首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The design, synthesis, and biological activity of novel alpha(4)beta(1) and alpha(4)beta(7) integrin antagonists, containing a bridged azabicyclic nucleus, are reported. Conformational analysis of targets containing an azabicyclo[2.2.2]octane carboxylic acid and known integrin antagonists indicated that this azabicycle would be a suitable molecular scaffold. Variation of substituents on the pendant arylsulfonamide and phenylalanine groups resulted in potent alpha(4)beta(1)-selective and dual alpha(4)beta(1)/alpha(4)beta(7) antagonists. Potent compounds 11i, 11h, and 14 were effective in the antigen-sensitized sheep model of asthma.  相似文献   

2.
Multiple binding sites on the N-methyl-D-aspartate (NMDA) receptor complex were examined using rat brain synaptic membranes treated with Triton X-100. Binding of [3H](+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imi ne ([3H]MK-801), a noncompetitive NMDA antagonist, in the presence of 10 microM L-glutamate not only was inhibited by different types of antagonists, such as 6,7-dichloro-3-hydroxy-2-quinoxaline-carboxylate, 7-chlorokynurenate, and 6,7-dichloroquinoxaline-2,3-dione (DCQX), but also was abolished by non-NMDA antagonists, including 6-cyano-7-nitroquinoxaline-2,3-dione and 6,7-dinitroquinoxaline-2,3-dione. The inhibition of [3H]MK-801 binding by these compounds was invariably reversed or attenuated by addition of 10 microM glycine. Among these novel antagonists with an inhibitory potency on [3H]MK-801 binding, only DCQX abolished [3H]glycine binding without inhibiting [3H]glutamate and [3H](+-)-3-(2-carboxypiperazine-4-yl)propyl-1-phosphonate bindings. Other antagonists examined were all effective as displacers of the latter two bindings. These results suggest that DCQX is an antagonist highly selective to the strychnine-insensitive glycine binding sites with a relatively high affinity.  相似文献   

3.
The binding characteristics of [3H]U46619 to washed human platelets were studied. [3H]U46619 binding to washed human platelets was saturable and displaceable. Kinetic studies yielded a Kd of 11 +/- 4 nM (n = 4). Scatchard analysis of equilibrium binding studies revealed one class of high affinity binding sites with a Kd of 20 +/- 7 nM and a Bmax of 9.1 +/- 2.3 fmole/10(7) platelets (550 +/- 141 binding sites per platelet) (n = 4). A number of compounds that act as either agonists or antagonists of the TXA2/PGH2 receptor were tested for their ability to inhibit the binding of [3H]U46619 to washed human platelets. The Kds of the agonists and antagonists were similar to their potencies to induce or inhibit platelet aggregation. These data provide some evidence that [3H]U46619 binds to the putative human platelet TXA2/PGH2 receptor.  相似文献   

4.
In the process of developing GnRH receptor antagonists, a novel base-catalyzed cyclization of compounds 5a-b was discovered, which led to the formation of the 2-aryl pyrrolo[1,2-a]pyrimid-7-one core structures 6a-b. These intermediates were further modified at positions 1, 2, 4 and 6 to afford a series of potent GnRH antagonists with low nanomolar K(i) values.  相似文献   

5.
The conformations of four BK antagonists, [D-Arg 0, Hyp3, Thi5, D-Phe7, Acc8]BK (1), Aaa[D-Arg 0, Hyp3, Thi5, D-Phe7, Acc8]BK (2), [D-Arg 0, Hyp3, Thi5, 8, Apc7]BK (3), and Aaa[D-Arg(0), Hyp(3), Thi(5, 8), Apc7]BK (4) were studied by using 2D NMR spectroscopy and MD simulations with time-averaged (TAV) restraints. According to the results of the NMR measurements, the BK antagonists contain 7-30% of minor conformation resulting from cis/trans isomerization of the peptide bonds preceding either Pro or Hyp residues. The major conformation of each peptide possesses all peptide bonds in trans configuration. Peptides modified with the Apc residue at position 7 (peptides 3 and 4) possess a higher percentage of minor isomer.Peptide 1 exhibits the strongest vasodepressor potency among the analogs studied and as a single one forms the betaII-turn in the 2-5 fragment, which is believed to be crucial for antagonistic activity. This peptide is also the most compact. The radius of gyration (Rg) amounts to 6.9 A and is by ca 1.5 A lower than that of the remaining analogs. With peptide 4, the ST-turn of type I within the Ser6-Thi8 fragment was found.  相似文献   

