首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. The kinetics of transfer of tritium-labeled material from the DNA of ingested bacteria into macronuclear DNA of Paramecium was examined by autoradiography. Bacteria labeled with tritiated thymidine were almost immediately incorporated into food vacuoles, thus becoming available for digestion and a potential source of labeled DNA precursors. Soluble label derived from food vacuoles appeared in low concentrations in the cytoplasm soon after cells were transferred to medium with labeled bacteria; incorporation of labeled precursors into macronuclear DNA began within 5 min. Labeled food vacuoles remained as potential sources of tritiated DNA precursors for a long and variable period after removal of labeled cells to non-labeled medium. The activity of the soluble cytoplasmic DNA precursors decreased parallel to the loss of labeled food vacuoles and no soluble DNA precursors were carried over from one macronuclear DNA synthetic period to the next. Labeling experiments were designed, using this information, which allowed determination of the pattern of macronuclear DNA synthesis and nuclear mass increase during the cell cycle. Macronuclear DNA synthesis began 25–30% of the way thru the cell cycle, continued at a constant rate during the middle half, and decreased in rate during the last quarter. Macronuclear mass increased in an approximately linear fashion, beginning with the onset of DNA synthesis and doubling by the time of karyokinesis.  相似文献   

2.
Erythroblasts of four vertebrate species (Triturus cristatus, Rana esculenta, Lacerta viridis and Gallus domesticus) differing markedly in their nuclear diploid DNA content, are used to study a possible relationship between cell cycle duration and DNA content. DNA is determined cytophotometrically and fluorometrically. The cell cycle is analysed by evaluating labelled mitoses after an injection of tritiated thymidine and also by double labelling with 14C- and 3H-thymidine. A direct but non-linear relationship is demonstrated between DNA content of erythroblast nuclei and the duration of DNA-synthesis.  相似文献   

3.
Continuous cultivation of heterotrophic freshwater bacteria was used to assess the relationship between DNA synthesis and tritiated thymidine incorporation. The bacteria were grown on a yeast extract medium with generation times of 0.25 to 3.7 days. In six different continuous cultures, each inoculated with a grazer-free mixed bacterial sample from Lake Vechten (The Netherlands), tritiated thymidine incorporation into a cold trichloroacetic acid precipitate and bacterial cell production were measured simultaneously. Empirical conversion factors were determined by division of both parameters. They ranged from 0.25 × 1018 to 1.31 × 1018 cells mol of tritiated thymidine-1 (mean, 0.60 × 1018 cells mol of tritiated thymidine-1). In addition, DNA concentrations were measured by fluorometry with Hoechst 33258. The validity of this technique was confirmed. Down to a generation time of 0.67 day, bacterial DNA content showed little variation, with values of 3.8 to 4.9 fg of DNA cell-1. Theoretical conversion factors, which can be derived from DNA content under several assumptions, were between 0.26 × 1018 and 0.34 × 1018 cells mol of thymidine-1 (mean, 0.30 × 1018 cells mol of thymidine-1). Isotope dilution was considered the main factor in the observed discrepancy between the conversion factors. In all experiments, a tritiated thymidine concentration of 20 nM was used. Control experiments indicated maximum incorporation at this concentration. It was therefore concluded that the observed difference resulted from intracellular isotope dilution which cannot be detected by current techniques for isotope dilution analysis.  相似文献   

4.
Measurements to determine the kinetic status of the morphologically unrecognizable haemopoietic precursor cells in the bone marrow are frequently carried out using techniques which inhibit or destroy cells in the DNA-synthetic (S) phase of the cell cycle. For example, tritiated thymidine (3H-TdR) has for many years been recognized as a highly specific label for DNA synthesis and, as such, administration of large doses of 3H-TdR has often been used, both in vitro and in vivo, to kill cells in S. Assay of the surviving cells has then given a measure of the proportion of the total cells which are in the S-phase of the generation cycle. Other compounds which have been used for the same purpose are: 125Iodo-deoxyuridine (125I-UdR), another S-phase specific label, or hydroxyurea (HU) which prevents entry of cells into S and inhibits or kills cells already in S (Sinclair, 1965). For a variety of reasons, different laboratories tend to make different choices of the agent to be used for this purpose. As a result, it has sometimes proved difficult to marry data obtained from different sources. In the course of using 3H-TdR, tritiated uridine (3H-Ur), 125I-UdR and HU in attempts toevaluate the kinetic status of bone marrow stem cells, it has become clear that their use is not straightforward and this paper presents data which illustrate some of the pitfalls associated with their use.  相似文献   

