首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One intraventricular injection of 50 μg of 5,6-dihydroxytryptamine produced, 24 hr later, a marked increase in rates of medial forebrain bundle self-stimulation. Whole brain serotonin levels were selectively depressed at this time, presumably because of the destructive effect on serotonin-containing neuron terminals. When whole brain serotonin levels had recovered fairly close to normal, the excitatory effect had disappeared. In rats having self-stimulation electrodes positioned at slight distances from the medial forebrain bundle, the excitatory effect never appeared. These results further support the theory that serotonergic neurons in the medial forebrain bundle are part of an inhibitory system subserving reward and motivational mechanisms. The results also again show the great importance of electrode placement as a determinant of a drug's effect on self-stimulation.  相似文献   

2.
The present study examined the ability of clitoral stimulation (CLS) to induce conditioned place preference (CPP) and Fos protein in the brain. Ovariectomized, hormone-primed Long-Evans rats were randomly assigned to receive either distributed CLS (1 stimulation every 5 s for 1 min prior to being placed in one distinctive side of a nonbiased CPP box for 2 min, after which the cycle of stimulation and CPP exposure were repeated for 4 more cycles, totaling 60 stimulations) or continuous CLS (1 stimulation per second for 1 min with 2 min in one side of the CPP box, repeated for 4 more cycles, totaling 300 stimulations). Two days later, females were placed into the other side of the CPP box without prior stimulation. CPP was tested after 5 sequential exposures each of CLS and no stimulation. Females given distributed stimulation developed a significant CPP whereas females given continuous stimulation did not. CLS induced Fos in hypothalamic and limbic structures, including the nucleus accumbens, piriform cortex, arcuate nucleus, and dorsomedial portion of the ventromedial hypothalamus, compared to no stimulation. However, distributed CLS induced more Fos in the medial preoptic area than continuous CLS or no stimulation. In contrast, continuous CLS induced more Fos in the posteroventral medial amygdala compared to no stimulation. These data indicate that CLS induces a reward state in the rat and a pattern of Fos activation in regions of the brain that process genitosensory input, incentive salience, and reward.  相似文献   

3.
It has become increasingly important to assess mood states in laboratory animals. Tests that reflect reward, reduced ability to experience reward (anhedonia) and aversion (dysphoria) are in high demand because many psychiatric conditions that are currently intractable in humans (e.g., major depression, bipolar disorder, addiction) are characterized by dysregulated motivation. Intracranial self-stimulation (ICSS) can be utilized in rodents (rats, mice) to understand how pharmacological or molecular manipulations affect the function of brain reward systems. Although many different methodologies are possible, we will describe in this protocol the use of medial forebrain bundle (MFB) stimulation together with the 'curve-shift' variant of analysis. This combination is particularly powerful because it produces a highly reliable behavioral output that enables clear distinctions between the treatment effects on motivation and the treatment effects on the capability to perform the task.  相似文献   

4.
Neurons with colocalized cholecystokinin and dopamine are present predominantly in the ventral tegmental area and project mainly to the caudal part of the medial nucleus accumbens. The activity of this dopamine system can be evaluated by means of the intracranial self-stimulation behavior on male Wistar rats having chronic electrodes implanted into the medial forebrain bundle in the postero-lateral area of the hypothalamus. The direct injection of 150 pmol CCK-8 into the medio-caudal accumbens induced an increase of intracranial self stimulation while a similar administration into its rostral portion produced a slight decrease of intracranial self-stimulation. The administration of 300 pmol CCK-4 into the same medio-caudal part of the accumbens produced an inhibitory action on intracranial self stimulation lasting for 25 min. The injection of 70 to 1300 pmol CCK-4 into the cerebral ventricles produced no change on intracranial self-stimulation. The intracerebroventricular injection of 70 pmol CCK-8 induced a large decrease of intracranial self-stimulation lasting for 20 min. Sodium chloride 0.15 M or unsulphated CCK-8 injection were without effect in either case. These results support the ideas that intracerebroventricular CCK-8 injection inhibits accumbens dopaminergic activity but that CCK-8 injection into the medio-caudal part of the accumbens, where nerve terminals with colocalized CCK and DA are present, facilitates this dopaminergic activity. In addition at the level of medio-caudal accumbens, CCK-8 and CCK-4 have opposite effects.  相似文献   