6.
To identify and characterize V1 vasopressin receptors, photoreactive antagonists of the glycogenolytic and vasoconstrictor activity of vasopressin have been synthesized. The following analogues with 3-mercapto-3,3-cyclopentamethylene-propionic acid (Mca) and N-methylalanine (MeAla) in position 1 and 7 of vasopressin (VP) were effective V1 antagonists: [Mca1, D-Tyr2, MeAla7, Lys8]VP (1), [Mca1, MeAla7, Arg8, Lys9]VP (2), [Mca1, MeAla7, Arg8, D-Lys9]VP (3). Introduction of the photoreactive 4-azidophenylamidino group into the side-chain of Lys8 in analogue 1 or into Lys9 in analogues 2 and 3 increased the potency (for analogue 1 a tenfold increase in the antiglycogenolytic effect and a fivefold increase in the antivasopressor effect) and binding affinity for the rat hepatic V1 receptor. Mono-iodination at Tyr2 with 125I resulted in photoreactive antagonists of high specific radioactivity, which had roughly the same binding affinity as vasopressin for the rat hepatic V1 receptor (Kd = 0.9-1.8 nM). In photoaffinity labelling experiments with purified rat liver membranes, containing 2--3 pmol V1 receptor/mg protein, the analogues labelled specifically two proteins with the relative molecular masses (Mr) of 30,000 and 38,000. These results and the results of a recent study using 3H-labelled photoreactive vasopressin agonists [Boer, R. and Fahrenholz, F. (1985) J. Biol. Chem. 260, 15051-15054] provide evidence that both vasopressin agonists and antagonists can interact with the same two subunits of the heterodimeric hepatic V1 receptor. Furthermore the radioiodinated photoreactive V1 antagonists should be helpful to identify V1 receptor proteins in membranes of other cell types.  相似文献   

7.
Analogues of angiotensin II with cyclohexylalanine (Cha) at position 4 or 8, and analogues of the competitive (type II) angiotensin antagonist [Sar1,Tyr(Me)4]ANG II (Sarmesin) with Cha at position 8, have been prepared by the solid phase method and purified by reversed-phase HPLC. Analogues of ANG II with Cha at position 8 in which the position 1 residue was substituted with sarcosine (Sar) or amino-isobutyric acid (Aib) or was deleted (Des), were slowly reversing (Type I) antagonists with "pA2" values in the rat isolated uterus assay of approximately 8.5. The additional substitution of Tyr(Me) for Tyr at position 4 of these peptides gave reversible competitive (Type I/II) antagonists with pA2 values of 6.7, 5.8, and less than 5, while substitution of Phe for Tyr gave pA2 values of 7.4, 6.7, and less than 5, respectively. All 19 peptides synthesized in this study had low intrinsic agonist activity in the rat isolated uterus assay except for the type I antagonists [Sar1, Cha8]ANG II (7%), [Aib1, Cha8]ANG II (12%) and [Des1, Cha8]ANG II (20%). These data illustrate that the substitution of Cha at position 8 of ANG II analogues produces potent antagonists; however, Type I antagonists retain significant agonist activity whereas Type I/II antagonists do not. In contrast, substitution of Cha at position 4 in a variety of ANG II analogues resulted in severely diminished biological activity, illustrating that the presence of an aromatic ring quadrupole at position 4 is obligatory for receptor binding and activity.  相似文献   

8.
A series of 5-, 6-, 7- and 8-aza analogues of 3-aryl-4-hydroxyquinolin-2(1H)-one was synthesized and assayed as NMDA/glycine receptor antagonists. The in vitro potency of these antagonists was determined by displacement of the glycine site radioligand [(3)H]5,7-dicholorokynurenic acid ([(3)H]DCKA) in rat brain cortical membranes. Selected compounds were also tested for functional antagonism using electrophysiological assays in Xenopus oocytes expressing cloned NMDA receptor (NR) 1A/2C subunits. Among the 5-, 6-, 7-, and 8-aza-3-aryl-4-hydroxyquinoline-2(1H)-ones investigated, 5-aza-7-chloro-4-hydroxy-3-(3-phenoxyphenyl)quinolin-2-(1H)-one (13i) is the most potent antagonist, having an IC(50) value of 110 nM in [(3)H]DCKA binding and a K(b) of 11 nM in the electrophysiology assay. Compound 13i is also an active anticonvulsant when administered systemically in the mouse maximum electroshock-induced seizure test (ED(50)=2.3mg/kg, IP).  相似文献   

