首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dynamic light scattering and Fourier transform infrared spectroscopy were used to study the formation of prefibrillar aggregates and fibrils of bovine pancreatic insulin at 60°C and at pH 1. The kinetics of disintegration of the prefibrillar aggregates were also studied using these techniques after a quench to 25°C. These experiments reveal that formation of prefibrillar aggregates is reversible under the solution conditions studied and show that it is possible to significantly reduce the nucleation (lag) times associated with the onset of fibril growth in bovine pancreatic insulin solutions by increasing the concentration of prefibrillar aggregates in solution. These results provide convincing evidence that less structured prefibrillar aggregates can act as fibril-forming intermediates.  相似文献   

2.
Sharp JS  Forrest JA  Jones RA 《Biochemistry》2002,41(52):15810-15819
We consider the effects that different lipid surfaces have upon the denaturation and subsequent formation of amyloid fibrils of bovine insulin. The adsorption and unfolding kinetics of insulin being adsorbed onto the different lipid surfaces under denaturing conditions are studied using FTIR ATR spectroscopy and are compared to the bulk solution behavior of the protein. Atomic force microscopy studies are also performed to compare the fibrils growing on the different surfaces. This study shows that both the adsorption and unfolding kinetics of insulin can be described by a sum of exponential processes and that different surfaces behave differently, with respect both to one another and to the bulk protein solution. The proteins adsorbed onto the surfaces are observed to have faster unfolding kinetics than those in the bulk, and the fibril-like structures formed at the surfaces are shown to be different in a number of ways from those found in bulk solution. The beta-sheet content and growth kinetics of the adsorbed proteins also differ from those of the bulk system. An attempt is made to describe the observed behavior in terms of simple physical arguments involving adsorption, unfolding, and aggregation of the proteins.  相似文献   

3.
The self-assembly and aggregation of insulin molecules has been investigated by means of nanoflow electrospray mass spectrometry. Hexamers of insulin containing predominantly two, but up to four, Zn(2+) ions were observed in the gas phase when solutions at pH 4.0 were examined. At pH 3.3, in the absence of Zn(2+), dimers and tetramers are observed. Spectra obtained from solutions of insulin at millimolar concentrations at pH 2.0, conditions under which insulin is known to aggregate in solution, showed signals from a range of higher oligomers. Clusters containing up to 12 molecules could be detected in the gas phase. Hydrogen exchange measurements show that in solution these higher oligomers are in rapid equilibrium with monomeric insulin. At elevated temperatures, under conditions where insulin rapidly forms amyloid fibrils, the concentration of soluble higher oligomers was found to decrease with time yielding insoluble high molecular weight aggregates and then fibrils. The fibrils formed were examined by electron microscopy and the results show that the amorphous aggregates formed initially are converted to twisted, unbranched fibrils containing several protofilaments. Fourier transform infrared spectroscopy shows that both the soluble form of insulin and the initial aggregates are predominantly helical, but that formation of beta-sheet structure occurs simultaneously with the appearance of well-defined fibrils.  相似文献   

4.
Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and electron microscopy (EM) have been used simultaneously to follow the temperature-induced formation of amyloid fibrils by bovine insulin at acidic pH. The FTIR and CD data confirm that, before heating, insulin molecules in solution at pH 2.3 have a predominantly native-like alpha-helical structure. On heating to 70 degrees C, partial unfolding occurs and results initially in aggregates that are shown by CD and FT-IR spectra to retain a predominantly helical structure. Following this step, changes in the CD and FTIR spectra occur that are indicative of the extensive conversion of the molecular conformation from alpha-helical to beta-sheet structure. At later stages, EM shows the development of fibrils with well-defined repetitive morphologies including structures with a periodic helical twist of approximately 450 A. The results indicate that formation of fibrils by insulin requires substantial unfolding of the native protein, and that the most highly ordered structures result from a slow evolution of the morphology of the initially formed fibrillar species.  相似文献   

