首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The effect of the gas phase on the in vitro growth and development of Dipetalonema viteae (Nematoda: Filarioidea) third-stage larvae obtained from the tick vector and 3 day infections of jirds was examined. Measurements of the oxygen (pO2) and carbon dioxide (pCO2) tensions and the pH in the medium were made for each gas phase. In cultures gassed with 5% carbon dioxide in nitrogen the pO2 was between 32 and 50 mm Hg, the pCO2 ranged from 25 to 40 mm Hg and the pH was between 7.2 and 7.4. This gas phase resulted in the best growth and development of third-stage larvae to the fourth-stage. Survival and development of larvae were decreased in cultures with oxygen tensions less than 20 mm Hg and greater than 50 mm Hg.  相似文献   

2.
Six water-jacketed 500-ml Bellco spinner flasks were equipped to monitor and control environmental variables to study their effects on the growth and metabolism of mammalian cells. Studies with automated control of pO(2) levels of l-cell cultures, grown at pH 6.9 +/- 0.1, showed that dissolved O(2) tensions of ca. 9% were optimal for cell growth. At pO(2) values of 5 and 20%, maximum cell yields as well as growth rates were reduced by approximately 20%. Peak yields of L-cell cultures exceeded 5 x 10(6) cells/ml when grown for 4 days without medium renewal from inocula of ca. 10(6) cells/ml in a defined medium sparged with 5% CO(2) and maintained at 9% dissolved O(2) tension. The redox potentials of L-cell cultures reflected the pO(2) levels in the medium and ranged from -45 to +160 mv (versus calomel reference) for O(2) values ranging from 2 to 20% dissolved oxygen tension. Increased utilization of glucose per cell occurred in the presence of increased pO(2), whereas minimal accumulation of ammonia occurred with a pO(2) value maintained at 9%.  相似文献   

3.
Bone metabolism is often affected by a variety of mechanical forces, but the cytological basis of their action is not known. In this study, we examined the effect of a continuously applied compressive pressure (CCP) on the growth and differentiation of clonal mouse osteoblast-like cells (MC3T3-E1) cultured in a specifically devised culture chamber. The gas phase of the chamber was maintained at a pressure of 2 atmospheres (atm) above ambient (3 atm total, 3.1 kg/cm2; 3.0 x 10(5) Pa) by continuously infusing a compressed mixed gas (O2: N2:CO2 = 7.0%:91.3%:1.7%). The pO2, pCO2, and pH in the culture medium at 37 degrees C under 3 atm were maintained at the same levels as those under 1 atm. MC3T3-E1 cells were cultured in alpha-minimal essential medium containing 10% fetal bovine serum under either 3 atm in the CCP culture chamber or 1 atm in an ordinary CO2 incubator. Alkaline phosphatase activity, a marker of osteoblasts, was greatly suppressed by the CCP treatment. The inhibition of alkaline phosphatase activity was rapidly restored when the cells were transferred to an ordinary CO2 incubator under 1 atm, indicating that the inhibition of alkaline phosphatase activity by CCP is reversible. Cell growth was not altered under CCP. The CCP treatment greatly increased the production and secretion of prostaglandin E2 (PGE2). Adding either conditioned medium from the CCP culture or exogenous PGE2 to the control culture under 1 atm suppressed alkaline phosphatase activity dose-dependently. The CCP treatment also suppressed collagen synthesis and calcification. These results suggest that CCP causes the cells to produce and secrete PGE2, which, in turn, inhibits differentiation of osteoblasts and the concomitant calcification.  相似文献   

