首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of positional distribution of triacylglycerol (TAG) fatty acids to TAG structures in chylomicrons and VLDL, and to postprandial lipemia, were studied in 10 healthy premenopausal women using a 6-h oral fat load test and a randomized, double-blind cross-over design. Molecular level information of TAG regioisomerism was obtained with a tandem mass spectrometric method. The positional distribution of fatty acids in chylomicron TAGs was similar to the respective dietary fat; 79% of the analyzed regioisomers in palm oil and 84% of the analyzed regioisomers in transesterified oil were found in chylomicron TAGs 3 h after the oral fat loads. VLDL TAGs were equal after the two fat loads in all but one regioisomer. Similarities in the fatty acid compositions of chylomicron TAGs suggest that palmitic acid was absorbed equally from both test fats. The proportion of palmitoleic acid in the chylomicrons was increased. Fat with palmitic acid predominantly in the sn-1 and sn-3 positions caused a larger incremental area of total TAGs in plasma and reduced plasma insulin values at the beginning of the postprandial response (0-90 min) compared with fat with palmitic acid randomly distributed. The relationship between TAG molecular structures in dietary fats and in lipoproteins provides new means for understanding the effects of fatty acid positional distribution on human lipid metabolism.  相似文献   

2.
This paper reports the positional distribution of fatty acids in triacylglycerols (TAG) of Artemia franciscana nauplii enriched with each of palmitic (16:0), oleic (18:1n-9), linoleic (18:2n-6), linolenic (18:3n-3), eicosapentaenoic (20:5n-3), and docosahexaenoic (22:6n-3) acid ethyl esters. TAG extracted from the enriched and unenriched nauplii were subjected to regiospecific analysis to determine the fatty acid compositions of the sn-1(3) and sn-2 positions of TAG. In the unenriched nauplii, 16:0, 18:1n-9, and 18:2n-6 were preferentially located in the sn-1(3) position followed by the sn-2 position [i.e. sn-1(3)>sn-2], whereas 18:3n-3 was concentrated in the sn-2 position [i.e. sn-2>sn-1(3)]. Contents of 20:5n-3 and 22:6n-3 were low. After the nauplii were enriched with each of the ethyl esters for 18 h, fatty acid fed to the nauplii showed higher content in the sn-1(3) position than in the sn-2 position [i.e. sn-1(3)>sn-2]. Distribution pattern of 18:3n-3 changed from sn-2>sn-1(3) to sn-1(3)>sn-2 during the enrichment with 18:3n-3 ethyl ester. Increases in all of the fatty acids in TAG were attributed to that in the sn-1(3) position much more than that in the sn-2 position. Artemia nauplii appear to be characterized by preferential incorporation of exogenous fatty acids into the sn-1(3) position of TAG, even though endogenous fatty acids are esterified in the opposite position.  相似文献   

3.
Dietary triacylglycerols (TAGs) are the major lipid components in the human diet and they are carriers of energy as well as important fatty acids. Many factors affect the digestion and absorption of TAGs. Evidence is accumulating that, in addition to the overall fatty acid profile, the TAG structure and the species composition are of importance when considering the nutritional effects of a dietary fat. There is good evidence that in addition to its short-term effects in the intestine on absorption of fatty acids the TAG structure also has long-term effects resulting from differences in the profile of absorbed fatty acids. Observations on the different atherogenic potential of dietary fats have given us a clear indication of the importance of the TAG structure for absorption of saturated fatty acids. In this context, one may focus on the effects of the structure of dietary fats as such, or one may speculate additionally on the possibilities of modifying the structure of fats to affect their absorption and the distribution of the fatty acids in the body after digestion and uptake. In this review we will summarize diverse aspects of TAG digestion and absorption, as well as the influences of the fatty acid composition and the intramolecular structure of dietary TAGs on their digestion and absorption.  相似文献   

