首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular signaling controlling neural stem/progenitor cell (NSC) self-renewal and neuronal/glial differentiation is not fully understood. We show here that Shp2, an introcellular tyrosine phosphatase with two SH2 domains, plays a critical role in NSC activities. Conditional deletion of Shp2 in neural progenitor cells mediated by Nestin-Cre resulted in early postnatal lethality, impaired corticogenesis, and reduced proliferation of progenitor cells in the ventricular zone. In vitro analyses suggest that Shp2 mediates basic fibroblast growth factor signals in stimulating self-renewing proliferation of NSCs, partly through control of Bmi-1 expression. Furthermore, Shp2 regulates cell fate decisions, by promoting neurogenesis while suppressing astrogliogenesis, through reciprocal regulation of the Erk and Stat3 signaling pathways. Together, these results identify Shp2 as a critical signaling molecule in coordinated regulation of progenitor cell proliferation and neuronal/astroglial cell differentiation.  相似文献   

2.
Neuronal differentiation of embryonic neural progenitor cells is regulated by both intrinsic and extrinsic signals. Since dynamic changes in cell shape typify neuronal differentiation, cell adhesion molecules could be relevant to this process. Although it has been reported that fibronectin-integrin interactions are important for the proliferation of neural progenitor cells, little is known about the contribution of integrins to neuronal differentiation. In order to address this shortfall, we examined integrin expression on cortical progenitor cells by using immunohistochemistry and FACS analysis of cells in which GFP expression was driven by regulatory (promoter) regions of the nestin gene (nestin-GFP(+)). We here report that high levels of nestin promoter activity correlated with high expression levels of alpha(5)beta(1) integrin (alpha(5)beta(1)(high) cells). FACS analysis of nestin-GFP(+) cortical cells revealed an additional subpopulation with reduced expression of alpha(5)beta(1) integrin (alpha(5)beta(1)(low) cells). The size of the alpha(5)beta(1)(low) subpopulation increased during cortical development. To investigate the correlation between integrin and neuronal differentiation, nestin-GFP(+) cortical progenitor cells were sorted into alpha(5)beta(1)(high) or alpha(5)beta(1)(low) populations, and each potential to differentiate was analyzed. We show that the nestin-GFP(+) alpha(5)beta(1)(high) population corresponded to broadly multipotential neural progenitor cells, whereas nestin-GFP(+) alpha(5)beta(1)(low) cells appeared to be committed to a neuronal fate. These findings suggest that alpha(5)beta(1) expression on cortical progenitor cells is developmentally regulated and its downregulation is involved in the process of neuronal differentiation.  相似文献   

3.
4.
5.
Control of cell cycle progression/exit and differentiation of neuronal precursors is of paramount importance during brain development. BM88 is a neuronal protein associated with terminal neuron-generating divisions in vivo and is implicated in mechanisms underlying neuronal differentiation. Here we have used mouse neuroblastoma Neuro 2a cells as an in vitro model of neuronal differentiation to dissect the functional properties of BM88 by implementing gain- and loss-of-function approaches. We demonstrate that stably transfected cells overexpressing BM88 acquire a neuronal phenotype in the absence of external stimuli, as judged by enhanced expression of neuronal markers and neurite outgrowth-inducing signaling molecules. In addition, cell cycle measurements involving cell growth assays, BrdUrd incorporation, and fluorescence-activated cell sorting analysis revealed that the BM88-transfected cells have a prolonged G(1) phase, most probably corresponding to cell cycle exit at the G(0) restriction point, as compared with controls. BM88 overexpression also results in increased levels of the cell cycle regulatory protein p53, and accumulation of the hypophosphorylated form of the retinoblastoma protein leading to cell cycle arrest, with concomitant decreased levels and, in many cells, cytoplasmic localization of cyclin D1. Conversely, BM88 gene silencing using RNA interference experiments resulted in acceleration of cell proliferation accompanied by impairment of retinoic acid-induced neuronal differentiation of Neuro 2a cells. Taken together, our results suggest that BM88 plays an essential role in regulating cell cycle exit and differentiation of Neuro 2a cells toward a neuronal phenotype and further support its involvement in the proliferation/differentiation transition of neural stem/progenitor cells during embryonic development.  相似文献   