4.
During summer of 2001, venous blood gases were determined in loggerhead sea turtles (Caretta caretta) captured by trawl (n = 16) in coastal waters of South Carolina and Georgia (USA) as part of a sea turtle census program and captured in pound nets (n = 6) in coastal North Carolina (USA) during a study of sea turtle population biology. Trawls were towed for 30 min, so turtles captured were forcibly submerged for < or = 30 min. Pound nets are passive gear in which fish and sea turtles are funneled into a concentrated area and removed periodically. Sea turtles in pound nets are free to surface and to feed at will. Blood was obtained from the dorsal cervical sinus as quickly as possible after landing on the boat (range 2-10 min trawl, 1-2 min pound net) and at 30 min after landing just prior to release. Blood gases including pH, partial pressures of O2 and CO2 (pO2, pCO2), and lactate were measured within 10 min. Instrument measurements for pH, pO2, and pCO2 made at 37 C were corrected to cloacal temperature and HCO3- was calculated from temperature-corrected pH and pCO2. Venous blood pH and bicarbonate were higher, and pO2 and lactate were lower from pound net-captured turtles compared to trawl captured turtles at the initial sampling time. In pound net turtles, pH and bicarbonate declined and lactate increased during 30 min on deck. In trawled sea turtles, venous blood pH increased and pCO2 and pO2 decreased during the 30 min on deck. Both capture systems caused perturbations in blood gas, acid-base, and lactate status, though alterations were greater in trawl captured turtles.  相似文献   

5.
A procedure for continuous culture of rat conceptuses during organogenesis with a number of advantages over existing methods has been established. In this method, rat conceptuses of pregnancy Day 10 (embryonic age 9.5 days; Witschi Stage 13) with embryos at pre- or early somite neurula stage were cultured for 96 h in roller bottles fitted with New Brunswick swivel caps. These caps have 5 inlets which permit continuous gassing of culture bottles and withdrawal of samples or supply of growth medium. The culture medium used in this study was immediately centrifuged, heat-inactivated fresh male rat serum. Continuous gassing of roller bottles with humidified gas mixtures of 5% CO2 and increasing O2 concentrations (5, 20, 40 and 95%), and balanced N2 provided optimal progressive conceptus development and differentiation. The average pO2 of the medium rose from 73.4 to 427.3 mm Hg, while the pCO2 and pH remained relatively stable. During the 96-h culture period, growth and differentiation of conceptuses were considerable, reaching Witschi Stage 27/28. Cultured embryos developed 48-52 somites with extensive differentiation of various organs: brain and sensory organs, heart and circulatory system, limb bud and hepatic prominence, and numerous internal visceral organs. Embryonic DNA and protein contents increased 100- to 200-fold from the initial values. Therefore, this improved procedure with periodic progressive increases in pO2 and stable low pCO2 and physiologic pH in the medium permits growth and differentiation of rat conceptuses in vitro over a prolonged period of time.  相似文献   

6.
A 3-liter culture vessel has been developed for the growth of animal cells in suspension at controlled pH and dissolved oxygen partial pressure (pO(2)). The culture technique allows metabolically produced CO(2) to be measured; provision can be made to control the dissolved CO(2) partial pressure. In cultures containing a low serum concentration, gas sparging to control pO(2) was found to cause cell damage. This could be prevented by increasing the serum concentration to 10%, or by adding 0.02% of the surface-active polymer Pluronic F68. The growth of mouse LS cells in batch culture without pO(2) control was found to be limited by the availability of oxygen. Maximum viable cell populations were obtained when dissolved pO(2) was controlled at values within the range 40-100 mm Hg.  相似文献   

7.
It has been shown that during embryonic chicken (Gallus gallus) development, the metabolism of broiler embryos differs from that of layers in terms of embryonic growth, pCO2/pO2 blood levels, heat production, and heart rate. Therefore, these strains might adapt differently on extreme environmental factors such as exposure to high CO2. The aim of this study was to compare broiler and layer embryos in their adaptation to 4% CO2 from embryonic days (ED) 12 to 18. Due to hypercapnia, blood pCO2 increased in both strains. Blood bicarbonate concentration was ~10 mmol/L higher in embryos exposed to high CO2 of both strains, while the bicarbonates of broilers had ~5 mmol/L higher values than layer embryos. In addition, the pH increased when embryos of both strains were exposed to CO2. Moreover, under CO2 conditions, the blood potassium concentration increased in both strains significantly, reaching a plateau at ED14. At ED12, the layer strain had a higher increase in CAII protein in red blood cells due to incubation under high CO2 compared to the broiler strain, whereas at ED14, the broiler strain had the highest increase. In conclusion, the most striking observation was the similar mechanism of broiler and layer embryos to cope with high CO2 levels.  相似文献   