5.
KB cells grown in suspension culture were synchronized by using a double thymidine block. At various times throughout the life cycle aliquots of cells were pulsed with 14C-L-leucine, 14C-D-glucosamine and 14C-choline for one hour periods. Surface membranes, cell particulates and soluble proteins were isolated and their 14C specific activities were determined. It was found that there was a marked increase in the rate of incorporation into surface membrane just after division. The pattern of incorporation was the same for all three isotopic precursors. The rate of incorporation of isotopic precursors into soluble proteins was constant throughout the cycle. Some increase in rate of incorporation of isotope into the particulate fraction was observed during division.  相似文献   

6.
To investigate the response of cells to one type of DNA damage — namely DNA crosslinks — cell-cycle progression and macromolecular synthesis were studied with cultured mouse FM3A cells. Treatment of the cells with low doses of 8-methoxypsoralen (8-MOP) plus near-UV radiation (0.1 μg/ml plus 5 kJ/m2 or 1.0 μg/ml plus 1–2.5 kJ/m2)_halted the progression of cells through the cell cycle temporarily for the first several hours. Then the cells resumed progression through the cell cycle, and most of the cells reached, and were finally arrested at, the G2 phase of the cycle. There was a rapid decrease of incorporation of [3H]thymidine into cellular DNA immediately after the treatment. Then, after 8 h of incubation, the incorporation of [3H]thymidine recovered to some extent depending on the dose of 8-MOP plus near-UV radiation. Thus the decrease and recovery of the incorporation of [3]Hthymidine were correlated with the halt and resumption in the cell-cycle process.Synthesis of RNA and protein was measured by determination of the amounts in the cells or by the incorporation of radioactive precursors after treatment. RNA and protein synthesis were stimulated by low doses of 8-MOP plus near-UV radiation, but inhibited severely by high doses.  相似文献   

7.
In vivo studies of Ehrlich ascites tumor cells during the first 5 days of growth in peritoneal cavities of mice consisted of the following: 1. Determination of growth curves by direct enumeration of cells. 2. Estimation of the duration of each phase of the mitotic cycle based on incidence of cells in different phases. 3. Radioautographic studies to determine the proportion of cells in different phases of the mitotic cycle that incorporate tritiated thymidine during a single brief exposure to this precursor of DNA. 4. Estimation of the rate of incorporation of tritiated thymidine at different times during the period of DNA synthesis by comparison of mean grain counts over nuclei in radioautographs at different times following exposure to tritiated thymidine. The assumptions underlying these experiments and our observations concerning the duration of the period of DNA synthesis and its relation to the mitotic cycle are discussed. It is concluded that DNA synthesis is continuous, occupying a period of 8.5 hours during the interphase and that the average rate of synthesis is approximately constant.  相似文献   

8.
Mitochondrial DNA (mit-DNA) synthesis was compared in suspension cultures of Chinese hamster cells (line CHO) whose cell cycle events had been synchronized by isoleucine deprivation or mitotic selection. At hourly intervals during cell cycle progression, synchronized cells were exposed to tritiated thymidine ([3H]TdR), homogenized, and nuclei and mitochondria isolated by differential centrifugation. Mit-DNA and nuclear DNA were isolated and incorporation of radioisotope measured as counts per minute ([3H]TdR) per microgram DNA. Mit-DNA synthesis in cells synchronized by mitotic selection began after 4 h and continued for approximately 9 h. This time-course pattern resembled that of nuclear DNA synthesis. In contrast, mit-DNA synthesis in cells synchronized by isoleucine deprivation did not begin until 9–12 h after addition of isoleucine and virtually all [3H]TdR was incorporated during a 3-h interval. We have concluded from these results that mit-DNA synthesis is inhibited in CHO cells which are arrested in G1 because of isoleucine deprivation and that addition of isoleucine stimulates synchronous synthesis of mit-DNA. We believe this method of synchronizing mit-DNA synthesis may be of value in studies of factors which regulate synthesis of mit-DNA.  相似文献   

9.
In cultures of a murine mastocytoma, endogenous synthesis of thymidine phosphates, as determined by the incorporation of [3H]deoxyuridine into DNA, was reduced within 15 min to less than 3% of control values by the addition of amethopterin (10 µM) in combination with hypoxanthine and glycine. If [3H]thymidine and unlabeled thymidine were added simultaneously with amethopterin, the increase with time of radioactivity in cellular DNA was linear at least between 30 and 90 min, while radioactivity in the acid-soluble nucleotide fraction remained constant during this time interval, indicating that intracellular thymidine nucleotides had the same specific activity as exogenously supplied [3H]thymidine. This permitted calculation of the amount of thymidine incorporated per hour into DNA of 106 cells. In conjunction with the base composition of mouse DNA, these results were used to calculate rates of DNA synthesis. Cell proliferation rate, cell cycle time, and the duration of the S period were not affected to any appreciable extent by the addition of amethopterin and thymidine. Rates of DNA synthesis, as derived from thymidine incorporation rates, were in good agreement with those derived from the measured mean DNA content of exponentially multiplying cells and rates of cell proliferation.  相似文献   