5.
Andrews JM  Roberts CJ 《Biochemistry》2007,46(25):7558-7571
The kinetics and structural transitions of non-native aggregation of alpha-chymotrypsinogen (aCgn) were investigated over a wide range of temperature and initial protein concentration at pH 3.5, where high molecular weight aggregates remained soluble throughout the reaction. A comparison of thermodynamic, kinetic, and spectroscopic data shows that aggregation under non-native-favoring conditions proceeds through a molten globule unfolded monomer state, with a nucleation and growth mechanism. Formation of irreversible aggregates and conversion to beta-sheet secondary structures occur simultaneously without detectable intermediates, suggesting that beta-sheet formation may be a commitment step during the nucleation and growth stages. Analysis of the kinetics using a Lumry-Eyring with nucleated polymerization (LENP) model provides the predominant nucleus size and the product of the intrinsic nucleation and intrinsic growth time scales at each state point. We find that the nucleus size depends on both temperature and protein concentration, and in some cases there is competition between two distinct nucleus sizes. The observed rate coefficient (kobs) for aggregation displays a maximum as a function of temperature because of the competition between folding-unfolding thermodynamics and the intrinsic growth and nucleation rates; the latter contribution has a large, negative activation enthalpy that dominates kobs at elevated temperatures. Temperature-jump experiments reveal that aggregates depolymerize at high temperatures, indicating that they are lower in enthalpy than the free monomer. Overall, the results suggest more generally that non-native aggregation may proceed through more than one nucleus size and that intrinsic kinetics of nucleation and growth may have significant entropic barriers.  相似文献   

6.
Cytotoxicity of insulin within its self-assembly and amyloidogenic pathways   总被引:2,自引:0,他引:2  
Solvational perturbations were employed to selectively tune the aggregational preferences of insulin at 60 degrees C in vitro in purely aqueous acidic solution and in the presence of the model co-solvent ethanol (EtOH) (at 40%(w/w)). Dynamic light scattering (DLS), thioflavin T (ThT)-fluorescence, Fourier transform infrared (FTIR) and atomic force microscopy (AFM) techniques were employed to characterize these pathways biophysically with respect to the pre-aggregational assembly of the protein, the aggregation kinetics, and finally the aggregate secondary structure and morphology. Using cell viability assays, the results were subsequently correlated with the cytotoxicity of the insulin species that form in the two distinct aggregation pathways. In the cosolvent-free solution, predominantly dimeric insulin self-assembles via the well-known amyloidogenic pathway, yielding exclusively fibrillar aggregates, whereas in the solution containing EtOH, the aggregation of predominantly monomeric insulin proceeds via a pathway that leads to exclusively non-fibrillar, amorphous aggregates. Initially present native insulin assemblies as well as partially unfolded monomeric species and low molecular mass oligomeric aggregates could be ruled out as direct and major cytotoxic species. Apart from the slower overall aggregation kinetics under amorphous aggregate promoting conditions, which is due to the chaotropic nature of high EtOH concentrations, however, both pathways were unexpectedly found to evoke insulin aggregates that were cytotoxic to cultured rat insulinoma cells. The observed kinetics of the decrease of cell viabilities correlated well with the results of the DLS, ThT, FTIR and AFM studies, revealing that the formation of cytotoxic species correlated well with the formation of large-sized, beta-sheet-rich assemblies (>500 nm) of both fibrillar and amorphous nature. These results suggest that large-sized, beta-sheet-rich insulin assemblies of both fibrillar and amorphous nature are toxic to pancreatic beta-cells. In the light of the ongoing discussion about putative cytotoxic effects of prefibrillar and fibrillar amyloid aggregates, our results support the hypothesis that, in the case of insulin, factors other than the specific secondary or quarternary structural features of the various different aggregates may define their cytotoxic properties. Two such factors might be the aggregate size and the aggregate propensity to expose hydrophobic surfaces to a polar environment.  相似文献   

7.
In the search for the molecular mechanism of insulin fibrillation, the kinetics of insulin fibril formation were studied under different conditions using the fluorescent dye thioflavin T (ThT). The effect of insulin concentration, agitation, pH, ionic strength, anions, seeding, and addition of 1-anilinonaphthalene-8-sulfonic acid (ANS), urea, TMAO, sucrose, and ThT on the kinetics of fibrillation was investigated. The kinetics of the fibrillation process could be described by the lag time for formation of stable nuclei (nucleation) and the apparent rate constant for the growth of fibrils (elongation). The addition of seeds eliminated the lag phase. An increase in insulin concentration resulted in shorter lag times and faster growth of fibrils. Shorter lag times and faster growth of fibrils were seen at acidic pH versus neutral pH, whereas an increase in ionic strength resulted in shorter lag times and slower growth of fibrils. There was no clear correlation between the rate of fibril elongation and ionic strength. Agitation during fibril formation attenuated the effects of insulin concentration and ionic strength on both lag times and fibril growth. The addition of ANS increased the lag time and decreased the apparent growth rate for insulin fibril formation. The ANS-induced inhibition appears to reflect the formation of amorphous aggregates. The denaturant, urea, decreased the lag time, whereas the stabilizers, trimethylamine N-oxide dihydrate (TMAO) and sucrose, increased the lag times. The results indicated that both nucleation and fibril growth were controlled by hydrophobic and electrostatic interactions. A kinetic model, involving the association of monomeric partially folded intermediates, whose concentration is stimulated by the air-water interface, leading to formation of the critical nucleus and thence fibrils, is proposed.  相似文献   