4.
A putative yeast sn-2 acyltransferase gene (SLC1-1), reportedly a variant acyltransferase that suppresses a genetic defect in sphingolipid long-chain base biosynthesis, has been expressed in a yeast SLC deletion strain. The SLC1-1 gene product was shown in vitro to encode an sn-2 acyltransferase capable of acylating sn-1 oleoyl-lysophosphatidic acid, using a range of acyl-CoA thioesters, including 18:1-, 22:1-, and 24:0-CoAs. The SLC1-1 gene was introduced into Arabidopsis and a high erucic acid-containing Brassica napus cv Hero under the control of a constitutive (tandem cauliflower mosaic virus 35S) promoter. The resulting transgenic plants showed substantial increases of 8 to 48% in seed oil content (expressed on the basis of seed dry weight) and increases in both overall proportions and amounts of very-long-chain fatty acids in seed triacylglycerols (TAGs). Furthermore, the proportion of very-long-chain fatty acids found at the sn-2 position of TAGs was increased, and homogenates prepared from developing seeds of transformed plants exhibited elevated lysophosphatidic acid acyltransferase (EC 2.3.1.51) activity. Thus, the yeast sn-2 acyltransferase has been shown to encode a protein that can exhibit lysophosphatidic acid acyltransferase activity and that can be used to change total fatty acid content and composition as well as to alter the stereospecific acyl distribution of fatty acids in seed TAGs.  相似文献   

5.
This study aimed to incorporate capric acid (CA) into selected algal oils, namely arachidoinc acid single cell oil (ARASCO), docosahexaenoic acid single cell oil (DHASCO) and the OMEGA-GOLD oil rich in dcosahexaenoic acid (DHA) and dosapentaenoic acid (n-6 DPA). Response surface methodology indicated that under optimum conditions (12.3% enzyme, 45 degrees C, and 29.4 h) CA incorporation was 20.0% into ARASCO; (4.2% enzyme, 43.3 degrees C, and 27.1 h) 22.6% into DHASCO and (2.5% enzyme, 46.6 degrees C and 25.2 h) 20.7% into the OMEGA-GOLD oil. Stereospecific analysis indicated that in all oils examined CA was mainly located at the sn-1 and sn-3 positions of the resultant TAG molecules while the highly unsaturated fatty acids being primarily esterified to the sn-2 positions of the three oils. In all cases, enzymatically modified oils were more susceptible to oxidation than their unmodified counterparts.  相似文献   

6.
Hansen solubility parameters (HSPs), often used to predict the miscibility between two compounds, are an alternative tool in evaluating the ability of the solvent to interact via dispersion, dipole-dipole, and hydrogen bonding interactions. The aim of this paper is to find a simple way to calculate HSPs for complex mixtures of triglycerides (TAGs). HSPs were calculated using two approaches: the first assumes that the contributions to the dispersion, dipole-dipole, and hydrogen bonding interactions may be subdivided into larger functional moieties (i.e., fatty acids and fatty acid methyl esters) that are additive, while the second approach assumes that vegetable oils are comprised of mixtures of simple TAGs in the same mass fractions as the fatty acids. The HSPs obtained using the two approaches are compared to reference values determined using the “Hansen Solubility Parameters in Practice” software (HSPiP) considering the complex TAG profile for each vegetable oil.HSPs for vegetable oils, obtained with the HSPiP software, did not correspond well to the HSPs obtained from the group contribution approach, when using fatty acids, fatty acids + glycerol or fatty acid methyl esters. In contrast, the HSPs calculated for vegetable oils, assuming that all TAGs are simple and in the same mass fractions as the fatty acids, provide similar values to the HSPs obtained from the HSPiP software. Therefore, it is possible to calculate the HSPs for complex oils by simply knowing the fatty acid composition. Knowledge of HSPs may be used to rationalize the ability of certain low molecular weight molecules to develop organogels in vegetable oils as well as the crystallization of triglycerides.  相似文献   