9.
We report the discovery of novel histamine H(3) receptor antagonists based on 4-[(1H-imidazol-4-yl)methyl]piperidine. The most potent compounds in the series (e.g., 7) result from the attachment of a substituted aniline amide to the main pharmacophore piperidine via a two-methylene linker.  相似文献   

10.
Pyrido[3,2-b]pyrazin-3(4H)-ones and pteridin-7(8H)-ones were evaluated as corticotropin-releasing factor-1 receptor antagonists. The synthesis, SAR studies and pharmacokinetic evaluation of these analogs are described herein.  相似文献   

11.
A new class of small molecule GnRH antagonists, the 7-aryl-8-fluoro-pyrrolo[1,2-a]pyrimid-4-ones, was designed and a novel synthesis for these compounds was developed. The synthesis utilizes a base-catalyzed intramolecular cyclization of fluoromethyl pyrimidone 5 to generate the bicyclic core. Amongst the compounds synthesized, we discovered some highly potent GnRH receptor antagonists (e.g., 12, K(i)=9 nM), which showed enhanced stability towards acidic physiological conditions compared to the des-fluoro analogues.  相似文献   

12.
We have tested the ability of several B2 antagonists on the responses of the open-circuited isolated canine tracheal epithelium to the luminal addition of Bradykinin (BK), Lys-BK, and substance P (SP). All three peptides produced biphasic changes in transmural potential difference (PD), an initial decrease (dip) followed by an increase (rise). The B2 antagonists -Argo [Hyp3,Thi5,8, -Phe7]BK (B5630) reversibly inhibited both the dips and the rise with IC50 values of 2.01 · 10−8 and 1.54 · 10−7 M, respectively. The responses to SP were unaffected even with high concentrations of the antagonist. Other antagonists tested [ -Phe1,7,Thi5,8]BK (B4158), [ -Phe2,7]BK (B4404), and [ -Phe7,Hyp8]BK (B5092) were ineffective.  相似文献   

13.
The mechanisms of action of three different glycine-site antagonists of the N-methyl-D-aspartate (NMDA)-receptor channel were analyzed employing [3H]glycine direct binding assays, as well as functional glycine- and glutamate-induced uncompetitive blocker binding assays. The latter assays measure apparent channel opening. All three antagonists tested, viz., 7-chlorokynurenic acid (7-Cl-KYNA), kynurenic acid (KYNA), and 1-hydroxy-3-aminopyrrolidone-2 (HA-966), inhibited the binding of [3H]glycine to the NMDA receptor in a dose-dependent manner. These antagonists also inhibited the glycine-induced increase in accessibility of the uncompetitive blocker [3H]N-[1-(2-thienyl)cyclohexyl]-piperidine ([3H]TCP) to the channel. 7-Cl-KYNA and KYNA, but not HA-966, completely blocked the glutamate-induced binding of [3H]TCP, in a manner similar to the non-competitive manner in which the selective NMDA antagonist D-(-)-2-amino-5-phosphonovaleric acid (AP-5) inhibited glycine-induced [3H]TCP binding. The inhibitory effects of HA-966 and of AP-5 on glutamate-induced [3H]TCP binding were overcome when glutamate concentrations were increased. Of the three antagonists, 7-Cl-KYNA appears to be the most potent (Ki = 0.4-1.0 microM) and the most selective glycine antagonist. KYNA was found to act at both the glycine (Ki = 40-50 microM) and the glutamate sites. In contrast, HA-966 (Ki = 6-17 microM) appears to act either on a domain distinct from the glutamate and the glycine sites, but tightly associated with the latter, or at the glycine site, but according to a mechanism distinct from that of 7-Cl-KYNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Joppa MA  Ling N  Chen C  Gogas KR  Foster AC  Markison S 《Peptides》2005,26(11):2294-2301
We investigated the effect of melanocortin 4 receptor (MC4) antagonists on food intake in mice. Food intake during the light phase was significantly increased by ICV administration of mixed MC3/MC4 antagonists (AgRP and SHU9119) or MC4 selective antagonist peptide [(Cyclo (1-5)[Suc-D-Nal-Arg-Trp-Lys]NH2] (MBP10) and the small molecule antagonists THP and NBI-30. Both mixed and selective antagonists significantly reversed anorexia induced by ICV administration of the MC4 agonist (c (1-6) HfRWK-NH2) and the cytokine IL-1beta. These findings provide pharmacological evidence that the MC4 receptor mediates the effects of melanocortin agonists and antagonists on food intake in mice, and support the idea that selective small molecule MC4 antagonists may be useful as therapeutics for cachexia.  相似文献   