6.
7.
Expansion and fate choice of pluripotent stem cells along the neuroectodermal lineage is regulated by a number of signals, including EGF, retinoic acid, and NGF, which also control the proliferation and differentiation of central nervous system (CNS) and peripheral nervous system (PNS) neural progenitor cells. We report here the identification of a novel gene, REN, upregulated by neurogenic signals (retinoic acid, EGF, and NGF) in pluripotent embryonal stem (ES) cells and neural progenitor cell lines in association with neurotypic differentiation. Consistent with a role in neural promotion, REN overexpression induced neuronal differentiation as well as growth arrest and p27Kip1 expression in CNS and PNS neural progenitor cell lines, and its inhibition impaired retinoic acid induction of neurogenin-1 and NeuroD expression. REN expression is developmentally regulated, initially detected in the neural fold epithelium of the mouse embryo during gastrulation, and subsequently throughout the ventral neural tube, the outer layer of the ventricular encephalic neuroepithelium and in neural crest derivatives including dorsal root ganglia. We propose that REN represents a novel component of the neurogenic signaling cascade induced by retinoic acid, EGF, and NGF, and is both a marker and a regulator of neuronal differentiation.  相似文献   

8.
A precise balance between proliferation and differentiation must be maintained during retinal development to obtain the correct proportion of each of the seven cell types found in the adult tissue. Cyclin kinase inhibitors can regulate cell cycle exit coincident with induction of differentiation programs during development. We have found that the p57(Kip2) cyclin kinase inhibitor is upregulated during G(1)/G(0) in a subset of retinal progenitor cells exiting the cell cycle between embryonic day 14.5 and 16.5 of mouse development. Retroviral mediated overexpression of p57(Kip2) in embryonic retinal progenitor cells led to premature cell cycle exit. Retinae from mice lacking p57(Kip2) exhibited inappropriate S-phase entry and apoptotic nuclei were found in the region where p57(Kip2) is normally expressed. Apoptosis precisely compensated for the inappropriate proliferation in the p57(Kip2)-deficient retinae to preserve the correct proportion of the major retinal cell types. Postnatally, p57(Kip2) was found to be expressed in a novel subpopulation of amacrine interneurons. At this stage, p57(Kip2 )did not regulate proliferation. However, perhaps reflecting its role during this late stage of development, animals lacking p57(Kip2) showed an alteration in amacrine subpopulations. p57(Kip2) is the first gene to be implicated as a regulator of amacrine subtype/subpopulation development. Consequently, we propose that p57(Kip2) has two roles during retinal development, acting first as a cyclin kinase inhibitor in mitotic progenitor cells, and then playing a distinct role in neuronal differentiation.  相似文献   

9.
Secreted peptide growth factors are critical extracellular signals that interact to promote the proliferation, differentiation, and survival of progenitor cells in developing tissues. IGF-I signaling through the IGF type I receptor provides a mitogenic signal for numerous cell types, including stem and progenitor cells. We have utilized the O-2A oligodendrocyte progenitor to study the mechanism of IGF-I mitogenic actions since these progenitors respond to IGF-I in vitro, and gene targeting studies in mice have demonstrated that IGF-I is essential for normal oligodendrocyte development in vivo. The goal of this study was to elucidate the mechanism by which IGF-I promotes the proliferation of oligodendrocyte progenitors in the context of other mitogens critical for their proliferation. Results presented here show that IGF-I significantly amplified the actions of FGF-2 and PDGF to promote DNA synthesis in O-2A progenitors. Investigation of cell cycle kinetics revealed that IGF-I had no significant effect on the rate of cell cycle progression. Instead, IGF-I promoted increased recruitment of O-2A progenitors into the S phase of the cell cycle. These studies support a role for IGF-I as a cell cycle progression factor for progenitor cells.  相似文献   

10.
11.
During the development of the central nervous system, cell proliferation and differentiation are precisely regulated. In the vertebrate eye, progenitor cells located in the marginal-most region of the neural retina continue to proliferate for a much longer period compared to the ones in the central retina, thus showing stem-cell-like properties. Wnt2b is expressed in the anterior rim of the optic vesicles, and has been shown to control differentiation of the progenitor cells in the marginal retina. In this paper, we show that stable overexpression of Wnt2b in retinal explants inhibited cellular differentiation and induced continuous growth of the tissue. Notably, Wnt2b maintained the undifferentiated progenitor cells in the explants even under the conditions where Notch signaling was blocked. Wnt2b downregulated the expression of multiple proneural bHLH genes as well as Notch. In addition, expression of Cath5 under the control of an exogenous promoter suppressed the negative effect of Wnt2b on neuronal differentiation. Importantly, Wnt2b inhibited neuronal differentiation independently of cell cycle progression. We propose that Wnt2b maintains the naive state of marginal progenitor cells by attenuating the expression of both proneural and neurogenic genes, thus preventing those cells from launching out into the differentiation cascade regulated by proneural genes and Notch.  相似文献   