7.
Plant triacylglycerols (TAGs), or vegetable oils, provide approximately 25% of dietary calories to humans and are becoming an increasingly important source of renewable bioenergy and industrial feedstocks. TAGs are assembled by multiple enzymes in the endoplasmic reticulum from building blocks that include an invariable glycerol backbone and variable fatty acyl chains. It remains a challenge to elucidate the mechanism of synthesis of hundreds of different TAG species in planta. One reason is the lack of an efficient analytical approach quantifying individual molecular species. Here we report a rapid and quantitative TAG profiling approach for Arabidopsis seeds based on electrospray ionization tandem mass spectrometry with direct infusion and multiple neutral loss scans. The levels of 93 TAG molecular species, identified by their acyl components, were determined in Arabidopsis seeds. Quantitative TAG pattern analyses revealed that the TAG assembly machinery preferentially produces TAGs with one elongated fatty acid. The importance of the selectivity in oil synthesis was consistent with an observation that an Arabidopsis mutant overexpressing a patatin‐like phospholipase had enhanced seed oil content with elongated fatty acids. This quantitative TAG profiling approach should facilitate investigations aimed at understanding the biochemical mechanisms of TAG metabolism in plants.  相似文献   

8.
Developing seeds from Brassica oleracea (L.) var botrytis cv Sesam were examined for the ability to biosynthesize and incorporate erucic acid into triacylglycerols (TAGs). Seed embryos at mid-development contained a high concentration of erucic acid in diacylglycerols and TAGs, and substantial levels were also detected in free fatty acids, acyl-coenzyme A (CoA), phosphatidic acid, and phosphatidylcholine. Homogenates and microsomal fractions from seeds at mid-development produced [14C]eicosenoyl- and [14C]erucoyl-CoAs from [14C]oleoyl-CoA in the presence of malonyl-CoA and reducing equivalents in vitro. These fatty acids were incorporated into TAGs via the Kennedy pathway. However, unlike most Brassicaceae, the B. oleracea was able to insert significant erucic acid into the sn-2 position of TAGs. It was shown that the lyso-phosphatidic acid acyltransferase (LPAT) incorporated erucic acid into the sn-2 position of lyso-phosphatidic acid. The erucoyl-CoA:LPAT activity during seed development and the sn-2 erucic acid content of the TAG fraction in mature seed were compared to those in B. napus, Tropaeolum majus, and Limnanthes douglasii. There was a correlation between the in vitro erucoyl-CoA:LPAT activity and the sn-2 erucic acid content in seed TAGs. To our knowledge, this is the first member of the Brassicaceae reported to have an LPAT able to use erucoyl-CoA. This observation has important implications for efforts being made to increase the erucic acid content in B. napus, to supply strategic industrial feedstocks.  相似文献   

9.
Dietary fats are converted into chylomicron triacylglycerols via the 2-monoacylglycerol and phosphatidic acid pathways of acylglycerol formation. In view of the known positional and fatty acid specificity of the acyltransferases, the triacylglycerol structures resulting from the two pathways would be expected to differ, but this has not been demonstrated. We have performed stereospecific analyses on the chylomicron triacylglycerols from rats fed menhaden oil and the corresponding fatty acid alkyl esters, which would be expected to be assimilated via the monoacylglycerol and the phosphatidic acid pathways, respectively. The results show a remarkable similarity between the two triacylglycerol types in the fatty acid composition of the sn-1 and sn-3 positions, along with marked differences in the composition of the sn-2 positions. The triacylglycerols from rats fed oil retained about 85% of the original fatty acids in the sn-2 position, including a high proportion of the long chain polyunsaturates (e.g., 5-7% 20:5 and 4-5% 22:6). The triacylglycerols from rats fed the alkyl ester contained large amounts of endogenous fatty acids in the sn-2 position (e.g., 18% 16:1, 14% 18:1, 14% 18:2, and 2.5% 20:4), which approximated the composition of the sn-2 position of the presumed phosphatidic acid intermediates. The sn-1 position contained a much higher proportion of polyunsatured fatty acids (e.g., 12-13% 20:5, 5-6% 22:6) than the sn-2 position (e.g. 2-3% 20:5, 0-0.6% 22:6) of triacylglycerols from rats fed the ester. We conclude that the chylomicron triacylglycerols arising via the 2-monoacylglycerol and the phosphatidic acid pathways differ mainly in the composition of the fatty acids in the sn-2 position. The similarity in the acids of the sn-1 and sn-3 positions of the chylomicron triacylglycerols from rats fed oil or ester is consistent with a hydrolysis of the acylglycerol products of the phosphatidic acid pathway to 2-monoacylglycerols prior to reconversion to triacylglycerols via the monoacylglycerol pathway and secretion as chylomicrons.  相似文献   