15.
Crystallographic analysis of ligands bound to HDM2 suggested that 7-substituted 1,4-diazepine-2,5-diones could mimic the alpha-helix of p53 peptide and may represent a promising scaffold to develop HDM2-p53 antagonists. To verify this hypothesis, we synthesized and biologically evaluated 5-[(3S)-3-(4-chlorophenyl)-4-[(R)-1-(4-chlorophenyl)ethyl]-2,5-dioxo-7-phenyl-1,4-diazepin-1-yl]valeric acid (10) and 5-[(3S)-7-(2-bromophenyl)-3-(4-chlorophenyl)-4-[(R)-1-(4-chlorophenyl)ethyl]-2,5-dioxo-1,4-diazepin-1-yl]valeric acid (11). Preliminary in vitro testing shows that 10 and 11 substantially antagonize the binding between HDM2 and p53 with an IC(50) of 13 and 3.6 microM, respectively, validating the modeling predictions. Taken together with the high cell permeability of diazepine 11 determined in CACO-2 cells, these results suggest that 1,4-diazepine-2,5-diones may be useful in the treatment of certain cancers.  相似文献   

16.
Each of the last 6 peptide bonds in the COOH terminus of [Leu11]substance P [( Leu11]SP) and [Nle11]spantide were replaced with [CH2NH], and each analogue was tested for SP agonist or antagonist activity by determining its ability to interact with SP receptors on dispersed acini from guinea pig pancreas. Each of the 6 spantide and 5 of the 6 SP analogues had no agonist activity, whereas [psi 9-10]SP was an agonist. For the spantide pseudopeptides, the psi 10-11 analogue (Ki,2.8 microM) was equipotent as an antagonist to spantide itself, whereas the psi 9-10, psi 8-9, psi 7-8, and psi 6-7 analogues were 2.5, 7, 5, and 3 times less potent. For the SP pseudopeptides, the psi 10-11 analogue was the most potent antagonist (Ki, 6.2 microM), whereas the psi 8-9, psi 7-8, and psi 6-7 analogues were 7-, 36-, and 39-fold less potent. There was a close correlation between the ability of each pseudopeptide to inhibit binding of 125I-Bolton-Hunter-SP and to affect amylase secretion. [psi 10-11]SP inhibited SP-stimulated amylase release in a competitive manner, and its inhibitory ability was specific for the SP receptor. Despite [psi 10-11]SP, spantide, and [psi 10-11]spantide having similar affinities for the SP receptor (Ki, 2-6 microM), for inhibition of binding of 125I-[Tyr4]bombesin, the analogues differed with [psi 10-11]SP having a 50-fold lower affinity than for the SP receptor, whereas [psi 10-11]spantide had a 4-fold lower affinity and spantide a 1.5-fold lower affinity for the SP receptor. These results demonstrate that SP pseudopeptides represent a new class of SP receptor antagonists and, in contrast to the currently described SP receptor antagonists, are more specific for SP receptors.  相似文献   

17.
Abstract: Addition of several polyamines, including spermidine and spermine, was effective in inhibiting binding of the antagonist ligand [3H] 5, 7-dichlorokynurenic acid ([3H]- DCKA) but not of the agonist ligand [3H] glycine ([3H] Gly) to a Gly recognition domain on the N -methyl-D-aspartic acid (NMDA) receptor ionophore complex in rat brain synaptic membranes. In contrast, [3H] DCKA binding was significantly potentiated by addition of proposed polyamine antagonists, such as ifenprodil and (±)-α-(4-chlorophenyl)-4- [(4-fluorophenyl)methyl]-1-piperidine ethanol, with [3H] Gly binding being unchanged. The inhibition by spermidine was significantly prevented by inclusion of ifenprodil. In addition, spermidine significantly attenuated the abilities of four different antagonists at the Gly domain to displace [3H] DCKA binding virtually without affecting those of four different agonists. Phospholipases A2 and C and p -chloromercuribenzosulfonic acid were invariably effective in significantly inhibiting [3H] DCKA binding with [3H] Gly binding being unaltered. Moreover, the densities of [3H] DCKA binding were not significantly different from those of [3H]- Gly binding in the hippocampus and cerebral cortex, whereas the cerebellum had more than a fourfold higher density of [3H] Gly binding than of [3H] DCKA binding. These results suggest that the Gly domain may have at least two different forms based on the preference to agonists and antagonists in the rodent brain.  相似文献   

