首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PC cell-derived growth factor (PCDGF) is an 88 kDa glycosylated protein isolated from a highly tumorigenic mouse teratoma derived cell line which is similar to the epithelin/granulin precursor. Using Northern blot and western blot analyses, we detect the expression of PCDGF mRNA and protein in MCF-7 human breast cancer cells. We show that 17-beta-estradiol stimulates PCDGF mRNA and protein expression in a time and dose-dependent manner. The stimulation of PCDGF expression by 17-beta-estradiol was observed as early as 4 hours and reached a maximum at 12 hours. Maximal stimulation of PCDGF mRNA and protein expression by 17-beta-estradiol was observed at a concentration of 10(-8) M. The stimulation of PCDGF expression by 17-beta-estradiol was completely inhibited by treatment with actinomycin D and with the antiestrogen 4-hydroxytamoxifen. The stimulation of PCDGF expression was also demonstrated in another human estrogen-responsive cell line T47D. The results presented here provide evidence of a novel estradiol responsive gene product in human breast cancer cell lines and give information about the hormonal control of epithelin/granulin (PCDGF) expression in these cells.  相似文献   

2.
Apoptosis, or programmed cell death, plays an important role in the pathogenesis of a number of human diseases, including cancers, autoimmune diseases, and neurodegenerative disorders. Recent evidence suggests that EGF induced signal transduction pathways which govern cell proliferation and cell cycle progression also mediate antiproliferative effects leading to increased apoptosis in cells that express high levels of epidermal growth factor receptors. Treatments designed to increase apoptosis have potential to change the natural progression of cancer and eventually lead to its successful control.  相似文献   

3.
Zhou Q  Meng D  Yan B  Jiang BH  Fang J 《FEBS letters》2006,580(22):5161-5166
Insulin-like growth factor (IGF-1) plays an important role in prostate cancer development. Recent studies suggest that IGF-1 has mitogenic action through epidermal growth factor receptor (EGFR). However, the mechanism remains largely unknown. Here, we demonstrated in prostate cancer DU145 cells that IGF-1 induced EGFR transactivation, leading to ERK activation. Matrix metalloproteinase-mediated shedding of heparin-binding EGF is involved in this process. Antioxidants and catalase inhibited IGF-1-stimulated EGFR phosphorylation, indicating that H(2)O(2) is required for EGFR activation. However, exogenous H(2)O(2) did not activate EGFR or IGF-1R in DU145 cells. IGF-1 did not induced production of H(2)O(2) in DU145 cells. Our results suggest that transactivation of EGFR by IGF-1 requires basal intracellular H(2)O(2) in DU145 cells.  相似文献   

4.
Density-induced down regulation of epidermal growth factor receptors   总被引:4,自引:0,他引:4  
Summary Previous studies have shown that cell density can regulate the binding of several growth factors. To determine whether cell density exerts a uniform effect on the expression of epidermal growth factor (EGF) receptors, seven cell lines were examined in detail. For each cell line, EGF binding was found to decrease as cell density increases. Scatchard analysis of the binding data reveals that decreases in EGF binding are due to reductions in the number of cell surface EGF receptors. The only apparent exception is the effect of cell density on the binding of EGF to A-431 cells. For these cells, increases in cell density lead to two effects: decreases in the number of high affinity EGF receptors and increases in the total number of EGF receptors. In addition to the effects of cell density on EGF receptors, it was determined that increases in cell density can coordinately down-regulate receptors for as many as four different growth factors. Overall, the findings described in this report for EGF and those previously described for transforming growth factor type-β (TGF-β) and fibroblast growth factor (FGF) demonstrate the existence of a common mechanism for down-regulating growth factor receptors. This work was supported by grants from the Nebraska Department of Health (89-51), the National Cancer Institute (Laboratory Research Center Support Grant, CA36727), and the American Cancer Society (Core Grant ACS SIG-16). EDITOR'S STATEMENT The paper by Rizzino et al. demonstrates that receptor number decreases as a function of cell density. This may represent a mechanism by which cell proliferation is reduced as cell density increases.  相似文献   

