gradient.  相似文献   

7.
Maculinea butterflies in Europe, and probably most of Asia, are host specific social parasites of various species of Myrmica ants. The latest summary of field data showing the pattern of host specificity by Maculinea is presented. Myrmica ants have been well studied in the laboratory but much less is known about the ecology of their natural populations. While the former is important in understanding the adaptive evolution of Maculinea larval behaviours, the latter is of more practical importance to conservationists charged with the protection of specific populations of Maculinea. The current knowledge of habitat partition, colony growth and colony reproduction within communities of Myrmica ants is summarized in relation to the ecology of Maculinea species. Concepts used in current population simulation models are explained. A key concept is the idea that community structure (both number of species and size and abundance of nests) is controlled by the quantity and quality of suitable nest sites. Some advice is given to conservationists who might need to manipulate Myrmica ant populations in order to maintain a robust population of a Maculinea species. © Rapid Science Ltd. 1998  相似文献   

8.
Seven species of the fern Lecanopteris: L. sinuosa, L. sarcopus, L. mirabilis, L. curtisii, L. pumila, L. celebica and L. damaedii are regularly inhabited by ants of five species: Iridomyrmex cordatus, I. murinus, Crematogaster treubi, C. difformis and Camponotus pallidas. Inhabitation is not obligate; either party can survive without the other, but ferns without ants are rare in their natural habitat. The total recorded diversity of ants in Lecanopteris is 31 species, 20 of which were only recorded once.
All five regularly inhabiting ant species kept larvae in the domatium (82% of Lecanopteris specimens examined). The major ant species inhabiting Lecanopteris deposited debris in the domatium, segregated from their brood (90% of Lecanopteris specimens). Iridomyrmex murinus did not build carton around the rhizomes, but the other major inhabitants constructed runways in 79% of Lecanopteris specimens. Goccid cultivation was variable within ant and plant species: I murinus tended them in 50% of specimens, and homopterans were also recorded with Crematogaster treubi (39%), C. bomeensis (27%) and I cordatus (16%). A high frequency of ant colonies inhabiting Lecanopteris , keeping larvae, depositing debris, building carton runways, and occasionally keeping coccids has been established. Specificity of ant species is high within a population of Lecanopteris , or a given habitat or geographical area, but outside the ranges of regular inhabitants other ant occupants are found. Comparable data from other genera of ant-epiphytes with domatia show similar diversity of inhabitance over geographical areas; no data are available within single plant populations.  相似文献   

9.
Ecological and evolutionary theories predict that parasitismand mutualism are not fixed endpoints of the symbiotic spectrum.Rather, parasitism and mutualism may be host or environmentdependent, induced by the same genetic machinery, and shifteddue to selection. These models presume the existence of geneticor environmental variation that can spur incipient changes insymbiotic lifestyle. However, for obligate intracellular bacteriawhose genomes are highly reduced, studies specify that discretesymbiotic associations can be evolutionarily stable for hundredsof millions of years. Wolbachia is an inherited obligate, intracellularinfection of invertebrates containing taxa that act broadlyas both parasites in arthropods and mutualists in certain roundworms.Here, we analyze the ancestry of mutualism and parasitism inWolbachia and the evolutionary trajectory of this variationin symbiotic lifestyle with a comprehensive, phylogenomic analysis.Contrary to previous claims, we show unequivocally that thetransition in lifestyle cannot be reconstructed with currentmethods due to long-branch attraction (LBA) artifacts of thedistant Anaplasma and Ehrlichia outgroups. Despite the use of1) site-heterogenous phylogenomic methods that can overcomesystematic error, 2) a taxonomically rich set of taxa, and 3)statistical assessments of the genes, tree topologies, and modelsof evolution, we conclude that the LBA artifact is serious enoughto afflict past and recent claims including the root lies inthe middle of the Wolbachia mutualists and parasites. We showthat different inference methods yield different results andhigh bootstrap support did not equal phylogenetic accuracy.Recombination was rare among this taxonomically diverse dataset, indicating that elevated levels of recombination in Wolbachiaare restricted to specific coinfecting groups. In conclusion,we attribute the inability to root the tree to rate heterogeneitybetween the ingroup and outgroup. Site-heterogenous models ofevolution did improve the placement of aberrant taxa in theingroup phylogeny. Finally, in the unrooted topology, the distributionof parasitism and mutualism across the tree suggests that atleast two interphylum transfers shaped the origins of nematodemutualism and arthropod parasitism. We suggest that the ancestryof mutualism and parasitism is not resolvable without more suitableoutgroups or complete genome sequences from all Wolbachia supergroups.  相似文献   