10.
The plsC gene of Escherichia coli encoding sn-1-acylglycerol-3-phosphate acyltransferase was modified by inserting an endoplasmic reticulum retrieval signal to its 3 end and introduced into rapeseed (Brassica napus L.) plants under the control of a napin promotor. In developing seeds from transgenic plants an sn-1-acylglycerol-3-phosphate acyltransferase activity was detectable which showed substrate specificities typical of the E. coli enzyme. Moreover, seed oil from the transformants unlike that from untransformed plants contained substantial amounts of triacylglycerol species esterified with very-long-chain fatty acids at each glycerol position. Analysis of fatty acids at the sn-2 position of triacylglycerol showed hardly any very-long-chain fatty acids in untransformed plants, but in certain transformants these fatty acids were present, namely about 4% erucic acid and 9% eicosenoic acid. These data demonstrate that the bacterial acyltransferase can function in developing rapeseed and alters the stereochemical composition of transgenic rape seed oil by directing very-long-chain fatty acids, especially cis-11 eicosenoic acid, to its sn-2 position.  相似文献   

11.
Sea buckthorn (Hippophaë rhamnoides L.) seeds on the 29th, 53rd, 80th, and 107th day after pollination were used for determining, by lipase hydrolysis, the qualitative and quantitative composition of the triacylglycerol (TAG) positional types, groups, and positional species, as well as the factor of selectivity of incorporation of unsaturated fatty acids, octadecenoic, linoleic, and linolenic, into the sn-2-position of TAGs. Until the 80th day after pollination, there was a predominant formation of triunsaturated TAGs, which included linolenic and linoleic acid residues. After the 80th day, the absolute content of these major components of total TAGs markedly decreased, and an increase in total TAG content was mainly accounted for by the rise in the level of those TAG species, which included saturated fatty acids, palmitic and stearic (monosaturated–diunsaturated and disaturated–monounsaturated), as well as in the level of sn-2-octadecenoyl species belonging to the triunsaturated and palmito–diunsaturated types of TAGs. At each maturation stage, the quantitative dynamics of separate TAG species was determined by the content of fatty acid species available for TAG formation and the factor of selectivity of these species. The decrease in the content of a certain group of triunsaturated TAGs found here seems to be caused by their metabolization during seed maturation.  相似文献   

12.
In the present study, we propose a continuous assay for the screening of sn-2 lipases by using triacylglycerols (TAGs) from Aleurites fordii seed (tung oil) and a synthetic TAG containing the α-eleostearic acid at the sn-2 position and the oleic acid (OA) at the sn-1 and sn-3 positions [1,3-O-dioleoyl-2-O-α-eleostearoyl-sn-glycerol (sn-OEO)]. Each TAG was coated into a microplate well, and the lipase activity was measured by optical density increase at 272 nm due to transition of α-eleostearic acid from the adsorbed to the soluble state. The sn-1,3-regioselective lipases human pancreatic lipase (HPL), LIP2 lipase from Yarrowia lipolytica (YLLIP2), and a known sn-2 lipase, Candida antarctica lipase A (CALA) were used to validate this method. TLC analysis of lipolysis products showed that the lipases tested were able to hydrolyze the sn-OEO and the tung oil TAGs, but only CALA hydrolyzed the sn-2 position. The ratio of initial velocities on sn-OEO and tung oil TAGs was used to estimate the sn-2 preference of lipases. CALA was the enzyme with the highest ratio (0.22 ± 0.015), whereas HPL and YLLIP2 showed much lower ratios (0.072 ± 0.026 and 0.038 ± 0.016, respectively). This continuous sn-2 lipase assay is compatible with a high sample throughput and thus can be applied to the screening of sn-2 lipases.  相似文献   