5.
《Cancer epidemiology》2014,38(4):455-459
Physical activity (PA) is related to colorectal cancer (CRC) mortality, with approximately 15% of CRC deaths worldwide attributable to physical inactivity. Moreover, higher levels of PA in CRC survivors have been associated with a reduced risk of the disease recurring. Despite the recognised nexus between PA and the risk of CRC, the physiological mechanisms underlying the inverse relationship between PA and mortality following CRC diagnosis are less apparent, with evidence primarily drawn from epidemiological studies. The insulin-like growth factor (IGF) axis plays a central role in cellular growth, proliferation regulation, differentiation and apoptosis. Specifically, high levels of insulin-like growth factor 1 (IGF-1) have been consistently linked to the severity of CRC tumours. Further, insulin-like growth factor binding protein 3 (IGFBP-3) regulates the bioavailability of IGF-I and therefore plays a central role in CRC prognosis. Decreasing levels of IGF-1 and increasing levels of IGFBP-3 may thus be a plausible mechanism underlying the inverse association between PA and CRC survival.  相似文献   

6.
The rat pheochromocytoma clone PC12 responds to nerve growth factor through the expression of a number of differentiated neuronal properties. One of the most rapid changes is a large, transient increase in the activity of ornithine decarboxylase. These cells also show an increase in ornithine decarboxylase activity in response to the mitogen, epidermal growth factor, but do not respond morphologically as they do to nerve growth factor. Specific, high-affinity epidermal growth factor receptors are present on the cells. When the cells are differentiated with nerve growth factor, the response to epidermal growth factor is markedly diminished and there is a marked reduction in the binding of epidermal growth factor to the cells.  相似文献   

7.
Summary The somatomedin-like growth factors cartilage-derived factor (CDF) and multiplication-stimulating activity (MSA) stimulate DNA synthesis and proliferation of rabbit costal chondrocytes under serum-free conditions. Previously, we suggeted that CDF and MSA act on chondrocytes in an early G1 phase to stimulate DNA synthesis. CDF and MSA have synergistic effects with epidermal growth factor (EGF) or fibroblast growth factor (FGF) in stimulating DNA synthesis of the cells. The mode of combined action of CDF or MSA with EGF or FGF in chondrocytes was studied by sequential treatments with these agents. EGF or FGF had synergistic effects with CDF or MSA in stimulating DNA synthesis, even when added 10 h after the latter. Synergism was also observed in cells pretreated with CDF or MSA; That is, the cultures were treated for 5 h with CDF or MSA and then washed, and treated with FGF or EGF. However, when CDF or MSA was added more than 5 h after EGF or FGF, no synergism of effects was observed. These findings suggest that the cultured chondrocytes become activated to interact with FGF or EGF for commitment to DNA synthesis when they are exposed to somatomedin-like growth factors at an early stage in the G1 phase. Thus chondrocytes are under a different mechanism of growth control from fibroblastic cells.Abbreviations CDF cartilage-derived factor - MSA multiplication-stimulating activity - EGF epidermal growth factor - FGF fibroblast growth factor  相似文献   

8.
Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells. EGFR activation is unconditionally required for induction of motility in corneal epithelial cells, and for induction of a fully motile phenotype in Madin-Darby canine kidney cells. Activation of the EGFR occurs through amphiregulin and heparin-binding epidermal growth factor-like growth factor. Early after HGF stimulation, blocking EGFR activation does not inhibit extracellular-signal regulated kinase 1/2 (ERK1/2) activation by HGF, but the converse is seen after approximately 1 h, indicating the existence of EGFR-dependent and -independent routes of ERK1/2 activation. In summary, HGF induces transactivation of the EGFR in epithelial cells, and this is a prerequisite for induction of full motility.  相似文献   

9.
Proteolytic modification of insulin-like growth factor binding proteins (IGFBPs) plays an important physiological role in regulating insulin-like growth factor (IGF) bioavailability. Recently, we demonstrated that matrix metalloproteinase-7 (MMP-7)/Matrilysin produced by various cancer cells catalyzes the proteolysis of IGFBP-3 in vitro and regulates IGF bioavailability, resulting in an anti-apoptotic effect against anchorage-independent culture. In the present study, we investigated whether MMP-7 contributes to proteolysis of the other five IGFBPs, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5, and IGFBP-6, and whether this results in phosphorylation of the IGF type 1 receptor (IGF-1R). MMP-7 cleaved all six IGFBPs, resulting in IGF-mediated IGF-1R phosphorylation, which was inhibited by EDTA treatment. These results suggest that MMP-7 derived from cancer cells can regulate IGF bioavailability in the microenvironment surrounding the tumor, where various kinds of IGF/IGFBP complexes are found, thereby favoring cancer cell growth and survival during the processes of invasion and metastasis.  相似文献   