18.
A novel series of [2.2.1]-oxabicyclo imide-based compounds were identified as potent antagonists of the androgen receptor. Molecular modeling and iterative drug design were applied to optimize this series. The lead compound [3aS-(3aalpha,4beta,5beta,7beta,7aalpha)]-4-(octahydro-5-hydroxy-4,7-dimethyl-1,3-dioxo-4,7-epoxy-2H-isoindol-2-yl)-2-iodobenzonitrile was shown to have potent in vivo efficacy after oral dosing in the CWR22 human prostate tumor xenograph model.  相似文献   

19.
Previous work in our laboratory demonstrated that ischemic-hypoxic brain injury in postnatal day 7 rats causes a substantial increase in phosphoinositide (PPI) turnover stimulated by the glutamate analogue quisqualic acid (QUIS) in the hippocampus and striatum. To examine this phenomenon in more detail, we performed similar experiments after producing injury by unilateral intracerebral injections of the glutamate analogue N-methyl-D-aspartate (NMDA). The 7-day-old rodent brain is hypersensitive to NMDA neurotoxicity and NMDA injection causes histopathology that closely resembles that produced by ischemia-hypoxia. NMDA, 17 nmol in 0.5 microliter, was injected into the right posterior striatum of 7-day-old rat pups and they were killed 3 days later. Hippocampal or striatal tissue slices were prepared from ipsilateral and contralateral hemispheres from vehicle-injected control and from noninjected control rat pups. Slices were then incubated with myo-[3H]inositol plus glutamate agonists or antagonists in the presence of lithium ions and [3H]inositol monophosphate ([3H]IP1) accumulation was measured. The glutamate agonists, QUIS, L-glutamic acid, and (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, stimulated greater [3H]IP1 release in tissue ipsilateral to the NMDA injection compared with that in the contralateral side and in control pups. The glutamate antagonists, D,L-2-amino-7-phosphonoheptanoic acid, 3-[(+)-2-carboxypiperazin-4-yl]-propyl-1-phosphoric acid, kynurenic acid, and 6,7-dinitroquinoxaline-2,3-dione did not inhibit QUIS-stimulated [3H]IP1 release. The enhanced PPI turnover in the lesioned tissue was specific to glutamate receptors because carbachol (CARB) failed to elicit preferential enhanced stimulation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The adenosine A2B receptor is the least well characterized of the four adenosine subtypes due to the lack of potent and selective agonists and antagonists. Despite the widespread distribution of A2B receptor mRNA, little information is available with regard to their function. The characterization of A2B receptors, through radioligand binding studies, has been performed, until now, by using low-affinity and non-selective antagonists like 1,3-dipropyl-8-cyclopentylxanthine ([3H]DPCPX),(4-(2-[7-amino-2-(2-furyl)-[1,2,4]triazolo-[2,3-a][1,3,5]triazin-5-ylamino]ethyl)-phenol ([3H]ZM 241385) and 3-(3,4-aminobenzyl)-8-(4-oxyacetate)phenyl-1-propyl-xanthine ([125I]ABOPX). Recently, high-affinity radioligands for A2B receptors, [N-(4-cyanophenyl)-2-[4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)-phenoxy]acetamide ([3H]MRS 1754), N-(2-(2-Phenyl-6-[4-(2,2,3,3-tetratritrio-3-phenylpropyl)-piperazine-1-carbonyl]-7H-pyrrolo[2,3-d]pyrimidin-4-ylamino)-ethyl)-acetamide ([3H]OSIP339391) and N-benzo[1,3]dioxol-5-yl-2-[5-(1,3-dipropyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide] ([3H]MRE 2029F20), have been introduced. This minireview offers an overview of these recently developed radioligands and the most important applications of drugs towards A2B receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号