12.
The adult glial progenitor cells were recently shown to be able to produce neurons in central nervous system (CNS) and to become multipotent in vitro. Although the fate decision of glial progenitors was studied extensively, the signals and factors which regulate the timing of neuronal differentiation still remain unknown. To elucidate the mechanisms underlying the neuronal differentiation from glial progenitors, we modified the gene expression profile in NG2+ glial progenitor cells using enhanced retroviral mutagen (ERM) technique followed by phenotype screening to identify possible gene(s) responsible for glial-neuronal cell fate determination. Among the identified molecules, we found the gene named non-metastatic cell 1 which encodes a nucleoside diphosphate kinase protein A (Nm23-M1 or NME1). So far, the Nm23 members have been shown to be involved in various molecular processes including tumor metastasis, cell proliferation, differentiation and cell fate determination. In the present study, we provide evidence suggesting the role of NME1 in glial-neuronal cell fate determination in vitro. We showed that NME1 is widely expressed in neuronal structures throughout adult mouse CNS. Our immunohistochemical results revealed that NME1 is strongly colocalized with NF200 through white matter of spinal cord and brain. Interestingly, NME1 overexpression in oligodendrocyte progenitor OLN-93 cells potently induced the acquisition of neuronal fate, while its silencing was shown to promote oligodendrocyte differentiation. Furthermore, we demonstrated that dual-functional role of NME1 is achieved through cAMP-dependent protein kinase (PKA). Our data therefore suggested that NME1 acts as a switcher or reprogramming factor which involves in oligodentrocyte versus neuron cell fate specification in vitro.  相似文献   

13.
The pannexins (Panx1, -2, and -3) are a mammalian family of putative single membrane channels discovered through homology to invertebrate gap junction-forming proteins, the innexins. Because connexin gap junction proteins are known regulators of neural stem and progenitor cell proliferation, migration, and specification, we asked whether pannexins, specifically Panx2, play a similar role in the postnatal hippocampus. We show that Panx2 protein is differentially expressed by multipotential progenitor cells and mature neurons. Both in vivo and in vitro, Type I and IIa stem-like neural progenitor cells express an S-palmitoylated Panx2 species localizing to Golgi and endoplasmic reticulum membranes. Protein expression is down-regulated during neurogenesis in neuronally committed Type IIb and III progenitor cells and immature neurons. Panx2 is re-expressed by neurons following maturation. Protein expressed by mature neurons is not palmitoylated and localizes to the plasma membrane. To assess the impact of Panx2 on neuronal differentiation, we used short hairpin RNA to suppress Panx2 expression in Neuro2a cells. Knockdown significantly accelerated the rate of neuronal differentiation. Neuritic extension and the expression of antigenic markers of mature neurons occurred earlier in stable lines expressing Panx2 short hairpin RNA than in controls. Together, these findings describe an endogenous post-translational regulation of Panx2, specific to early neural progenitor cells, and demonstrate that this expression plays a role in modulating the timing of their commitment to a neuronal lineage.  相似文献   

14.
The CNS consists of neuronal and glial cells generated from common neural progenitor cells during development. Cellular events for neural progenitor cells, such as proliferation and differentiation, are regulated by multiple intrinsic and extrinsic cell signals. Although much is known on the importance of the proteinous factors in regulating the fate of neural progenitor cells, the involvement of other molecules such as gangliosides, sialic acid-containing glycosphingolipids, remains to be clarified. To elucidate the biological functions of gangliosides in neural progenitor cells, we transfected an immortalized neural progenitor cell line, C17.2, which does not express GD3 ganglioside, with a fusion protein of GD3-synthase (ST-II) and enhanced green fluorescent protein (ST-II-EGFP). Analysis of the ST-II transfectants revealed the ectopic expression of b- and c-series gangliosides. In the ST-II transfectants, proliferation induced by epidermal growth factor (EGF) was severely retarded. EGF-induced proliferation of C17.2 cells was dependent on the Ras-mitogen-activated protein kinase (Ras-MAPK) pathway, and the EGF-induced activation of this pathway was significantly repressed in the transfectants. Thus, ST-II overexpression retarded proliferation of C17.2 cells via repression of the Ras-MAPK pathway. The result supports the concept that gangliosides may play an important role in regulating the proliferation of neural progenitor cells.  相似文献   

15.

Background

Tissue inhibitor of metalloproteinases-3 (TIMP-3) inhibits matrix metalloproteinases and membrane-bound sheddases. TIMP-3 is associated with the extracellular matrix and is expressed in highly remodeling tissues. TIMP-3 function in the hematopoietic system is unknown.

Methodology/Principal Findings

We now report that TIMP-3 is highly expressed in the endosteal region of the bone marrow (BM), particularly by osteoblasts, endothelial and multipotent mesenchymal stromal cells which are all important cellular components of hematopoietic stem cell (HSC) niches, whereas its expression is very low in mature leukocytes and hematopoietic stem and progenitor cells. A possible role of TIMP-3 as an important niche component was further suggested by its down-regulation during granulocyte colony-stimulating factor-induced mobilization. To further investigate TIMP-3 function, mouse HSC were retrovirally transduced with human TIMP-3 and transplanted into lethally irradiated recipients. TIMP-3 overexpression resulted in decreased frequency of B and T lymphocytes and increased frequency of myeloid cells in blood and BM, increased Lineage-negative Sca-1+KIT+ cell proliferation in vivo and in vitro and increased colony-forming cell trafficking to blood and spleen. Finally, over-expression of human TIMP-3 caused a late onset fatal osteosclerosis.