10.
Summary Using an automated cell analyzer system, the effect of hepatocyte growth factor/scatter factor (HGF/SF), epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), endothelial acidic fibroblast growth factor (a-FGF), platelet derived growth factor (PDGF), and recombinant human insulinlike growth factor (IGF) on the motility and morphology of Madin-Darby canine kidney (MDCK), rat hepatomas, C2, and H5–6 and murine mammary carcinoma (EMT-6) cells was investigated. Treatment of MDCK cells with HGF/SF, bFGF, EGF, and a-FGF resulted in an increase in average cell velocity and in the fraction of moving cells. Cells treated with the PDGF and IGF did not show significant alterations in velocity. MDCK cells treated with each growth factor were classified into groups of “fast” and “slow” moving cells based on their average velocities, and the average morphologic features of the two groups were quantitated. Fast-moving cells had larger average area, circularity, and flatness as compared to slow-moving cells. Factors that stimulated cell movement also induced alterations in cell morphologic parameters including spreading, flatness, area, and circularity. HGF/SF also scattered and stimulated motility of C2 and H5–6 hepatoma cells. In contrast to MDCK cells, there was no significant difference between the morphology of the fast moving and slow moving C2 and H5–6 cells. These studies suggest that growth factor cytokines have specific effects on motility of normal and tumor cells.  相似文献   

11.
Summary Growth of the MCF-7, T47D, and ZR-75-1 human breast cancer cells was established in a serum-free defined medium (MOM-1) composed of a 1∶1 (vol/vol) mixture of Ham's F12 medium and Dulbecco's modified Eagle's medium containing 15 mM HEPES (pH 7.2), 2 mM 1-glutamine, 20 μg/ml glutathione, 10 μg/ml insulin, 10 μg/ml transferrin (Tf), 10 ng/ml selenous acid, 0.3 nM triiodothyronine, 50 μg/ml ethanolamine, 20 ng/ml epidermal, growth factor, 2.0 nM 17β-estradiol, and 1.0 mg/ml bovine serum albumin (BSA). Proliferation in MOM-1 was 50 to 70% of the serum stimulated rate. Deletion of components from MOM-1 gave a medium (Tf-BSA) containing only HEPES, 10 μg/ml Tf, and 200 μg/ml BSA, which sustained MCF-7 and T47D cells in a slowly dividing and mitogen responsive state; ZR-75-1 cells required Tf plus 1.0 mg/ml BSA. In Tf-BSA, insulin and insulin-like growth factor I(IGF-I) were mitogenic with ED50 values of 2 to 3 ng/ml and 30 to 150 pg/ml, respectively, with MCF-7 cells. The T47D cells were responsive to these factors in Tf-BSA but required 10-fold higher concentrations for ED50. At saturating concentrations, insulin and IGF-I promoted 1.5 to 3.5 cell population doublings over controls in 8 d. At≤ng/ml concentrations, epidermal growth factor, insulin-like growth factor II, and basic fibroblast growth factor were mitogenic for human breast cancer cells in Tf-BSA. Mitogen activities in uterus and pituitary extracts were assayed readily in Tf-BSA. This new method offers a convenient means of comparing the potencies of growth-promoting factors on human breast cancer cells without interfering activities known to be present in serum. This work was supported by grants CA-38024 and CA-26617, from the National Cancer Institute, Bethesda, MD, and by American Cancer Society grant BC-255 and grant 2225 from the Council for Tobacco Research, USA, Inc.  相似文献   