8.
Human pancreatitis-associated protein was identified in pathognomonic lesions of Alzheimer disease, a disease characterized by the presence of filamentous protein aggregates. Here, we showed that at physiological pH, human pancreatitis-associated protein forms non-Congo Red-binding, proteinase K-resistant fibrillar aggregates with diameters from 6 up to as large as 68 nm. Interestingly, circular dichroism and Fourier transform infrared spectra showed that, unlike typical amyloid fibrils, which have a cross-beta-sheet structure, these aggregates have a very similar secondary structure to that of the native protein, which is composed of two alpha-helices and eight beta-strands, as determined by NMR techniques. Surface structure analysis showed that the positively charged and negatively charged residues were clustered on opposite sides, and strong electrostatic interactions between molecules were therefore very likely, which was confirmed by cross-linking experiments. In addition, several hydrophobic residues were found to constitute a continuous hydrophobic surface. These results and protein aggregation prediction using the TANGO algorithm led us to synthesize peptide Thr(84) to Ser(116), which, very interestingly, was found to form amyloid-like fibrils with a cross-beta structure. Thus, our data suggested that human pancreatitis-associated protein fibrillization is initiated by protein aggregation primarily because of electrostatic interactions, and the loop from residues 84 to 116 may play an important role in the formation of fibrillar aggregates with a native-like conformation.  相似文献   

9.
Amyloid fibrils form in supersaturated solutions via a nucleation and growth mechanism. We proposed that ultrasonication may be an effective agitation to trigger nucleation that would otherwise not occur under the persistent metastability of supersaturation. However, the roles of supersaturation and effects of ultrasonication have not been elucidated in detail except for limited cases. Insulin is an amyloidogenic protein that is useful for investigating the mechanisms underlying amyloid fibrillation with biological relevance. We studied the alcohol-induced amyloid fibrillation of insulin using various concentrations of 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoro-2-propanol at pH 2.0 and 4.8. Ultrasonic irradiation effectively triggered fibrillation under conditions in which insulin retained persistent supersaturation. Structural analyses by circular dichroism, Fourier transform infrared spectroscopy, transmission electron microscopy, and atomic force microscopy revealed that the dominant structures of fibrils varied between parallel and antiparallel β-sheets depending on the solvent conditions. pH and alcohol concentration-dependent phase diagrams showed a marked difference before and after the ultrasonic treatment, which indicated that the persistent metastability of supersaturation determined the conformations of insulin. These results indicate the importance of an alternative view of amyloid fibrils as supersaturation-limited crystal-like aggregates formed above the solubility limit.  相似文献   