10.
The floral organs of Tradescantia clone 4430 were used to investigate, in terms of cell cycle parameters, cellular behaviour during the maturation of a terminally differentiating system. Petals were sampled at different stages of development for (a) cell number; (b) nuclear DNA content by cytophotometry; (c) [3H]thymidine incorporation into nuclei by autoradiography; and (d) pigment production by spectrophotometry. DNA synthesis was confirmed by measurement of [3H]thymidine incorporation into TCA-insoluble material and changes in DNA content by colorimetric estimation of DNA extracts by diphenylamine. The development of the petal involved four sequential steps. First, there was an increase in cell number, an event characterized by mitoses, DNA synthesis, a few cells in G2 and a predominance in G1. Second, there was a cessation of cell division and DNA synthesis when all the cells accumulated in G1. Third, there was a shift of a large proportion of the total cell population from G1 to the G2 stage of the cell cycle and finally, there was pigment production. In addition, cytophotometric analysis of individual tissues in the mature petal revealed tissue specific differences in the proportion of cells in G2.  相似文献   

11.
Autoradiographic studies were carried out on regenerating muscles of adult chickens. Three different muscles of hens were injured, and tritiated thymidine (1 μCi/g) was injected at various times after injury to label replicating muscle precursors. Detailed comparisons of grain counts over premitotic nuclei in samples removed one hour after injection of tritiated thymidine, and of postmitotic myotube nuclei in samples removed 10 days after injury (when labeled precursors had fused to form myotubes), revealed how many times some labeled precursors had divided before fusing into myotubes. DNA synthesis in muscle precursors was initiated 30 h after injury. Grain counts of myotube nuclei indicated that many muscle precursors labeled at the onset of myogenic cell proliferation had divided only once, or twice, before fusing into myotubes. The relationship of these in vivo results to the cell lineage model of myogenesis is discussed.  相似文献   

12.
Bone marrow plasma cells from fifteen cases of multiple myeloma, immunologically typed, were incubated with different tritiated compounds. The labelling index with tritiated thymidine is generally low, while the mean grain count is fairly normal in the active cells. The labelling index of 3H-uridine and 3H-leucine was very high, while the mean grain count per cell lies within the normal range. The results obtained with 3H-phenylalanine-mustard (melphalan), which is a drug used in the treatment of the plasmacytoma, show also incorporation values roughly comparable to those of 3H-leucine. The present data seem to support the clinical use of melphalan as a compound that is actively incorporated into the plasma cells of plasmacytoma although inhibition of protein synthesis due to specific binding to protein was not demonstrated.  相似文献   

13.
The incorporation of tritiated thymidine into the DNA of the dorsal foot-pad nuclei of Sarcophaga bullata, during pharate adult development, was studied by scintillation counting and autoradiography. Incorporation was maximal on day 4 and showed a progressive temporal decline on days 5 to 8. Autoradiographs of chromosomal arms A1, A2 and D1, from late stages of the prolonged S period, showed discontinuous incorporation. On days 7 and 8 loci which incorporated the radio-labeled precursor were almost exclusively associated with DNA granules. DNA granules were associated with 8 specific loci in chromosomal arm A1, 10 in A2, and 8 in D1. The relationship between patterns of incorporation of tritiated thymidine and DNA granules is discussed.Deceased June 15, 1975  相似文献   

14.
Developing erythroid cells of the goldfish Carassius auratus were obtained from kidney prints and from smears of the peripheral blood. All preparations were stained with the May-Grunwald Giemsa technique. Developing cells were divided into six different stages. The criteria used to stage the cells were degree of chromatin condensation, degree of basophilia, nuclear:cytoplasmic ratio, and cell shape. The morphology of the maturation sequence for erythroid cells in this organism was similar to that found by other workers in other non-mammalian vertebrates. Fish received intraperitoneal injections of tritiated thymidine, tritiated uridine or tritiated leucine so that the stages involved in DNA synthesis, RNA synthesis and protein synthesis could be determined by means of autoradiography. For the tritiated thymidine studies the per cent labeled cells per stage from four different series receiving 0.5, 1.0, 3.0 or 6.0 μCi/g body weight were pooled, since subjecting the average per cent labeled cells per stage at the lowest and at the highest dosages to Student's t-test showed no significant differences. In all four series the fish were killed 2 hr, 12 hr and daily, 1–8 days post-injection. The 3H-TdR studies showed that stages I-IV were engaged in DNA synthesis; they also showed that about 5 days were required for the stage V cell to become a mature erythrocyte (stage VI cell). Tritiated uridine was injected at a dosage of 5.0 μCi/g body weight and animals were killed 1/2, 1, 3 and 6 hr post-injection. Grain counts showed that stages I-IV are engaged in RNA synthesis and that the rate of this synthesis decreased as maturation proceeded. Tritiated leucine was administered at a dosage of 5.0 μCi/g body weight, and fish were killed 45 min and 3 hr post-injection. Grain counts indicate that stages I-V are engaged in the synthesis of protein (assumed to be globin). The fact that DNA and RNA synthesis ceased with stage IV cells while protein synthesis continued into stage V cells indicated that the mechanism responsible for protein synthesis in stage V cells was produced at an earlier stage and was self-sustained for about 5 days.  相似文献   