5.
Rats exhibiting steady self-stimulation behavior were trained to avoid a footshock after presentation of a unique brain rewarding stimulation of the postero-lateral part of the hypothalamus. Fifty percent of the animals tested were able to learn this conditioning paradigm. An hypothesis based upon modified internal physiological state elicited by the hypothalamic stimulation is discussed to explain the remaining half of the sample which failed to be conditioned. In the conditioned rats it seems that the time-dependent variable, the latency of response, can be used as a valid index for other experiments in which it is wished to study the internal decision process used to discriminate different hypothalamic stimulations in terms of their rewarding value.  相似文献   

6.
Male rats implanted with chronic electrodes into the postero-lateral hypothalamic site were tested for self-stimulation behaviour. Rats exhibiting steady self-stimulation behaviour were observed during mating tests with an oestrus female. During these tests the hypothalamus of male rats was stimulated. Results show that no stimulus-bound sexual behaviour was observed. Nevertheless, correlations were found between the rewarding value of the cerebral stimulation and the specific sexual components of mating behaviour. These results are interpreted with the hypothesis of a balancing effect between the reward elicited by direct stimulation of the brain and reward acquired by the presence of an oestrus female.  相似文献   

7.
Backward pairings of a distinctive chamber as a conditioned stimulus and wheel running as an unconditioned stimulus (i.e., running-then-chamber) can produce a conditioned place preference in rats. The present study explored whether a forward conditioning procedure with these stimuli (i.e., chamber-then-running) would yield place preference or aversion. Confinement of a rat in one of two distinctive chambers was followed by a 20- or 60-min running opportunity, but confinement in the other was not. After four repetitions of this treatment (i.e., differential conditioning), a choice preference test was given in which the rat had free access to both chambers. This choice test showed that the rats given 60-min running opportunities spent less time in the running-paired chamber than in the unpaired chamber. Namely, a 60-min running opportunity after confinement in a distinctive chamber caused conditioned aversion to that chamber after four paired trials. This result was discussed with regard to the opponent-process theory of motivation.  相似文献   

8.
The hypothalamic neuropeptide orexin (hypocretin) mediates reward related to drugs of abuse and food intake. However, a role for orexin in sexual reward has yet to be investigated. Orexin neurons are activated by sexual behavior, but endogenous orexin does not appear to be essential for sexual performance and motivation in male rats. Therefore, the goal of the current study was to test the hypothesis that orexin is critically involved in processing of sexual reward in male rats. First, it was demonstrated following exposure to conditioned contextual cues associated with sexual behavior in a conditioned place preference paradigm that cFos expression is induced in orexin neurons, indicating activation of orexin neurons by cues predicting sexual reward. Next, orexin-cell specific lesions were utilized to determine the functional role of orexin in sexual reward processing. Hypothalami of adult male rats were infused with orexin-B-conjugated saporin, resulting in greater than 80% loss of orexin neurons in the perifornical-dorsomedial and lateral hypothalamus. Orexin lesions did not affect expression of sexual behavior, but prevented formation of conditioned place preference for a sexual behavior paired chamber. In contrast, intact sham-treated males or males with partial lesions developed a conditioned place preference for mating. Orexin lesioned males maintained the ability to form a conditioned place aversion to lithium chloride-induced visceral illness, indicating that orexin lesions did not disrupt associative contextual memory. Overall, these findings suggest that orexin is not essential for sexual performance or motivation, but is critical for reward processing and conditioned cue-induced seeking of sexual behavior.  相似文献   

9.
Drugs that are addictive in humans have a number of commonalities in animal model systems-(1). they enhance electrical brain-stimulation reward in the core meso-accumbens reward circuitry of the brain, a circuit encompassing that portion of the medial forebrain bundle (MFB) which links the ventral tegmental area (VTA) of the mesencephalic midbrain with the nucleus accumbens (Acb) of the ventral limbic forebrain; (2). they enhance neural firing of a core dopamine (DA) component of this meso-accumbens reward circuit; (3). they enhance DA tone in this reward-relevant meso-accumbens DA circuit, with resultant enhancement of extracellular Acb DA; (4). they produce conditioned place preference (CPP), a behavioral model of incentive motivation; (5). they are self-administered; and (6). they trigger reinstatement of drug-seeking behavior in animals behaviorally extinguished from intravenous drug self-administration behavior and, perforce, pharmacologically detoxified from their self-administered drug. Cannabinoids were long considered 'anomalous', in that they were believed to not interact with these brain reward processes or support drug-seeking and drug-taking behavior in these animal model systems. However, it is now clear-from the published data of several research groups over the last 15 years-that this view of cannabinoid action on brain reward processes and reward-related behaviors is untenable. This paper reviews those data, and concludes that cannabinoids act on brain reward processes and reward-related behaviors in strikingly similar fashion to other addictive drugs.  相似文献   