10.
J T Jarrett  P T Lansbury 《Biochemistry》1992,31(49):12345-12352
The sequence of the Escherichia coli OsmB protein was found to resemble that of the C-terminal region of the beta amyloid protein of Alzheimer's disease, which seems to be the major determinant of its unusual structural and solubility properties. A peptide corresponding to residues 28-44 of the OsmB protein was synthesized, and its conformational properties and aggregation behavior were analyzed. The peptide OsmB(28-44) was shown to form amyloid fibrils, as did two sequence analogs designed to test the sequence specificity of fibril formation. These fibrils bound Congo red, and two of the peptides showed birefringence. The peptide fibrils were analyzed by electron microscopy and Fourier transform infrared spectroscopy. Subtle differences were observed which were not interpretable at the molecular level. The rate of fibril formation by each peptide was followed by monitoring the turbidity of supersaturated aqueous solutions. The kinetics of aggregation were characterized by a delay period during which the solution remained clear, followed by a nucleation event which led to a growth phase, during which the solution became viscous and turbid due to the presence of insoluble fibrils. The observation of a kinetic barrier to aggregation is typical of a crystallization event. The delay period could be eliminated by seeding the supersaturated solution with previously formed fibrils. Each peptide could be nucleated by fibrils formed from that same peptide, but not by fibrils from closely related sequences, suggesting that fibril growth requires specific hydrophobic interactions. It appears likely that this repeated sequence motif, which comprises most of the OsmB protein sequence, dictates the structure and possibly the function of that protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Under conditions relevant to the manufacturing of insulin (e.g., pH 3, room temperature), biosynthetic human insulin (BHI), and Lispro insulin (Lispro) require a nucleation step to initiate aggregation. However, upon seeding with preformed aggregates, both insulins rapidly aggregate into nonnative fibrils. Far ultraviolet circular dichroism (far‐UV CD) and second derivative Fourier transform infrared (2D‐FTIR) spectroscopic analyses show that the fibrillation process involves a change in protein secondary structure from α‐helical in native insulin to predominantly β‐sheet in the nonnative fibrils. After seeding, Lispro aggregates faster than BHI, likely because of a reduced propensity to reversibly self‐associate. Composition gradient multi‐angle light scattering (CG‐MALS) analyses show that Lispro is more monomeric than BHI, whereas their conformational stabilities measured by denaturant‐induced unfolding are statistically indistinguishable. For both BHI and Lispro, as the protein concentration increases, the apparent first‐order rate constant for soluble protein loss decreases. To explain these phenomena, we propose an aggregation model that assumes fibril growth through monomer addition with competitive inhibition by insulin dimers. Biotechnol. Bioeng. 2011;108: 2359–2370. © 2011 Wiley Periodicals, Inc.  相似文献   

12.
Solvation-assisted pressure tuning has been employed to unravel unknown structural and kinetic aspects of the insulin aggregation and fibrillation process. Our approach, using fluorescence, Fourier transform infrared and atomic force microscopy techniques in combination with pressure and solvent perturbation, reveals new insights into the pre-aggregated regime as well as mechanistic details about two concurrent aggregation pathways and the differential stability of insulin aggregates. Pressure uniformly fosters the dissociation of native insulin oligomers, whereas the aggregation pathways at elevated temperatures are affected by pressure differently and in a cosolvent-dependent manner. Moderate pressures accelerate the amyloid pathway in the presence of EtOH (leading to essentially monomeric aggregating species) via relatively dehydrated transition states with negative activation volumes for nucleation and elongation. Alternatively, a novel, fast equilibrium pathway to distinct beta-sheet-rich oligomers with thioflavin T-binding capability is accessible to partially unfolded insulin monomers at pressures below approximately 200 bar in the absence of EtOH. These oligomers, probably off the normal fibrillation pathway, are stabilized mainly by electrostatic and hydrophobic interactions, lacking the precise packing of mature insulin fibrils, which renders them susceptible to quantitative pressure-induced dissociation. Due to a highly negative activation volume for dissociation (-70(+/-16)ml/mol), pressure dissociation is fast and technologically feasible at ambient temperatures and moderate pressures. Becoming kinetically very labile above 35 degrees C, the pressurized oligomers can re-enter the slower, ultimately irreversible, fibrillation pathway at higher temperatures. At pressures above approximately 1000 bar, the partial unfolding of insulin monomers, accompanied by a volumetric expansion, dominates the aggregation kinetics, which manifests in a progressive inhibition of the fibrillation. Unlike their precursors, the pressure-insensitivity of mature insulin fibrils demonstrates that an extensive hydrogen bonding network and optimized side-chain packing are crucial for their stability.  相似文献   

13.
In this paper we demonstrate that the sequence encoded by exon 28 (EX28) of human tropoelastin gene is able to give amyloid-like fibrils. CD (circular dichroism) in solution and solid-state FTIR (Fourier transform infrared spectroscopy) spectroscopies have shown the presence of beta-sheet conformation. At the supramolecular level the fibers formed by EX28 peptide were investigated by AFM (atomic force microscopy) and ESEM (environmental scanning electron microscopy). A very big left-handed helix, 100 mum long, is visible together with aggregates of different sizes, some of them being constituted by helically interwoven fibers. Furthermore, an additional AFM image of EX28 is shown where the ultrastructure found is somewhat reminiscent of a more or less retiform film. These findings should be useful for designing proper elastin-inspired biomaterials.  相似文献   