8.
Accumulation of CO(2) in animal cell cultures can be a significant problem during scale-up and production of recombinant glycoprotein biopharmaceuticals. By examining the cell-surface polysialic acid (PSA) content, we show that elevated CO(2) partial pressure (pCO(2)) can alter protein glycosylation. PSA is a high-molecular-weight polymer attached to several complex N-linked oligosaccharides on the neural cell adhesion molecule (NCAM), so that small changes in either core glycosylation or in polysialylation are amplified and easily measured. Flow-cytometric analysis revealed that PSA levels on Chinese hamster ovary (CHO) cells decrease with increasing pCO(2) in a dose-dependent manner, independent of any change in NCAM content. The results are highly pH-dependent, with a greater decrease in PSA at higher pH. By manipulating medium pH and pCO(2), we showed that decreases in PSA correlate well with bicarbonate concentration ([HCO(3)(-)]). In fact, it was possible to offset a 60% decrease in PSA content at 120 mm Hg pCO(2) by decreasing the pH from 7.3 to 6.9, such that [HCO(3)(-)] was lowered to that of control (38 mm Hg pCO(2)). When the increase in osmolality associated with elevated [HCO(3)(-)] was offset by decreasing the basal medium [NaCl], elevated [HCO(3)(-)] still caused a decrease in PSA, although less extensive than without osmolality control. By increasing [NaCl], we show that hyperosmolality alone decreases PSA content, but to a lesser extent than for the same osmolality increase due to elevated [NaHCO(3)]. In conclusion, we demonstrate the importance of pH and pCO(2) interactions, and show that [HCO(3)(-)] and osmolality can account for the observed changes in PSA content over a wide range of pH and pCO(2) values.  相似文献   

9.
10.
The effect of normoxia, hypoxia and hypercapnia on the extracellular pH, partial pressure carbon dioxide (pCO2), partial pressure oxygen (pO2) and HCO3- levels after noradrenaline treatment of Rana balcanica erythrocytes, was investigated. Noradrenaline caused a significant reduction of the extracellular pH which may have been due to the activation of red blood cell Na+/H+ exchange. Significant falls in the partial extracellular pressure of CO2 and O2 were evident. The initial reduction in extracellular pCO2 and pO2 was followed by a rise reflecting the desensitization of the Na+/H+ exchange after 15 min of hormone stimulation. Both hypercapnia and hypoxia increased the magnitude of these changes in relation to normoxia, although the greatest changes were observed under hypercapnic conditions. The involvement of alpha 1 receptors in regulating the concentration of respiratory gases after catecholamine stimulation was demonstrated. It is suggested that these responses increased the effectiveness of gas transfer over the respiratory surfaces.  相似文献   

11.
Studies on lung injury and its treatment options are often performed on small animals like rats. Because conventional blood gas analyses may not detect rapid changes in gas exchange during respiratory distress syndrome and intermittent blood withdrawal can result in hypo-volaemia and anaemia, we tested the applicability and accuracy of a continuous intravascular blood gas monitor (Paratrend 7+). Anaesthetized and ventilated rats with a body weight of 398 +/-45 g (n =22) had a 20-gauge cannula inserted in both carotid arteries. A photochemical blood gas sensor for continuous measurement (Paratrend 7+) was advanced into the aorta via the left carotid artery. Blood was sampled for intermittent blood gas analysis by means of the right carotid artery. Arterial pO(2) was varied by applying different inspiratory oxygen concentrations, and arterial pCO(2) by applying different respiratory rates. Paired blood gas measurements (n =136) were analysed over a wide range of pO(2) values (5.3-76.8 kPa). We found an acceptable correlation for pO(2) (r(2)=0.98), pCO(2) (r(2)=0.96) and pH (r(2)=0.92). The calculated bias and imprecision for pO(2) was -1.0 +/- 3.3 kPa, for pCO(2) 0.04 +/- 0.28 kPa and for hydrogen ion concentration -0.05 +/-2.2 nmol/l. We conclude that in rats, continuous blood gas monitoring with a photochemical blood gas sensor provides pO(2), pCO(2) and pH measurements with acceptable accuracy.  相似文献   