10.
Females of the parasitic phorid Neodohrniphora sp. were collected in the field and released singly inside an observation chamber placed between a laboratory colony of Atta sexdens (L.) and its foraging arena. The number and speed of loaded and unloaded ants returning to the nest, the weight of foragers and their loads, the number of leaf fragments abandoned by ants, and the number of small workers 'hitchhiking' on leaf fragments were measured before phorids were released, while they were in the observation chamber, and after they were removed. Relatively few ants were attacked by Neodohrniphora sp., but the presence of flies prompted outbound ants to return to the nest and caused a significant reduction on the number and mass of foragers. Additionally, the weight of leaf fragments transported by ants was reduced and the number of abandoned fragments increased in response to Neodohrniphora sp. Presence of the parasitoid caused no significant changes in the number of hitchhiking ants. The regular ants' traffic was resumed after phorids were removed, but foraging activity remained below normal for up to three hours. In the field A. sexdens forages mostly at night, but colonies undergo periods of diurnal foraging during which ants are subject to parasitism from several species of phorid flies. Considering that daytime foraging may be necessary for nutritional or metabolical needs, phorids may have a significant impact on their hosts by altering their foraging behavior regardless of the numerical values of parasitism.  相似文献   

11.
Coevolution in mutualistic symbiosis can yield, because the interacting partners share common interests, to coadaptation: hosts perform better when associated with symbionts of their own locality than with others coming from more distant places. However, as the two partners of a symbiosis might also experience conflicts over part of their life cycle, coadaptation might not occur for all life‐history traits. We investigated this issue in symbiotic systems where nematodes (Steinernema) and bacteria (Xenorhabdus) reproduce in insects they have both contributed to kill. Newborn infective juveniles (IJs) that carry bacteria in their intestine then disperse from the insect cadaver in search of a new host to infect. We ran experiments where nematodes coinfect insects with bacteria that differ from their native symbiont. In both Steinernema carpocapsae/Xenorhabdus nematophila and Steinernema feltiae/Xenorhabdus bovienii symbioses, we detected an overall specificity which favours the hypothesis of a fine‐tuned co‐adaptation process. However, we also found that the life‐history traits involved in specificity strongly differ between the two model systems: when associated with strains that differ too much from their native symbionts, S. carpocapsae has low parasitic success, whereas S. feltiae has low survival in dispersal stage.  相似文献   

12.
The mating and postmating behavior of reproductives belonging to two sympatric dulotic colonies of the facultative slave-making ant Formica sanguinea was analyzed in the field. Our observations showed that the European blood-red ant adopts a reproductive behavior similar to the male aggregation syndrome. Newly mated females return to a dulotic colony and often wait for a raid. Following a slave raid is an advantageous strategy to locate and invade host nests and to establish a new dulotic colony. In the laboratory, the following modes of colony founding were studied: independent, adoption, alliance, usurpation, and brood raiding. Independent foundation was possible only when several females were kept together. Alliance was obtained with females of two potential slave species (F. cunicularia, F. rufibarbis). Usurpation and adoption were more frequent in the incipient than in the mature host colonies. Mixed colonies were always obtained after the sack of the host pupae. It seems likely that, rather than conspecific adoption followed by budding, F. sanguinea relies on temporary parasitism to start new colonies.  相似文献   

13.
Mutualistic interactions are likely to exhibit a strong geographic mosaic in their coevolutionary dynamics, but the structure of geographic variation in these interactions is much more poorly characterized than in host-parasite interactions. We used a cross-inoculation experiment to characterize the scales and patterns at which geographic structure has evolved in an interaction between three pine species and one ectomycorrhizal fungus species along the west coast of North America. We found substantial and contrasting patterns of geographic interaction structure for the plants and fungi. The fungi exhibited a clinal pattern of local adaptation to their host plants across the geographic range of three coastal pines. In contrast, plant growth parameters were unaffected by fungal variation, but varied among plant populations and species. Both plant and fungal performance measures varied strongly with latitude. This set of results indicates that in such widespread species interactions, interacting species may evolve asymmetrically in a geographic mosaic because of differing evolutionary responses to clinally varying biotic and abiotic factors.  相似文献   

