首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The turnover of cerebrospinal fluid (CSF) glucose was studied in cats during steady-state perfusion. In all experiments, the perfusion fluid contained either tracer [14C]glucose alone or tracer glucose along with 4.45 mM unlabeled glucose. In some studies, serum glucose was lowered with insulin. The concentration of glucose and [14C]glucose in the effluent fluid was measured, and the distribution of 14C between glucose and lactate was determined by chromatography. From these values, the extraction of glucose and the metabolism of glucose to lactate were calculated. From the decrease in the specific activity of glucose in the perfusion fluid, the influx of glucose from serum was also determined. During steadystate perfusion, 71% of the radioactivity was recovered in the effluent fluid: 50% in the form of glucose, 6% in the form of lactate, and 15% in forms that were not identified. Thus, 50% of the perfusion fluid glucose was cleared, of which 29% was extracted and 21% metabolized. The influx of glucose was proportional to the serum glucose when the latter was about 2.5 mM or 10.0 mM. During perfusion with tracer glucose only, the concentration of glucose in the effluent fluid was 25% that of serum. The transport of glucose from serum was independent of the glucose concentration gradient between serum and perfusion fluid. However, when perfusion fluid glucose concentration was greater than that of serum, transport was inhibited. These studies suggest that in maintaining CSF glucose at a lower concentration than serum glucose, with equal amounts of glucose entering and leaving the CSF, 50% of CSF glucose concentration cleared is replaced by 25% of serum glucose concentration.  相似文献   

2.
Six insulin-requiring diabetics were studied after insulin had been withheld for 24 hours. On three separate occasions each received a two-hour infusion of insulin at a low dose (2·6 U/h) and a high dose (10·6 U/h) and an infusion of saline as control. The rates of production and utilisation of glucose were measured isotopically. The rate of fall of plasma glucose concentration was faster on the high-dose infusion of insulin than on the low, whereas the fall in plasma free fatty acids, glycerol, and keton bodies was the same on both insulin infusions. The mechanism whereby the two rates of insulin administration lowered plasma glucose concentration differed: during the low-dose infusion the decrease in the glucose concentration was produced entirely by a fall of hepatic glucose output, whereas during the high-dose insulin infusion the glucose concentration fell because both the rate of glucose production fell and the rate of glucose utilisation rose. In all experiments there was a direct relation between a fall in serum potassium concentration and the fall in plasma glucose concentration irrespective of the mechanism that reduced the glucose concentration.These results indicate that in uncontrolled diabetics low-dose insulin infusions lower the blood glucose concentration entirely by reducing glucose production from the liver and that the effect of insulin on potassium transport is independent of its effect on glucose uptake.  相似文献   

3.
Postprandial hypotension (PPH) occurs frequently in the elderly; the magnitude of the fall in blood pressure (BP) is related to the rate of glucose entry into the duodenum during intraduodenal glucose infusion and spontaneous gastric emptying (GE). It is unclear if glucose concentration affects the hypotensive response. Gastric distension may attenuate PPH; therefore, meal volume could influence the BP response. We aimed to determine the effects of 1) drink volume, 2) glucose concentration, and 3) glucose content on the BP and heart rate (HR) responses to oral glucose. Ten subjects (73.9 +/- 1.2 yr) had measurements of BP, GE, and blood glucose on 4 days after 1) 25 g glucose in 200 ml (12.5%), 2) 75 g glucose in 200 ml (37.5%), 3) 25 g glucose in 600 ml (4%), and 4) 75 g glucose in 600 ml (12.5%). GE, BP, HR, and blood glucose were measured for 180 min. After all drinks, duodenal glucose loads were similar in the first 60 min. Regardless of concentration, 600-ml (but not 200-ml) drinks initially increased BP, and in the first 30 min, systolic BP correlated (P < 0.01) with volume in both the proximal and total stomach. At the same concentration (12.5%), systolic BP fell more (P = 0.02) at the smaller volume; at the same volumes, there were no effects of concentration on BP. There was no difference in the glycemic response to drinks of identical glucose content. We conclude that 1) ingestion of glucose at a higher volume attenuates and 2) under constant duodenal load, glucose concentration (4-37%) does not affect the fall in BP.  相似文献   

4.
在线推定和控制葡萄糖浓度改善谷氨酸发酵性能   总被引:1,自引:0,他引:1  
谷氨酸发酵过程一般需要定时、人工分批式地添加葡萄糖。该流加操作方式会引起发酵罐内葡萄糖浓度的剧烈波动, 不利于高效、稳定的谷氨酸生产。谷氨酸发酵具有显著的非增殖耦联特征, 产酸期葡萄糖耗量与氨水耗量存在非常明显的关联性。通过在线计量氨水耗量推定糖耗以及葡萄糖浓度, 可比较准确地将谷氨酸发酵产酸期的糖浓度控制在预先设定的水平。当糖浓度控制在5 g/L~10 g/L的低水平时, 最终谷氨酸浓度可以达到80 g/L的较高水平, 高糖浓度下的渗透压效应有望得到缓解, 有利于发酵生产的稳定。  相似文献   