12.
High-density perfusion cultivation of mammalian cells can result in elevated bioreactor CO(2) partial pressure (pCO(2)), a condition that can negatively influence growth, metabolism, productivity, and protein glycosylation. For BHK cells in a perfusion culture at 20 x 10(6) cells/mL, the bioreactor pCO(2) exceeded 225 mm Hg with approximate contributions of 25% from cellular respiration, 35% from medium NaHCO(3), and 40% from NaHCO(3) added for pH control. Recognizing the limitations to the practicality of gas sparging for CO(2) removal in perfusion systems, a strategy based on CO(2) reduction at the source was investigated. The NaHCO(3) in the medium was replaced with a MOPS-Histidine buffer, while Na(2)CO(3) replaced NaHCO(3) for pH control. These changes resulted in 63-70% pCO(2) reductions in multiple 15 L perfusion bioreactors, and were reproducible at the manufacturing-scale. Bioreactor pCO(2) values after these modifications were in the 68-85 mm Hg range, pCO(2) reductions consistent with those theoretically expected. Low bioreactor pCO(2) was accompanied by both 68-123% increased growth rates and 58-92% increased specific productivity. Bioreactor pCO(2) reduction and the resulting positive implications for cell growth and productivity were brought about by process changes that were readily implemented and robust. This philosophy of pCO(2) reduction at the source through medium and base modification should be readily applicable to large-scale fed-batch cultivation of mammalian cells.  相似文献   

13.
U K Ehmann  D S Misfeldt 《In vitro》1983,19(10):767-774
Mouse mammary cells of the NMuMG line proliferated faster and formed colonies more efficiently when the air above the cells contained 5% CO2. An increase in colony forming efficiency also occurred if the bicarbonate concentration in the medium was higher (44 versus 13 mM). These growth increases induced by the CO2 or bicarbonate occurred even when the control cultures were maintained at the same pH, and they occurred at every pH tested. Both the growth rate and colony forming efficiency of the NMuMG cells were highest at pH 7.0 to 7.3.  相似文献   

14.
Osmolality increases with pCO(2) in bioreactors with pH control, and it has been shown that osmolality compensation by decreasing the basal NaCl concentration partially mitigates the adverse effects of elevated pCO(2) on animal cell growth, protein production, and glycosylation. Thus, measurement of osmolality is important for a complete characterization of the culture environment under elevated pCO(2). However, osmolality measurement may be compromised by CO(2) evolution. Freezing point depression and vapor pressure depression osmometry were directly compared for the measurement of osmolality in samples at elevated pCO(2) (up to 250 mmHg) and at a variety of pH values (6.7-7.5). More extensive degassing may be expected with the vapor pressure osmometer due to the smaller sample volume and larger surface area employed. However, both types of osmometer yielded similar results for all pCO(2) and pH values studied. Moreover, the measured values agreed with osmolality values calculated using a semi-empirical model. Further analysis showed that, while sample degassing may result in a large decrease in pCO(2), there is little associated decrease in osmolality. The great majority of total CO(2) in solution is present as bicarbonate (HCO(3)(-)). Although a small amount of HCO(3)(-) is converted to CO(2) to compensate for CO(2) evolution, further depletion of HCO(3)(-) is inhibited by the associated increase in medium pH and by the need for HCO(3)(-) to maintain charge neutrality in solution. This explanation is consistent with the observed similarity in osmolality values for the two types of osmometer. It was also observed that osmolality did not change in samples that were frozen at -20 degrees C for up to 1 year.  相似文献   

15.
Growth, acetylene reduction, and respiration rate were studied in batch and continuous cultures of Arthrobacter fluorescents at different oxygen partial pressures. The optimum pO2 values for growth and acetylene reduction were 0.05 and 0.025 atm, respectively, but microorganisms can tolerate higher pO2 values. The growth of cultures provided with combined nitrogen was dependent on oxygen availability, and strict anaerobic conditions did not support growth. Acetylene reduction of a population grown in continuous culture and adapted to low pO2 (0.02 atm) was much more sensitive to oxygenation than that of a population adapted to high pO2 (0.4 atm). Their maximum nitrogenase activity, at their optimal pO2 values, were quite different. The respiratory activity of nitrogen-fixing cultures increased with increasing oxygen tensions until a pO2 of 0.2 atm. At higher pO2 values, the respiration rate began to decrease.  相似文献   