Conclusions/Significance

Our results suggest that TIMP-3 regulates HSC proliferation, differentiation and trafficking in vivo, as well as bone and bone turn-over, and that TIMP-3 is expressed by stromal cells forming HSC niches within the BM. Thus, TIMP-3 may be an important HSC niche component regulating both hematopoiesis and bone remodeling.  相似文献   

16.
17.
Myogenesis in vitro involves myoblast cell cycle arrest, migration, and fusion to form multinucleated myotubes. Extracellular matrix (ECM) integrity during these processes is maintained by the opposing actions of matrix metalloproteinase (MMP) proteases and their inhibitors, the tissue inhibitor of metalloproteinases (TIMPs). Here, we report that TIMP-2, MMP-2, and MT1-MMP are differentially expressed during mouse myoblast differentiation in vitro. A specific role for TIMP-2 in myogenesis is demonstrated by altered TIMP-2(-/-) myotube formation. When differentiated in horse serum-containing medium, TIMP-2(-/-) myotubes are larger than wild-type myotubes. In contrast, when serum-free medium is used, TIMP-2(-/-) myotubes are smaller than wild-type myotubes. Regardless of culture condition, myotube size is directly correlated with MMP activity and inversely correlated with beta1 integrin expression. Treatment with recombinant TIMP-2 rescues reduced TIMP-2(-/-) myotube size and induces increased MMP-9 activation and decreased beta1 integrin expression. Treatment with either MMP-2 or MMP-9 similarly rescues reduced myotube size, but has no effect on beta1 integrin expression. These data suggest a specific regulatory relationship between TIMP-2 and beta1 integrin during myogenesis. Elucidating the role of TIMP-2 in myogenesis in vitro may lead to new therapeutic options for the use of TIMP-2 in myopathies and muscular dystrophies in vivo.  相似文献   

18.
The effects of Wnt signaling on neural progenitor cells have been controversial. Activation of the canonical Wnt signaling pathway either promotes neural progenitor cell proliferation or accelerates their differentiation into postmitotic neurons. This study demonstrates that activation of the Wnt signaling pathway by itself induces neural progenitor cell proliferation but does not directly affect neuronal differentiation processes. To investigate whether Wnt signaling promotes expansion and/or differentiation of neural progenitor cells in the developing hippocampus, we prepared primary mouse hippocampal progenitors and treated them with Wnt3a in a chemically defined culture medium. Wnt3a increased the total number of cells, including the numbers of Ki67+ proliferating cells and Tuj1+ differentiated neurons. This result verified that Wnt3a promoted neural progenitor cell proliferation. Meanwhile, Wnt3a did not appear to actively enhance the neuronal differentiation process itself, because (1) the ratio of Tuj1+ cells to the total cells, and (2) the ratio of BrdU+ Tuj1+ cells to the total BrdU+ cells, were both comparable between cultures with or without Wnt3a. Indeed, Wnt3a caused no significant change in either cell survival or the proportion of symmetric and asymmetric cell divisions that directly affected neuron production. We finally demonstrated that the Wnt3a treatment simply shortened cell cycle duration of neural progenitor cells by 2.9 h. The accelerated cell cycle progression without affecting the ratio of symmetric/asymmetric cell divisions explains how Wnt signaling per se leads to the expansion of both proliferative cell population and differentiated neuronal cell population.  相似文献   

19.
Once neurons enter the post‐mitotic G0 phase during central nervous system (CNS) development, they lose their proliferative potential. When neurons re‐enter the cell cycle during pathological situations such as neurodegeneration, they undergo cell death after S phase progression. Thus, the regulatory networks that drive cell proliferation and maintain neuronal differentiation are highly coordinated. In this review, the coordination of cell cycle control and neuronal differentiation during development are discussed, focusing on regulation by the Rb family of tumor suppressors (including p107 and p130), and the Cip/Kip family of cyclin dependent kinase (Cdk) inhibitors. Based on recent findings suggesting roles for these families in regulating neurogenesis and neuronal differentiation, I propose that the Rb family is essential for daughter cells of neuronal progenitors to enter the post‐mitotic G0 phase without affecting the initiation of neuronal differentiation in most cases, while the Cip/Kip family regulates the timing of neuronal progenitor cell cycle exit and the initiation of neuronal differentiation at least in the progenitor cells of the cerebral cortex and the retina. Rb's lack of involvement in regulating the initiation of neuronal differentiation may explain why Rb family‐deficient retinoblastomas characteristically exhibit neuronal features.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号