10.
R F Mucha  A Herz 《Life sciences》1986,38(3):241-249
Using taste and place preference conditioning, the present study examined the motivational properties produced in adult rats by systemic administration of (-) and (+) morphine, levorphanol, and dextrorphan. Conditioned place preference was stereospecific; it was only produced by the opioid receptor active isomers, levorphanol and (-) morphine. Similarly, a conditioned taste preference produced by a low dose of morphine was only seen with the active isomer. Conditioned taste aversion, however, was produced in a comparable dose range by both the active and the inactive isomers. In addition injections of inactive isomers also produced tolerance to the taste aversion produced by (-) morphine. Therefore, administration of both opioid active and inactive isomers of opioid agonists are unconditioned stimuli for the production of preference behaviors. In addition, it was concluded that the appetitive reinforcing properties of these drugs, seen as taste and place preferences, appear to require activation of specific opioid receptors, whereas the aversive effects, seen as taste aversion may also involve other mechanisms.  相似文献   

11.
Brown RM  Short JL  Lawrence AJ 《PloS one》2010,5(12):e15889
Relapse prevention represents the primary therapeutic challenge in the treatment of drug addiction. As with humans, drug-seeking behaviour can be precipitated in laboratory animals by exposure to a small dose of the drug (prime). The aim of this study was to identify brain nuclei implicated in the cocaine-primed reinstatement of a conditioned place preference (CPP). Thus, a group of mice were conditioned to cocaine, had this place preference extinguished and were then tested for primed reinstatement of the original place preference. There was no correlation between the extent of drug-seeking upon reinstatement and the extent of behavioural sensitization, the extent of original CPP or the extinction profile of mice, suggesting a dissociation of these components of addictive behaviour with a drug-primed reinstatement. Expression of the protein product of the neuronal activity marker c-fos was assessed in a number of brain regions of mice that exhibited reinstatement (R mice) versus those which did not (NR mice). Reinstatement generally conferred greater Fos expression in cortical and limbic structures previously implicated in drug-seeking behaviour, though a number of regions not typically associated with drug-seeking were also activated. In addition, positive correlations were found between neural activation of a number of brain regions and reinstatement behaviour. The most significant result was the activation of the lateral habenula and its positive correlation with reinstatement behaviour. The findings of this study question the relationship between primed reinstatement of a previously extinguished place preference for cocaine and behavioural sensitization. They also implicate activation patterns of discrete brain nuclei as differentiators between reinstating and non-reinstating mice.  相似文献   

12.
Paced mating induces positive affect as revealed by conditioned place preference (CPP) in female rats. It has been suggested that endogenous opioids are involved in the generation of this positive affect since systemic administration of the opioid antagonist naloxone blocks mating-induced CPP. Several brain structures, including the medial preoptic area (mPOA), the ventromedial nucleus of the hypothalamus (VMH), the amygdala (Me), and the nucleus accumbens (Acb) have been implicated in the control of female sexual behavior. However, it is not known if these structures also participate in the positive affect produced by paced mating. To this end we determined the effects of intracranial administration of naloxone methiodide into the mPOA, VMH, Me and Acb on conditioned place preference induced by paced mating in female rats. Regardless of the site of infusion 5 μg of naloxone did not affect any of the sexual behavior parameters measured during copulation. When CPP was evaluated, the groups infused with naloxone into the mPOA, the VMH, and the Me before each conditioning session did not develop place preference. Only the group infused with naloxone in the Acb and the control groups did so. These results demonstrate that opioid receptors within the mPOA, VMH and Me are necessary for the rewarding aspects of paced mating. We suggest that the Me and VMH are important for the transmission of sensory information produced by copulation while the mPOA is the site where the positive affect is originated.  相似文献   