12.
We describe studies on human breast cancer in which it is shown that specific growth factors (IGF-I, TGF alpha, PDGF) are secreted by human breast cancer cells and likely to be involved in tumor growth and progression. These activities are regulated by estradiol in hormone-dependent breast cancer and secreted constitutively by hormone-independent cells. These growth factor activities can induce the growth of hormone-dependent cells in vivo in athymic nude mice. Hormone-dependent breast cancer cells also secrete TGF beta, a growth-inhibitory substance, when treated with antiestrogens. TGF beta functions as a negative autocrine growth regulator and is responsible for some of the growth-inhibitory effects of antiestrogens.  相似文献   

13.
血小板源生长因子受体与肿瘤   总被引:4,自引:0,他引:4  
张秀华  林莉萍  丁健 《生命科学》2006,18(3):220-226
血小板源生长因子(platelet-derived growth factor,PDGF)经由其受体(platelet-derived growth fac tor receptor,PDGFR)表现细胞效应。PDGF和PDGFR涉及多种肿瘤的发病机制并在血管生成中起重要作用。PDGF在肿瘤中的自分泌刺激、PDGFR的过表达或过度活化或者刺激肿瘤内血管生成都会促进肿瘤生长;PDGFR的阻断可以降低实体瘤中组织间质液压而增强药物传送。这些机制可能提示在肿瘤治疗中PDGFR抑制剂单用、与化疗药物或者和其他靶点药物联合用药的可能性和可行性。随着PDGFR拮抗剂,如imatinib的上市,PDGFR作为抗肿瘤药物的靶点备受瞩目。  相似文献   

14.
《MABS-AUSTIN》2013,5(6):732-739
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The accumulated evidence on the tumor-progressing roles of HB-EGF has suggested that HB-EGF-targeted cancer therapy is expected to be promising. However, the generation of neutralizing anti-HB-EGF monoclonal antibodies (mAbs) has proved difficult. To overcome this difficulty, we performed a hybridoma approach using mice from different genetic backgrounds, as well as different types of HB-EGF immunogens. To increase the number of hybridoma clones to screen, we used an electrofusion system to generate hybridomas and a fluorometric microvolume assay technology to screen anti-HB-EGF mAbs. We succeeded in obtaining neutralizing anti-HB-EGF mAbs, primarily from BALB/c and CD1 mice, and these were classified into 7 epitope bins based on their competitive binding to the soluble form of HB-EGF (sHB-EGF). The mAbs showed several epitope bin-dependent characteristics, including neutralizing and binding activity to human sHB-EGF, cross-reactivity to mouse/rat sHB-EGF and binding activity to the precursor form of HB-EGF. The neutralizing activity was also validated in colony formation assays. Interestingly, we found that the populations of mAb bins and the production rates of the neutralizing mAbs were strikingly different by mouse strain and by immunogen type. We succeeded in generating a variety of neutralizing anti-HB-EGF mAbs, including potent sHB-EGF neutralizers that may have potential as therapeutic agents for treating HB-EGF-dependent cancers. Our results also suggest that immunization approaches using different mouse strains and immunogen types affect the biological activity of individual neutralizing antibodies.  相似文献   

15.
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family. The accumulated evidence on the tumor-progressing roles of HB-EGF has suggested that HB-EGF-targeted cancer therapy is expected to be promising. However, the generation of neutralizing anti-HB-EGF monoclonal antibodies (mAbs) has proved difficult. To overcome this difficulty, we performed a hybridoma approach using mice from different genetic backgrounds, as well as different types of HB-EGF immunogens. To increase the number of hybridoma clones to screen, we used an electrofusion system to generate hybridomas and a fluorometric microvolume assay technology to screen anti-HB-EGF mAbs. We succeeded in obtaining neutralizing anti-HB-EGF mAbs, primarily from BALB/c and CD1 mice, and these were classified into 7 epitope bins based on their competitive binding to the soluble form of HB-EGF (sHB-EGF). The mAbs showed several epitope bin-dependent characteristics, including neutralizing and binding activity to human sHB-EGF, cross-reactivity to mouse/rat sHB-EGF and binding activity to the precursor form of HB-EGF. The neutralizing activity was also validated in colony formation assays. Interestingly, we found that the populations of mAb bins and the production rates of the neutralizing mAbs were strikingly different by mouse strain and by immunogen type. We succeeded in generating a variety of neutralizing anti-HB-EGF mAbs, including potent sHB-EGF neutralizers that may have potential as therapeutic agents for treating HB-EGF-dependent cancers. Our results also suggest that immunization approaches using different mouse strains and immunogen types affect the biological activity of individual neutralizing antibodies.  相似文献   