16.
Szeto HH  Soong Y  Wu D  Olariu N  Kett A  Kim H  Clapp JF 《Peptides》1999,20(1):101-105
We compared the effects of three micro-(DAMGO, DALDA, TNPO) and three delta-(DPDPE, DELT, SNC-80) opioid agonists on arterial blood gas after IV administration in awake sheep. None of the mu agonists altered pO2, pCO2 or pH. All three mu agonists decreased pO2 increased pCO2 and decreased pO2, and this effect was not sensitive to naloxone or TIPPpsi, a delta-antagonist, suggesting that it is not mediated by beta-opioid receptors. When administered to pregnant animals, there were significant changes in fetal pCO2 and pH. It may be possible to develop delta-selective opioid agonists which do not produce respiratory depression.  相似文献   

17.
Ribulose diphosphate carboxylase from autotrophic microorganisms   总被引:15,自引:9,他引:6       下载免费PDF全文
Thiobacillus denitrificans was grown anaerobically with nitrate as an acceptor in both sterile and nonsterile media. Ribulose diphosphate carboxylase was stable throughout the exponential growth phase and declined slowly only after cells reached the stationary phase. Reversible inactivation of the carboxylase occurred in extracts as a result of bicarbonate omission. The enzyme was purified 32-fold with excellent recovery of a preparation which was 50 to 60% pure by the criterion of polyacrylamide gel electrophoresis. This purified preparation catalyzed the fixation of 1.25 mumoles of CO(2) per min per mg of protein at pH 8.1 and 30 C, and the molecular weight of ribulose diphosphate carboxylase was approximately 350,000 daltons. A striking biphasic time course of CO(2) fixation that was independent of protein and ribulose diphosphate concentration was observed. The optimal pH of the enzyme assay was fairly broad, ranging from 7 to 8.2. Kinetic dependence upon bicarbonate, ribulose diphosphate, and Mg(2+) was characterized and indicated that bicarbonate and Mg(2+) must combine with enzyme prior to addition of ribulose diphosphate. Antiserum to ribulose diphosphate carboxylase from Hydrogenomonas eutropha was only slightly inhibitory when added to the enzyme from T. denitrificans, and the mixture did not precipitate. Cyanide (4 x 10(-5)m) gave 61% inhibition of the enzyme from T. denitrificans. Ribulose diphosphate carboxylase in extracts of H. eutropha, H. facilis, Chromatium D, Rhodospirillum rubrum, and Chlorella pyrenoidosa were also inhibited to varying extents by cyanide and antiserum to the H. eutropha enzyme.  相似文献   

18.
In previous research, we devised a specific culture chamber to examine the effect of continuously applied compressive pressure (CCP) on bone formation and resorption. The chamber was infused with compressed mixed gases with different O2 and CO2 composition to maintain the pO2, pCO2, and pH in the culture medium under pressures of +0.5 atm (1.5 atm total) to +2.0 atm (3.0 atm total) at the same levels as those at the ordinary pressure (1 atm). Using the specific culture chamber, we demonstrated that CCP greatly suppressed the differentiation of mouse osteoblast-like MC3T3-E1 cells. The inhibition by CCP appeared to be mediated by prostaglandin E2 (PGE2). In the present study, we examined the effect of CCP on osteoclastic bone resorption. CCP treatment of mouse bone marrow culture markedly increased both the PGE2 production and the number of tartrate-resistant acid phosphatase (TRACP)-positive mononuclear cells (possibly precursors of multinucleated osteoclasts). An autoradiographic study using [125I]-salmon calcitonin showed clearly that those TRACP-positive cells had calcitonin receptors. The CCP effect was the greatest at +1.0 atm (2.0 atm total). Isobutylmethylxanthine potentiated the production of TRACP-positive cells induced by CCP. Adding indomethacin completely inhibited both the TRACP-positive cell formation and the PGE2 production induced by CCP. CCP also increased the release of 45Ca from prelabeled mouse calvaria during later stages (2-6 days) of the 6-day culture period. CCP markedly increased PGE2 but not interleukin 1 in the culture media of mouse calvaria. These results indicate that, besides inhibiting osteoblast differentiation, CCP stimulates bone resorption by generating new osteoclasts through a mechanism involving PGE2 production.  相似文献   