14.
Light chain (or AL) amyloidosis is characterized by the pathological deposition of insoluble fibrils of immunoglobulin light chain fragments in various tissues, walls of blood vessels, and basement membranes. In the present investigation, the in vitro assembly of a recombinant amyloidogenic light chain variable domain, SMA, on various surfaces was monitored using atomic force microscopy. SMA formed fibrils on native mica at pH 5.0, conditions under which predominantly amorphous aggregates form in solution. Fibril formation was accelerated significantly on surfaces compared with solution; for example, fibrils grew on surfaces at significantly faster rates and at much lower concentrations than in solution. No fibrils were observed on hydrophobic or positively charged surfaces or at pH >7.0. Two novel types of fibril growth were observed on the surface: bidirectional linear assembly of oligomeric units, and linear growth from preformed amorphous cores. In addition to catalyzing the rate of fibrillation, the mechanism of fibril formation on the surfaces was significantly different from in solution, but it may be more physiologically relevant because in vivo the deposits are associated with surfaces.  相似文献   

15.
A protease-resistant form of the protein PrP (PrP-res) accumulates in tissues of mammals infected with scrapie, Creutzfeldt-Jakob disease, and related transmissible neurodegenerative diseases. This abnormal form of PrP can aggregate into insoluble amyloid-like fibrils and plaques and has been identified as the major component of brain fractions enriched for scrapie infectivity. Using a recently developed technique in Fourier transform infrared spectroscopy which allows protein conformational analysis in aqueous media, we have studied the secondary structure of the proteinase K resistant core of PrP-res (PrP-res 27-30) as it exists in highly infectious fibril preparations. Second-derivative analysis of the infrared spectra has enabled us to quantitate the relative amounts of different secondary structures in the PrP-res aggregates. The analysis indicated that PrP-res 27-30 is predominantly composed of beta-sheet (47%), which is consistent with its amyloid-like properties. In addition, significant amounts of turn (31%) and alpha-helix (17%) were identified, indicating that amyloid-like fibrils need not be exclusively beta-sheet. The infrared-based secondary structure compositions were then used as constraints to improve the theoretical localization of the secondary structures within PrP-res 27-30.  相似文献   

16.
The polymorphic property of amyloid structures has been focused on as a molecular basis of the presence and propagation of different phenotypes of amyloid diseases, although little is known about the molecular mechanism for expressing diverse structures from only one protein sequence. Here, we have found that, in combination with an enhancing effect of ultrasonication on nucleation, β(2)-microglobulin, a protein responsible for dialysis-related amyloidosis, generates distinct fibril conformations in a concentration-dependent manner in the presence of 2,2,2-trifluoroethanol (TFE). Although the newly formed fibrils all exhibited a similar needle-like morphology with an extensive cross-β core, as suggested by Fourier transform infrared absorption spectra, they differed in thioflavin T intensity, extension kinetics, and tryptophan fluorescence spectra even in the same solvents, representing polymorphic structures. The hydrophobic residues seemed to be more exposed in the fibrils originating at higher concentrations of TFE, as indicated by the increased binding of 1-anilinonaphthalene-8-sulfonic acid, suggesting that the modulation of hydrophobic interactions is critical to the production of polymorphic amyloid structures. Interestingly, the fibrils formed at higher TFE concentrations showed significantly higher stability against guanidium hydrochloride, the perturbation of ionic strength, and, furthermore, pressurization. The cross-β structure inside the fibrils seems to have been more idealized, resulting in increased stability when nucleation occurred in the presence of the alcohol, indicating that a weaker contribution of hydrophobic interactions is intrinsically more amenable to the formation of a non-defective amyloid structure.  相似文献   

17.
We have developed a multiwell-based protein aggregation assay to study the kinetics of insulin adsorption and aggregation on hydrophobic surfaces and to investigate the molecular mechanisms involved. Protein-surface interaction progresses in two phases: (1) a lag phase during which proteins adsorb and prefibrillar aggregates form on the material surface and (2) a growth phase during which amyloid fibers form and then are progressively released into solution. We studied the effect of three bacterial chaperones, DnaK, DnaJ, and ClpB, on insulin aggregation kinetics. In the presence of ATP, the simultaneous presence of DnaK, DnaJ, and ClpB allows good protection of insulin against aggregation. In the absence of ATP, DnaK alone is able to prevent insulin aggregation. Furthermore, DnaK binds to insulin adsorbed on hydrophobic surfaces. This process is slowed in the presence of ATP and can be enhanced by the cochaperone DnaJ. The peptide LVEALYL, derived from the insulin B chain, is known to promote fast aggregation in a concentration- and pH-dependent manner in solution. We show that it also shortens the lag phase for insulin aggregation on hydrophobic surfaces. As this peptide is also a known DnaK substrate, our data indicate that the peptide and the chaperone might compete for a common site during the process of insulin aggregation on hydrophobic surfaces.  相似文献   