16.
17.
18.
Previous studies have shown that intracavernous injection of vascular endothelial growth factor (VEGF) restored erectile function in diabetic rats. However, the mechanism of VEGF in diabetes-related erectile dysfunction (ED) has not been fully investigated. We hypothesize that intracavernous injection of VEGF may reverse diabetes-related ED through modulation of the insulin-like growth factor system and sex hormone receptors. To test this hypothesis the erectile function of treated and control rats was analyzed by measurement of intracavernous pressure (ICP) following electrostimulation of the cavernous nerves. Mean ICP was significantly lower in non-treated diabetic rats compared to controls. After VEGF injection, ICP was significantly higher than in non-treated diabetic rats. IGFBP-3 mRNA and protein expression was significantly higher in non-treated diabetic rat crura than controls, while VEGF-treated animals had control levels. ER-beta and PR mRNA and protein expression was significantly lower in non-treated diabetic rat crura. After VEGF injection, ER-beta and PR mRNA and protein expression was similar to control levels. Expression of AR and ER-alpha was the same in all groups. These findings suggest that orthotopic injection of VEGF may improve the functional recovery of diabetes-related ED through modulation of the insulin-like growth factor system and sex hormone receptors. To our knowledge, this is the first study demonstrating that VEGF treatment restores erectile function through restoration of the insulin-like growth factor system and sex hormone receptor genes at the mRNA and protein levels in diabetic rat crura. These results may be important in understanding the pathogenesis of diabetes-related ED and also in providing better strategies for management of this disease.  相似文献   

19.
The keratinocyte growth factor receptor (KGFR)/fibroblast growth factor receptor 2b is activated by high-affinity-specific interaction with two different ligands, keratinocyte growth factor (KGF)/fibroblast growth factor (FGF)7 and FGF10/KGF2, which are characterized by an opposite requirement of heparan sulfate proteoglycans and heparin for binding to the receptor. We investigated here the possible different endocytic trafficking of KGFR, induced by the two ligands. Immunofluorescence and immunoelectron microscopy analysis showed that KGFR internalization triggered by either KGF or FGF10 occurs through clathrin-coated pits. Immunofluorescence confocal microscopy using endocytic markers as well as tumor susceptibility gene 101 (TSG101) silencing demonstrated that KGF drives KGFR to the degradative pathway, while FGF10 targets the receptor to the recycling endosomes. Biochemical analysis showed that KGFR is ubiquitinated and degraded after KGF treatment but not after FGF10 treatment, and that the alternative fate of KGFR might depend on the different ability of the receptor to phosphorylate the fibroblast growth factor receptor substrate 2 (FRS2) substrate and to recruit the ubiquitin ligase c-Cbl. The recycling endocytic pathway followed by KGFR upon FGF10 stimulation correlates with the higher mitogenic activity exerted by this ligand on epithelial cells compared with KGF, suggesting that the two ligands may play different functional roles through the regulation of the receptor endocytic transport.  相似文献   

20.
When rat serum was subjected to gel filtration on a Sephadex G-200 column, a factor, "hepatotropin", that promoted hepatocyte growth in primary culture was separated. Its Mr was about 150 KD and it was an anionic protein that was unstable on acid- and heat-treatments. Hepatotropin was purified 20-fold further by affinity chromatography on heparin-Sepharose CL-6B. The purified hepatotropin was effective at 20 micrograms/ml and maximally effective at 120 micrograms/ml, and its effect was additive with that of insulin plus epidermal growth factor. In rats after partial hepatectomy, the hepatotropin activity in the serum increased time-dependently reaching a maximum of about 5-fold the initial level 24 h after the operation. Various known growth factors, such as fibroblast growth factor, platelet derived growth factor, somatomedin, thrombin and transferrin, did not stimulate DNA synthesis in cultured hepatocytes. These results suggest that hepatotropin is a new growth factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号