14.
15.
Abstract. Within-tree flowering asynchrony in figs, which may allow pollinating wasps to avoid the risks of dispersal in inclement conditions, has been predicted as a trait to be favoured in highly seasonal environments. Comparisons of such asynchronous figs with better-known species that exhibit within-tree synchrony might also be expected to reveal differences in the outcome of the conflict between pollinator wasp and fig seed production, and the dynamics of non-pollinating wasps. This paper presents data on wasp and seed production in Ficus rubiginosa Desf. ex Vent., an asynchronous species that occurs in the highly seasonal environment of south-eastern Australia. In contrast to recent studies of figs showing within-tree flowering synchrony, syconium size was the main determinant of wasp and seed production in F. rubiginosa . Non-pollinating wasps were highly prevalent but occurred in low numbers and appeared to have relatively little impact on pollinator wasp or fig seed production. Data on flower positions revealed that non-pollinating wasps occurred almost exclusively in the outer layer of flowers, while pollinators were more abundant in the inner flower layer, which may represent an area of enemy-free space. The ratio of seeds to female pollinator wasps, an index of fig sex allocation, was more seed-biased than in several New World fig species that exhibit within-tree synchrony. This last result supports the idea that within-tree fruiting asynchrony permits a degree of self-pollination in F. rubiginosa .  相似文献   

16.
17.
18.
Inferring drug–drug interactions (DDIs) is an essential step in drug development and drug administration. Most computational inference methods focus on modeling drug pharmacokinetics, aiming at interactions that result from a common metabolizing enzyme (CYP). Here, we introduce a novel prediction method, INDI (INferring Drug Interactions), allowing the inference of both pharmacokinetic, CYP‐related DDIs (along with their associated CYPs) and pharmacodynamic, non‐CYP associated ones. On cross validation, it obtains high specificity and sensitivity levels (AUC (area under the receiver‐operating characteristic curve)?0.93). In application to the FDA adverse event reporting system, 53% of the drug events could potentially be connected to known (41%) or predicted (12%) DDIs. Additionally, INDI predicts the severity level of each DDI upon co‐administration of the involved drugs, suggesting that severe interactions are abundant in the clinical practice. Examining regularly taken medications by hospitalized patients, 18% of the patients receive known or predicted severely interacting drugs and are hospitalized more frequently. Access to INDI and its predictions is provided via a web tool at http://www.cs.tau.ac.il/~bnet/software/INDI , facilitating the inference and exploration of drug interactions and providing important leads for physicians and pharmaceutical companies alike.  相似文献   

19.
The recently discovered social parasite Acromyrmex insinuator ( 25 ) exploits colonies of the leafcutter ant A. echinatior. We document that A. insinuator represents a rare early stage in the evolution of social parasitism, because a worker caste is still partially present and mating phenology has remained at least partially similar to that of the host. A. insinuator is tolerant of host queens, and sexual offspring produced in parasitized colonies can be either exclusively A. insinuator or a mix of A. insinuator and A. echinatior. The remarkably high abundance of A. insinuator in nests of the investigated Panamanian host population and the fact that A. insinuator colonies readily reproduce under laboratory conditions allowed us to test evolutionary predictions on reproductive life history evolution that are not possible in most other socially parasitic ants. We show that (1) A. insinuator has a semelparous ‘big bang’ reproductive life history which exploits host colonies without leaving reserves for survival; (2) social parasite sexuals are significantly smaller than A. echinatior host sexuals, but still large compared to host workers, confirming an evolutionary scenario of gradual size reduction and loss of the worker caste after transition towards a socially parasitic life history; (3) major changes in the life history of ants can evolve relatively quickly compared to adaptations in morphology, caste differentiation and mating phenology.  相似文献   

20.
Insectivorous plants and ant-fed plants represent the two ways in which plants have evolved to utilize directly nutrients derived from animals. This paper addresses the limitations under which selection acts to favour the evolution of one or the other of these nutrient-gathering tactics. Both tactics have evolved independently at least six times under similar ecological conditions, indicating that the evolutionary solutions to ecological problems are limited by the historical make-up of communities and are, to some extent, predictable. Both insectivorous and ant-fed plants evolve in environments with very low levels of availability of nutrients in the substrate; the primary use of the animal-food is probably nitrogen; the vast majority of species are perennial, and most species are tropical or subtropical, although some insectivorous genera are primarily temperate.
Although these two nutrient-gathering tactics evolve in response to similar ecological problems, whether plants evolve an insectivorous habit or the ant-fed habit depends on the growth forms of the plants and the habitats in which they grow. Most insectivorous plants evolve as herbs in wet, sterile soils or in sterile aquatic habitats; ant-fed plants evolve as epiphytes on trees in open-canopied habitats. These kinds of animal-plant interactions are relatively rare because the environments in which they are favoured by selection are uncommon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号