5.
以木质素和葡萄糖的混合溶液为木质纤维素水解液模型,采用截留相对分子质量为5 000的卷式聚醚砜膜对葡萄糖和木质素进行全回流模式的分离,探讨了木质素和葡萄糖浓度、操作压力、错流速率对通量、木质素和葡萄糖截留率的影响。结果表明:在实验条件范围内,通量随葡萄糖浓度和木质素浓度的增加而降低,并随操作压力、错流速率的增加而增加。木质素截留率不受任何条件的影响,基本稳定在97%。葡萄糖截留率随木质素浓度的增加而增加,并随错流速率的增加而减小。在0.8 g/L的木质素质量浓度条件下,当错流速率从0.12 m/s增加到0.17 m/s时,葡萄糖截留率从14%减小到7.3%。由此可见,在混合溶液的超滤过程中,通过合理选择错流速率,能够改善木质素和葡萄糖的分离。  相似文献   

6.
Rates of glucose oxidation and insulin release in response to a wide range of glucose concentrations were studied in short-term experiments in isolated mouse pancreatic islets maintained in tissue culture for 6 days at either a physiological glucose concentration (6.7mm) or at a high glucose concentration (28mm). The curves relating glucose oxidation or insulin release to the extracellular glucose concentration obtained with islets cultured in 6.7mm-glucose displayed a sigmoid shape similar to that observed for freshly isolated non-cultured islets. By contrast islets that had been cultured in 28mm-glucose showed a linear relationship between the rate of glucose oxidation and the extracellular glucose concentration up to about 8mm-glucose. The maximal oxidative rate was twice that of the non-cultured islets and the glucose concentration associated with the half-maximal rate considerably decreased. In islets cultured at 28mm-glucose there was only a small increase in the insulin release in response to glucose, probably due to a depletion of stored insulin in those B cells that had been cultured in a high-glucose medium. It is concluded that exposure of B cells for 6 days to a glucose concentration comparable with that found in diabetic individuals causes adaptive metabolic alterations rather than degeneration of these cells.  相似文献   

7.
Candida utilis was grown in batch culture with and without oxygen control. The concentrations of A-, B-, and C-type cytochromes were found to vary with the initial glucose concentration, with the dissolved oxygen concentration, and with time. A-type was the most sensitive. After glucose was essentially exhausted, the yeast catabolized ethanol, if it had been growing in a relatively low initial glucose concentration, or non-glucose carbohydrate, including some of that previously accumulated within the cell, if it had been growing in a high initial glucose concentration. This difference in metabolic pattern could explain why cytochrome derepression was initiated soon after glucose uptake ceased only if initial glucose had been relatively low. The effects of glucose and dissolved oxygen concentrations on yeast cytochromes and respiratory activity are discussed.  相似文献   

8.
In 8 experimental ewes on normal diet the influence of pregnancy and feeding on insulin and glucose in the blood was studied. A reduction in insulin concentration was found as pregnancy advanced. Blood glucose fluctuated, but during late pregnancy the blood glucose level was significantly lower in twin–pregnant ewes than in ewes pregnant with 1 fetus. No increase in insulin concentration was demonstrated in twin–pregnant ewes after feeding, on the contrary an increase was found in ewes pregnant with 1 fetus. A limited effect of feeding on the glucose concentration was observed, especially compared to the reference range. A positive correlation was obtained between the concentration of glucose and insulin in the blood.  相似文献   

9.
饥饿及再投喂对日本囊对虾糖代谢的影响   总被引:2,自引:0,他引:2  
研究了日本囊对虾在饥饿和再投喂下血糖、肝胰脏糖原和肌糖原含量的变化.结果表明:在饥饿状态下,日本囊对虾肝胰脏糖原含量和血糖浓度在饥饿开始时迅速下降,肌糖原含量在饥饿10 d时下降到最低值,在饥饿10~15 d时通过糖原异生作用又恢复至最初水平,但随着饥饿时间的延长,糖原含量持续下降.恢复投喂后,肝胰脏糖原含量和肌糖原含量均能得到较好恢复,饥饿10 d和 15 d组的血糖浓度在恢复投喂10 d后显著高于对照组,但饥饿25 d组的血糖浓度始终显著低于对照.表明饥饿时间过长,对血糖浓度的恢复有较大影响  相似文献   

10.
The changes in plasma glucose concentration and in interstitial glucose concentration, determined with a miniaturized subcutaneous glucose sensor, were investigated in anesthetized nondiabetic rats. Interstitial glucose was estimated through two different calibration procedures. First, after a glucose load, the magnitude of the increase in interstitial glucose, estimated through a one-point calibration procedure, was 70% of that in plasma glucose. We propose that this is due to the effect of endogenous insulin on peripheral glucose uptake. Second, during the spontaneous secondary decrease in plasma glucose after the glucose load, interstitial glucose decreased faster than plasma glucose, which may also be due to the effect of insulin on peripheral glucose uptake. Third, during insulin-induced hypoglycemia, the decrease in interstitial glucose was less marked than that of plasma glucose, suggesting that hypoglycemia suppressed transfer of glucose into the interstitial tissue; subsequently, interstitial glucose remained lower than plasma glucose during its return to basal value, suggesting that the stimulatory effect of insulin on peripheral glucose uptake was protracted. If these observations obtained in rats are relevant to human physiology, such discrepancies between plasma and interstitial glucose concentration may have major implications for the use of a subcutaneous glucose sensor in continuous blood glucose monitoring in diabetic patients.  相似文献   