15.
Isolated cultured roots of Convolvulus arvensis L. were incubated in 0.2 microcurie per milliliter methyl-3H-thymidine for 14 hours, for 64 hours, or for 14 hours followed by transfer to fresh nutrient medium without tritiated thymidine. Autoradiographs of serial, longitudinal sections of roots which were continuously incubated with tritiated thymidine showed that cells of the root cap columella did not undergo DNA synthesis after their formation from the root cap initials. In roots pulse-labeled with tritiated thymidine, the movement of labeled cells through the root cap columella was followed. Labeled cells were displaced at a constant rate of 72 microns per day over a period of 6 to 9 days before they were sloughed off from the root cap. The specialized role of the root cap cells in relation to their distinctive metabolism and longevity is discussed.  相似文献   

16.
The rate of DNA synthesis in the course of the division cycle in root meristem ofAllium cepa growing under constant temperature and aeration conditions has been studied by means of treatment with AdR, as a specific inhibitor of the synthesis, as well as by the incorporation of tritiated thymidine. The one-hour treatment with AdR or tritiated thymidine was given at various hours in the course of the interphase of a synchronous population of binucleate cells induced by caffeine. In the case of AdR, sensitivity to the inhibition of DNA synthesis was studied by recording the delays produced by the treatment in the appearance of biprophases and bitelophases. The selection by the use of caffeine, of spontaneously synchronous populations of cells going through the telophase and becoming binucleate and the detection of the first biprophases in the subsequent mitosis provide a highly synchronized system with which to study the incorporation of tritiated thymidine during the interphase. The curves representing sensitivity to the inhibition of DNA synthesis by AdR and the rate of tritiated thymidine incorporation coincide, so that we can regard the delays, under our conditions, as proportional to the rate of DNA synthesis at the moment of the AdR treatment. This rate, in the S period, was found to be variable by both methods, being higher in the first and the last thirds of the S period (S1 and S3) and lower in the middle third (S2).  相似文献   

17.
18.
The study of an effect of exogenous thymidine on the mitotic cycle demonstrated that a 30 minute exposure to unlabeled and to tritiated thymidine at a concentration of 2.9 × 10?6 M was sufficient to cause a significant increase in the mitotic index of root meristem cells of Haplopappus gracilis. An analysis of the data revealed that this was due to the prolongation of metaphase rather than to an increase in the actual number of cells entering division.  相似文献   

19.
Multiplication stimulating activity (MSA) has been purified from the conditioned media of rat liver cells in culture by a modification of the procedure of Dulak and Temin. Purified MSA stimulates [3H] thymidine incorporation into DNA in subconfluent, serum starved 3T3 cells. Cell cycle analysis by the flow microfluorometer shows that the [3H] thymidine incorporation data reflects DNA synthesis. MSA also stimulates the multiplication of serum starved subconfluent 3T3 cells. MSA is approximately 10-fold less active in 3T3 cells than in chick embryo fibroblasts in stimulating [3H] thymidine incorporation into DNA. MSA causes a 2–10-fold increase in ornithine decarboxylase (ODC) activity in 3T3 cells and the dose response curve parallels the dose response curve for [3H] thymidine incorporation into DNA. The Km of ODC for ornithine is 0.12 mM. There is a 30% decrease in the activity of ornithine transaminase (OTA) during the time period in which MSA causes an increase in ODC activity. Insulin also stimulates [3H] thymidine incorporation into DNA, cell multiplication and ODC activity over the same concentration range as shown for MSA, however, the extent of stimulation by insulin is less than that observed following MSA addition.  相似文献   

20.
Summary Prostaglandin E1 (PGE1), high concentrations of dibutyryl cyclic AMP (dbcAMP), and theophylline were strikingly inhibitory both to tritiated thymidine ([3H]TdR) incorporation into bone marrow deoxyribonucleic acid (DNA) in vitro and to granulocytic colony growth. Autoradiography revealed that lower concentrations of dbcAMP were stimulatory to red blood cell precursors. This study was supported in part by United States Public Health Service Grant AM15163, by Health Research Council of the City of New York Career Scientist Award I-683, and by a Veterans Administration Medical Investigatorship to V. H.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号