13.
Studies were conducted to characterize the metabolism of the unusual fatty acid petroselinic acid (18:1cis[delta]6) in developing endosperm of the Umbelliferae species coriander (Coriandrum sativum L.) and carrot (Daucus carota L.). Analyses of fatty acid compositions of glycerolipids of these tissues revealed a dissimilar distribution of petroselinic acid in triacylglycerols (TAG) and the major polar lipids phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Petroselinic acid comprised 70 to 75 mol% of the fatty acids of TAG but only 9 to 20 mol% of the fatty acids of PC and PE. Although such data appeared to suggest that petroselinic acid is at least partially excluded from polar lipids, results of [1-14C]acetate radiolabeling experiments gave a much different picture of the metabolism of this fatty acid. In time-course labeling of carrot endosperm, [1-14C]acetate was rapidly incorporated into PC in high levels. Through 30 min, radiolabel was most concentrated in PC, and of this, 80 to 85% was in the form of petroselinic acid. One explanation for the large disparity in amounts of petroselinic acid in PC as determined by fatty acid mass analyses and 14C radiolabeling is that turnover of these lipids or the fatty acids of these lipids results in relatively low accumulation of petroselinic acid mass. Consistent with this, the kinetics of [1-14C]acetate time-course labeling of carrot endosperm and "pulse-chase" labeling of coriander endosperm suggested a possible flux of fatty acids from PC into TAG. In time-course experiments, radiolabel initially entered PC at the highest rates but accumulated in TAG at later time points. Similarly, in pulse-chase studies, losses in absolute amounts of radioactivity from PC were accompanied by significant increases of radiolabel in TAG. In addition, stereospecific analyses of unlabeled and [1-14C]acetate-labeled PC of coriander endosperm indicated that petroselinic acid can be readily incorporated into both the sn-1 and sn-2 positions of this lipid. Because petroselinic acid is neither synthesized nor further modified on polar lipids, the apparent metabolism of this fatty acid through PC (and possibly through other polar lipids) may define a function of PC in TAG assembly apart from its involvement in fatty acid modification reactions.  相似文献   

14.
This article discusses the methods most commonly employed in the analysis of the triacylglycerols (TAGs) in natural fats and considers the main advantages and disadvantages of each and the techniques for optimising analytical conditions. Complete analysis of the composition of a natural fat calls for a method of extracting and purifying the triglyceride fraction, normally by preparatory thin-layer and column chromatography. Determination of the individual components of triglyceride mixtures still entails certain difficulties, namely, the separation and identification of the TAGs in natural fats. High-performance liquid chromatography (HPLC) offers significant advantages over gas and thin-layer chromatography. Many workers have developed non-aqueous, reversed-phase HPLC systems capable of successfully resolving complex mixtures of TAGs, and combining reversed-phase (RP) HPLC and argentation chromatography may improve the results. Identification of the TAGs separated by HPLC becomes an extremely complex task if many different fatty acids are involved and if the sn-stereoscopic positions on the glycerol are to be determined. Enzymatic analysis and chiral-phase chromatography are capable of localising fatty acids on the TAG molecule. In closing, some of the most interesting biomedical applications of TAG analysis are summarised.  相似文献   

15.
Atlantic salmon (Salmo salar) preadipocytes, isolated from visceral adipose tissue, differentiate from an unspecialized fibroblast like cell type to mature adipocytes filled with lipid droplets in culture. The expression of the adipogenic gene markers peroxisome proliferated activated receptor (PPAR) alpha, lipoprotein lipase (LPL), microsomal triglyceride transfer protein (MTP), fatty acid transport protein (FATP) 1 and fatty acid binding protein (FABP) 3 increased during differentiation. In addition, we describe a novel alternatively spliced form of PPARgamma (PPARgamma short), the expression of which increased during differentiation. Eicosapentaenoic acid (20:5n-3, EPA) and docosahexaenoic acid (22:6n-3, DHA) lowered the triacylglycerol (TAG) accumulation in mature salmon adipocytes compared to oleic acid (18:1n-9, OA). This finding indicates that a reduced level of highly unsaturated n-3 fatty acids (HUFAs) in fish diets, when the traditional marine oil is exchanged for n-9 fatty acids (FAs) rich vegetable oils (VOs), may influence visceral fat deposition in salmonids. Moreover, major differences in the metabolism of EPA, DHA and OA at different stages during differentiation of adipocytes occur. Most of the EPA and DHA were oxidized in preadipocytes, while they were mainly stored in TAGs in mature adipocytes in contrast to OA which was primarily stored in TAGs at all stages of differentiation.  相似文献   