13.
《Hormones and behavior》2009,55(5):709-716
Paced mating induces positive affect as revealed by conditioned place preference (CPP) in female rats. It has been suggested that endogenous opioids are involved in the generation of this positive affect since systemic administration of the opioid antagonist naloxone blocks mating-induced CPP. Several brain structures, including the medial preoptic area (mPOA), the ventromedial nucleus of the hypothalamus (VMH), the amygdala (Me), and the nucleus accumbens (Acb) have been implicated in the control of female sexual behavior. However, it is not known if these structures also participate in the positive affect produced by paced mating. To this end we determined the effects of intracranial administration of naloxone methiodide into the mPOA, VMH, Me and Acb on conditioned place preference induced by paced mating in female rats. Regardless of the site of infusion 5 μg of naloxone did not affect any of the sexual behavior parameters measured during copulation. When CPP was evaluated, the groups infused with naloxone into the mPOA, the VMH, and the Me before each conditioning session did not develop place preference. Only the group infused with naloxone in the Acb and the control groups did so. These results demonstrate that opioid receptors within the mPOA, VMH and Me are necessary for the rewarding aspects of paced mating. We suggest that the Me and VMH are important for the transmission of sensory information produced by copulation while the mPOA is the site where the positive affect is originated.  相似文献   

14.
The speed of local blood flow (SLBF) in positive emotiogenic hypothalamic zones was recorded in free-moving white rats, by the method of hydrogen clearance, in states of passive and active alertness, in conditions of artificial (local) activation (by cathode) and inactivation (by DC anode) and also during stimulation of other positive and negative emotiogenic structures. It was established that the natural or artificial activation of the emotiogenic brain zones elicits an increase of SLBF and the inactivation evokes its reduction. Blood flow of the positive emotiogenic brain zones is intensified by stimulation of other positive emotiogenic structures, is reduced by stimulation of the negative emotiogenic zones and does not change at stimulation of emotionally neutral zones. It is suggested, that the mechanism of vascular reactions elicited by activation of positive and negative emotiogenic brain structures has a neurogenic basis and is performed in the type of "axon-reflex" by collaterals of ascending and descending fibers of the forebrain medial bundle.  相似文献   

15.
Experiments were done in alpha-chloralose-anesthetized rats to determine a pathway mediating the cardiovascular depressor responses elicited from stimulation of the ventral tegmental area (VTA). The magnitude of the depressor responses elicited by glutamate stimulation (0.1 M/30 nl) of the VTA was examined after neuronal block produced by microinjections of lidocaine into ascending fiber bundles leaving the VTA to innervate the forebrain and thalamus. Bilateral microinjections of 1 microl of 4% lidocaine in the medial forebrain bundle (n = 6) and in the periventricular fibers of the midbrain (n = 5) did not attenuate the depressor response from stimulation of the VTA. Experiments were done using the anterograde tracer biotinylated dextran amine to identify descending projections from the VTA to cardiovascular centers in the brain stem. Examination of the nucleus of the solitary tract, ventrolateral medulla, and A5 catecholaminergic cell group revealed few or no fibers or terminals. Occasional fibers and some terminals were observed in the nucleus of raphe magnus, parabrachial nucleus, and locus ceruleus. A very dense bilateral projection was found to the ventrolateral periaqueductal gray (PAGvl) and dorsal raphe nucleus adjacent to the PAGvl. Bilateral injections of 4% lidocaine (n = 4) or 10 mM cobalt chloride (n = 5) into the PAGvl region attenuated the depressor responses elicited by stimulation of the VTA by approximately 50%. These experiments indicate that the depressor responses elicited from activation of the VTA are mediated in part by a pathway to a cardiovascular depressor area located in the PAGvl.  相似文献   

16.
Niu  Lili  Guo  Yanchen  Lin  Zhengrong  Shi  Zhe  Bian  Tianyuan  Qi  Lin  Meng  Long  Grace  Anthony A.  Zheng  Hairong  Yuan  Ti-Fei 《中国科学:生命科学英文版》2020,63(9):1328-1336
Ultrasound stimulation is an emerging noninvasive option in treating neuropsychiatric disorders. The present study investigates the behavioral alterations resulting from ultrasound stimulation on the nucleus accumbens(NAc) in freely moving mice. Our results show that an acute ultrasound stimulation on the NAc, rather than the visual cortex or auditory cortex, led to a pronounced avoidance behavior, while repeated NAc ultrasound stimulation resulted in an obvious conditioned place aversion with changes in synaptic protein(Glu A1/2 subunit) expression. Notably, NAc ultrasound stimulation suppressed the morphine-induced conditioned place preference. The results provide evidence that NAc ultrasound stimulation can be applied as a potential noninvasive therapeutic option in treating psychiatric disorders.  相似文献   