18.
The formation of amyloid aggregates in tissue is a pathological feature of many neurodegenerative diseases and type II diabetes. Amyloid deposition, the process of amyloid growth by the association of individual soluble amyloid molecules with a pre-existing amyloid template (i.e., plaque), is known to be critical for amyloid formation in vivo. The requirement for a natural amyloid template, however, has made amyloid deposition study difficult and cumbersome. In the present work, we developed a novel, synthetic amyloid template by attaching amyloid seeds covalently onto an N-hydroxysuccinimide-activated surface, where insulin was chosen as a model amyloidogenic protein. According to ex situ atomic force microscopy observations, insulin monomers in solution were deposited onto the synthetic amyloid template to form fibrils, like hair growth. The fibril formation on the template occurred without lag time, and its rate was highly accelerated than in the solution. The fibrils were long, over 2 mum, and much thinner than those in the solution, which was caused by limited nucleation sites on the template surface and lack of lateral twisting between fibrils. According to our investigations using thioflavin T-induced fluorescence, birefringent Congo red binding, and circular dichroism, fibrils grown on the template were identified to be amyloids that formed through a conformational rearrangement of insulin monomers upon interaction with the template. The amyloid deposition rate followed saturation kinetics with respect to insulin concentration in the solution. The characteristics of amyloid deposition on the synthetic template were in agreement with previous studies performed with human amyloid plaques. It is demonstrated that the synthetic amyloid template can be used for the screening of inhibitors on amyloid deposition in vitro.  相似文献   

19.
Self-assembly of beta-sheet domains resulting in the formation of pathogenic, fibrillar protein aggregates (amyloids) is a characteristic feature of various medical disorders. These include neurodegenerative diseases, such as Alzheimer's, Huntington's, and Creutzfeldt-Jacob's. A significant problem in studying such aggregation processes is the poor solubility of these beta-sheet complexes. The present work describes water-soluble de novo beta-sheet peptides which self-assemble into fibrillar structures. The model peptides enable studies of the relationship between beta-sheet stability and association behavior. The peptides [DPKGDPKG-(VT)n-GKGDPKPD-NH2, n = 3-8] are composed of a central beta-sheet-forming domain (VT-sequence), and N- and C-terminal nonstructured octapeptide sequences which promote water solubility. Conformational analyses by circular dichroism and Fourier transform infrared spectroscopy indicate the influence of peptide length, D-amino acid substitution, and concentration on the ability of the peptides to form stable beta-sheet structures. The association behavior investigated by analytical ultracentrifugation and dynamic light scattering was found to correlate strongly with the stability of a beta-sheet conformation. Model peptides with n >/= 6 form stable, water-soluble beta-sheet complexes with molecular masses of more than 2000 kDa, which are organized in fibrillar structures. The fibrils examined by Congo Red staining and electron microscopy show some similarities with naturally occurring amyloid fibrils.  相似文献   

20.
Heat-set gels and aggregates from beta-lactoglobulin (beta-Lg), one of the major globular proteins from milk, have been studied on a molecular distance scale using negative-staining transmission electron microscopy (TEM), wide-angle X-ray diffraction (WAXD), and Fourier transform infrared spectroscopy (FTIR). The microscopy showed long linear aggregates forming in solutions at pH 2 (and sometimes 2.5) after prolonged heating. While there appeared to be no differences in aggregates formed under these conditions in H(2)O as compared with D(2)O, at all other pH and pD values, and in the presence of added salt, much shorter linear aggregates were formed. These became slightly more extended the further the pH was removed from pI. Wide-angle X-ray diffraction (WAXD) showed a diffuse beta-sheet halo at 2θ=19 degrees in patterns for both dried native and aggregated protein (irrespective of pH) with only a small change (sharpening) of this feature on heat treatment. Solution FTIR spectra, measured at pD=2, 2.5, 3, and 7, during heating, indicated shoulder development at 1612 cm(-1) in the carbonyl-stretching Amide I region diagnostic of a modest increase in intermolecular beta-sheet. In terms of the shoulder size, no distinctions could be made between acid and neutral aggregate structures. At all pHs, beta-lactoglobulin showed only limited secondary and tertiary structural changes in aggregation, in contrast to previous studies of insulin aggregation, where highly ordered crystalline fibrils were indicated. The current work has implications both in structural studies of food biopolymers and in ongoing studies of pathological protein self-assembly in disease states, such as spongiform encephalopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号