16.
Triacylglycerols secreted by liver and carried by very low density lipoprotein (VLDL) are hydrolysed in circulation by lipoprotein and hepatic lipases. These enzymes have been shown to have positional and fatty acid specificity in vitro. If there were specificity in basal lipolysis in vivo, triacylglycerol compositions of circulating and newly secreted VLDL would be different. To study this we compared the composition of normal fasting VLDL triacylglycerol of Wistar rats to that obtained after blocking lipolysis by Triton WR1339, which increased plasma VLDL triacylglycerol concentration about 4.7-fold in 2 h. Analyses of molecular species of sn-1,2- and sn-2,3-diacylglycerol moieties and stereospecific triacylglycerol analysis revealed major differences between the groups in the VLDL triacylglycerol composition. In nontreated rats, the proportion of 16:0 was higher and that of 18:2n-6 lower in the sn-1 position. The proportion of 14:0 was lower in all positions and that of 18:0 was lower in the sn-1 and sn-3 positions in nontreated rats whereas the proportions of 20:4n-6, 20:5n-3, 22:5n-3 and 22:6n-3 were higher in the sn-1 and lower in the sn-2 position. These results suggest that the fatty acid of the sn-1 position is the most decisive factor in determining the sensitivity for hydrolysis of the triacylglycerol. In addition, triacylglycerol species with highly unsaturated fatty acids in the sn-2 position also favoured hydrolysis. The in vivo substrate specificity followed only partly that obtained in in vitro studies indicating that the nature of molecular association of fatty acids in natural triacylglycerol affects its susceptibility to lipolysis. To conclude, our results indicate that preferential basal lipolysis leads to major structural differences between circulating and newly secreted VLDL triacylglycerol. These differences extend beyond those anticipated from analysis of total fatty acids and constitute a previously unrecognized feature of VLDL triacylglycerol metabolism.  相似文献   

17.
1. Previous experiments showed that fatty acids were incorporated into triacylglycerols by homogenates of Ceratitis capitata larvae far more efficiently than by pharate adult homogenates. This metabolic behaviour of both stages of development of the insect has been interpreted throughout the existence of a different acyltransferase activity. To obtain new data on the acyltransferase mechanism, a time-course of the stereospecific incorporation of labelled myristic, palmitic, oleic and linoleic acids into the sn-positions of triacylglycerols has been followed. 2. Studies on the stereospecific incorporation of labelled fatty acids confirmed previous results. Palmitic acid was mainly incorporated into sn-1 and sn-3 positions whereas position 2 exhibited a low incorporation. Myristic acid acylated sn-3 position at a higher rate than it acylated the other sn-positions. Oleic acid was more specifically distributed than palmitic acid and linoleic acid was more efficiently incorporated than the monounsaturated acid. All these data reflect substrate differences in the acyltransferase activity of larval homogenates. Pharate adult homogenates incorporated fatty acids very scarcely and mainly into positions (1 + 3). 3. Kinetics of incorporation of labelled fatty acids into the sn-positions points to a non-random distribution with respect to the major saturated and unsaturated fatty acids in triacylglycerols of larvae of Ceratitis capitata.  相似文献   