17.
Neuropeptide substance P (SP) has reinforcing and memory facilitating effects after its peripheral or central application. Rats self-inject SP into the ventromedial caudate-putamen and SP microinjections into the basal forebrain induce place preference with a simultaneous increase of dopamine level. In the amygdaloid body SP positive neurones and terminals have been identified. The aim of the present study was to examine the possible reinforcing effects of SP in the basolateral amygdala (ABL). CFY male rats were conditioned in two-compartment passive avoidance paradigm and place preference was examined in two-compartment-box and in circular open field. Animals were microinjected bilaterally with 10 ng SP, 100 ng SP or vehicle solution (0.4 microl/side) into the ABL. Results showed that post-shock infusion of 10 ng SP significantly enhanced passive avoidance learning while 100 ng SP was ineffective. In two-compartment-box and in circular open field place preference did not develop after SP treatments, however. Our data are the first to demonstrate that SP in the ABL is involved in learning and memory processes related to aversive situations. Results that SP microinjections were not followed by rewarding-reinforcing consequences in place preference paradigms indicate that the local SP network in the ABL is not involved in neuronal circuitry responsible for addictive behaviour.  相似文献   

18.
Estradiol accelerates extinction of LiCl-induced conditioned taste aversions when it is present during a period that starts 2-3 days after acquisition and extends throughout extinction (before and during extinction). It has been suggested that estradiol acts before, not during, extinction and that its effect on extinction is associated with its illness-inducing properties. This hypothesis is based on previous work which shows an attenuation of conditioned taste aversion learning when rats are exposed to illness-inducing agents during a period that starts 2 days after acquisition and ends 2 days before extinction trials are initiated. Four experiments were designed to test elements of this hypothesis. The first two experiments demonstrated that if an estradiol-filled Silastic capsule is implanted before extinction of a LiCl-induced aversion, when the conditioned taste is not present, it accelerates extinction, but if it is implanted during extinction, when the conditioned taste is present, it prolongs extinction. The third experiment showed that the same dose of estradiol that accelerates extinction of a LiCl-induced aversion was effective in producing a conditioned taste aversion when it was present for 18 h after consumption of a novel sucrose solution. The fourth experiment indicated that serum levels of estradiol were elevated during the 18 h. These results are consistent with the hypothesis that the acceleration of extinction by estradiol is associated with its illness-inducing properties. It is suggested that estradiol acts on neural areas that mediate illness information and that one of these areas, the area postrema is necessary for estradiol to accelerate extinction of a LiCl-induced aversion.  相似文献   

19.
Xu DD  Mo ZX  Yung KK  Yang Y  Leung AW 《Neuro-Signals》2006,15(6):322-331
Methamphetamine (MA), a commonly abused psychostimulant, induces the drug dependence by enhancing the dopamine-mediated neurotransmission. Ketamine (KET) is a non-competitive N-methyl-D-aspartate receptor antagonist, which can be actually mixed with MA for polydrug abuse. In the present study, the individual and combined effects of KET (10 mg/kg, i.p.) and MA (1 mg/kg, i.p.) on conditioned place preference in rats were investigated. The alterations of serine 897 phosphorylations of NR1 receptors in the striatum and ventral tegmental area of after-conditioning rats were measured immunochemically. The results showed repeated administrations of MA, KET and their combination, at the doses studied, all could induce psychological dependences evaluated by conditioned place preference. KET was not able to suppress the MA-induced place preference. The modulations of NR1 phosphorylations in basal ganglia were partly responsible to place preference. Although the alterations induced by KET were not significant in most areas we studied, MA showed a significant increase in the ventral tegmental area but a marked decrease in caudate putamen and nucleus accumbens. Such alterations were much more significant when KET and MA were combined. These results have important implications for public awareness of harm with combined drug abuse. Further investigations toward the specific interaction of the two drugs are necessary.  相似文献   

20.
To analyse the interaction between endogenous opioid systems and brain reward, the influence of repeated treatment for 3 weeks with morphine and the opioid antagonist naloxone was investigated in rats with self-stimulation electrodes in the ventral tegmental area. Changes in threshold of self-stimulation determined by a response rate insensitive two lever method were considered as changes in reward. Morphine induced a temporary decrease of the response rate which lasted 3 days, and decreased the threshold for self-stimulation. The effect on threshold remained present till morphine treatment was discontinued, indicating that tolerance does not develop to this effect of morphine. Repeated naloxone treatment gradually increased the threshold for self-stimulation. This effect persisted after discontinuation of naloxone treatment. It is concluded that blockade of opioid receptors induces long term changes in the setpoint of self-stimulation reward.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号