19.
Surface-immobilized C. roseus cell cultures were grown in a 20-l modified airlift bioreactor operated at 0.51 vvm (kLa approximately 8 h-1) under various gassing regimes [air, 2% (v/v) and 5% CO2]. Extracellular ammonium, phosphate, and nitrate ions as well as carbohydrate uptake and pH value of the medium were monitored together with on-line dissolved oxygen concentration, conductivity of the medium, and carbon dioxide production rate (CPR) of the cultures. Cultures supplemented with 2% CO2 showed higher nitrate (5.0-7.0 mM d-1) and carbohydrate (3.3 g l-1 d-1) uptake rates and biomass production (mu approximately 0.24 d-1, yield approximately 0.33 g dw g CHO-1 and 7.4 g dw L-1) as compared to air (3.6 mM d-1, 2.1 g l-1 d-1; 0.20 d-1, 0.25 g dw g CHO-1 and 5 g dw l-1) and 5% CO2 (2.0-3.6 mM d-1, 2.0 g l-1 d-1; 0.11 d-1, 0.20 g dw g CHO-1 and 5 g dw l-1) cultures and as reported previously for suspension cultures. In addition, air and 5% CO2 cultures displayed incomplete carbohydrate uptake and, more important, phosphate and ammonium ion release into the medium at the end, which was ascribed to loss of viability. This was not observed for 2% CO2 immobilized bioreactor as well as shake flask control suspension cultures, which suggests that sparged C. roseus surface-immobilized cell cultures require 2% CO2 supplementation of the gas phase for both maximum growth and retained viability. The maximum CPRs of all cultures were in the same range (2.1-2.8 mM CO2 l-1 h-1). However, the estimated maximum specific CO2 production rates of 2% CO2 and 5% CO2 immobilized cultures (0.6 mM g dw-1 h-1) were lower than those found for air-sparged immobilized cultures (1.0-1.3 mM g dw-1 h-1). These rates are significantly higher than those reported in the literature for C. roseus cell suspension cultures performed in bioreactors gassed with air (approximately 0.2-0.55 mM g dw-1 h-1).  相似文献   

20.
The objectives of this research were to determine the influence of hypobaria (reduced atmospheric pressure) and reduced partial pressure of oxygen (pO2) [hypoxia] on carbon dioxide (CO2) assimilation (C(A)), dark-period respiration (DPR) and growth of lettuce (Lactuca sativa L. cv. Buttercrunch). Lettuce plants were grown under variable total gas pressures [25 and 101 kPa (ambient)] at 6, 12 or 21 kPa pO2)(approximately the partial pressure in air at normal pressure). Growth of lettuce was comparable between ambient and low total pressure but lower at 6 kPa pO2 (hypoxic) than at 12 or 21 kPa pO2. The specific leaf area of 6 kPa pO2 plants was lower, indicating thicker leaves associated with hypoxia. Roots were most sensitive to hypoxia, with a 50-70% growth reduction. Leaf chlorophyll levels were greater at low than at ambient pressure. Hypobaria and hypoxia did not affect plant water relations. While hypobaria did not adversely affect plant growth or C(A), hypoxia did. There was comparable C(A) and a lower DPR in low than in ambient total pressure plants under non-limiting CO2 levels (100 Pa pCO2, nearly three-fold that in normal air). The C(A)/DPR ratio was higher at low than at ambient total pressure, particularly at 6 kPa pO2- indicating a greater efficiency of C(A)/DPR in low-pressure plants. There was generally no significant interaction between hypoxia and hypobaria. We conclude that lettuce can be grown under subambient pressure ( congruent with25% of normal earth ambient total pressure) without adverse effects on plant growth or gas exchange. Furthermore, hypobaric plants were more resistant to hypoxic conditions that reduced gas exchange and plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号