18.
Pathways of lipid resynthesis in the intestine of fish are relatively unknown. Various reports have suggested the existence of both sn-1,3-specific (pancreatic) and non-specific (bile salt-activated) lipase activity operating on dietary triacylglycerol (TAG) in the intestinal lumen of fish during digestion. Thus, sn-2-monoacylglycerol (2-MAG) and glycerol, respective hydrolytic products of each lipase, are absorbed and utilised for glycerolipid synthesis in enterocytes via two alternative routes: monoacylglycerol (MAG) and glycerol-3-phosphate (G3P) pathways. Despite different precursors, both pathways converge at the production of sn-1,2-diacylglycerol (1,2-DAG) where TAG or phosphatidylcholine (PC) synthesis can occur. To elucidate the relative activities of MAG and G3P pathways in Atlantic salmon enterocytes, intestinal segments were mounted in Ussing chambers where equimolar mixtures of sn-2-oleoyl-[1,2,3-(3)H]glycerol (2-MAG) and [(14)C(U)]glycerol, plus unlabelled 16:0 and 18:2n-6 as exogenous fatty acid sources, were delivered in bile salt-containing Ringer solution to the mucosa. The MAG pathway predominated, over the G3P pathway, synthesizing ca. 95% of total TAG and ca. 80% of total PC after a 3 h incubation period at 10 degrees C. Further, the 1,2-DAG branch point into TAG or PC was polarised towards TAG synthesis (6:1) via the MAG pathway but more evenly distributed between TAG and PC (1:1) via the G3P pathway. Effect of long-chain saturated, monounsaturated and polyunsaturated fatty acids on the synthesized TAG/PC ratio was assessed by individually exchanging 16:0, 18:1n-9 or 18:2n-6, for 16:0+18:2n-6, in mucosal solutions. TAG synthesis was influenced considerably more than PC synthesis, via either pathway, by exogenous fatty acids utilised. 18:1n-9 significantly stimulated TAG synthesis via the MAG pathway yielding a TAG/PC ratio of 12:1. Alternatively, 18:2n-6 stimulated TAG synthesis the most via the G3P pathway (TAG/PC=4:1). 16:0 significantly attenuated TAG synthesis via either pathway. Micellar fatty acid species also significantly affected intestinal active transport mechanisms as shown by decreasing transepithelial potential (TEP) and short-circuit current (SSC) with increasing fatty acid unsaturation. The epithelial integrity was, however, not compromised after 3 h of exposure to any of the fatty acids. The implications of these findings on dietary fatty acid composition and enterocytic lipid droplet accumulation are discussed.  相似文献   

19.
用高效液相色谱法和酶解的方法检测了银杏叶片磷脂酰甘油(PG)脂肪酸的分子种组成和位置分布,确定银杏叶片PG主要分子种的脂肪酸组成(sn-1/sn-2)是18:3/16:1(3t),18:3/16:0,18:2/16:1(3t),18:2/16:0,18:1/16:1(3t),16:0/16:1(3t),18:1/18:1,18:/16:0和16:0和16:0/16:0。银杏叶片PC脂肪酸组成和位置分布的分析结果表明,C18脂肪酸主要位于sn-l位,16:1(3t)只分布于sn-2位,16:0在sn-1位和sn-2位上均有发现。sn-1位上的不饱和度∑u大于sn-2位上的∑u。  相似文献   

20.
Expression of Delta(12)-oleic acid desaturase-related fatty acid conjugases from Calendula officinalis, Momordica charantia, and Vernicia fordii in seeds of soybean (Glycine max) or an Arabidopsis thaliana fad3/fae1 mutant was accompanied by the accumulation of the conjugated fatty acids calendic acid or alpha-eleostearic acid to amounts as high as 20% of the total fatty acids. Conjugated fatty acids, which are synthesized from phosphatidylcholine (PC)-linked substrates, accumulated in PC and phosphatidylethanolamine, and relative amounts of these fatty acids were higher in PC than in triacylglycerol (TAG) in the transgenic seeds. The highest relative amounts of conjugated fatty acids were detected in PC from seeds of soybean and A. thaliana that expressed the C. officinalis and M. charantia conjugases, where they accounted for nearly 25% of the fatty acids of this lipid class. In these seeds, >85% of the conjugated fatty acids in PC were detected in the sn-2 position, and these fatty acids were also enriched in the sn-2 position of TAG. In marked contrast to the transgenic seeds, conjugated fatty acids composed <1.5% of the fatty acids in PC from seeds of five unrelated species that naturally synthesize a variety of conjugated fatty acid isomers, including seeds that accumulate conjugated fatty acids to >80% of the total fatty acids. These results suggest that soybean and A. thaliana seeds are deficient in their metabolic capacity to selectively catalyze the flux of conjugated fatty acids from their site of synthesis on PC to storage in TAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号