11.
1. The induction by glucose and gluconate of the transport systems and catabolic enzymes for glucose, gluconate and 2-oxogluconate was studied with Pseudomonas aeruginosa PAO1 growing in a chemostat under conditions of nitrogen limitation with citrate as the major carbon source. 2. In the presence of a residual concentration of 30mM-citrate an inflowing glucose concentration of 6-8 mM was required to induce the glucose-transport system and associated catabolic enzymes. When the glucose concentration was raised to 20mM the glucose-transport system was repressed, but the transport system for gluconate, and at higher glucose concentrations, that for 2-oxogluconate, were induced. No repression of the glucose-catabolizing enzymes occurred at the higher inflowing glucose concentrations. 3. In the presence of 30mM-citrate no marked threshold concentration was required for the induction of the gluconate-transport system by added gluconate. 4. In the presence of 30mM-citrate and various concentrations of added glucose and gluconate, the activity of the glucose-transport system accorded with the proposal that a major factor concerned in the repression of this system was the concentration of gluconate, produced extracellularly by glucose dehydrogenase. 5. This proposal was supported by chemostat experiments with mutants defective in glucose dehydrogenase. Such mutants showed no repression of the glucose-transport system by high inflowing concentrations, but with a mutant apparently defective only in glucose dehydrogenase, the addition of gluconate caused repression of the glucose-transport system. 6. Studies with the mutants showed that both glucose and gluconate can induce the enzymes of the Entner-Doudoroff system, whereas for the induction of the gluconate-transport system glucose must be converted into gluconate.  相似文献   

12.
A viscometer suitable for rapid measurements in small volumes of highly viscous liquids is described. Using this device the viscometric affinity assay for glucose was studied under variable conditions in order to obtain basic information for the design of a viscometric glucose sensor. The viscosity of the dextran/Concanavalin A (ConA) solution is sensitive to glucose in a broad range of the shear stress. However, for measuring the glucose concentration with this sensitive liquid the strong dependence of the absolute viscosity on temperature and ConA concentration has to be taken into account. For the purpose of calibration a parameter more suitable than the absolute viscosity is the relative fluidity (F(r)) that is defined by the actual measured viscosity at a given glucose concentration, the reference viscosity at a standard glucose concentration, and a constant linearization coefficient. F(r) shows a linear dependence on the glucose concentration in the therapeutically interesting range up to 30 mM and is not significantly changed by moderate variations of the ConA concentration or temperature.  相似文献   

13.
Cytosolic glucose concentration reflects the balance between glucose entry across the plasma membrane and cytosolic glucose utilization. In adipocytes, glucose utilization is considered very rapid, meaning that every glucose molecule entering the cytoplasm is quickly phosphorylated. Thus, the cytosolic free glucose concentration is considered to be negligible; however, it was never measured directly. In the present study, we monitored cytosolic glucose dynamics in 3T3-L1 fibroblasts and adipocytes by expressing a fluorescence resonance energy transfer (FRET)-based glucose nanosensor: fluorescent indicator protein FLIPglu-600μ. Specifically, we monitored cytosolic glucose responses by varying transmembrane glucose concentration gradient. The changes in cytosolic glucose concentration were detected in only 56% of 3T3-L1 fibroblasts and in 14% of 3T3-L1 adipocytes. In adipocytes, the resting cytosolic glucose concentration was reduced in comparison with the one recorded in fibroblasts. Membrane permeabilization increased cytosolic glucose concentration in adipocytes, and glycolytic inhibitor iodoacetate failed to increase cytosolic glucose concentration, indicating low adipocyte permeability for glucose at rest. We also examined the effects of insulin and adrenaline. Insulin significantly increased cytosolic glucose concentration in adipocytes by a factor of 3.6; however, we recorded no effect on delta ratio (ΔR) in fibroblasts. Adrenaline increased cytosolic glucose concentration in fibroblasts but not in adipocytes. However, in adipocytes in insulin-stimulated conditions, glucose clearance was significantly faster following adrenaline addition in comparison with controls (p < 0.001). Together, these results demonstrate that during differentiation, adipocytes develop more efficient mechanisms for maintaining low cytosolic glucose concentration, predominantly with reduced membrane permeability for glucose.  相似文献   

14.
A glucose control system consisting of a single in-line glucose sensor, concentrated glucose solution, and computer hardware and software were developed. The system was applied to continuously control glucose concentrations of a perfusion medium in a rotating wall perfused vessel (RWPV) bioreactor culturing BHK-21 cells. The custom-made glucose sensor was based on a hydrogen peroxide electrode. The sensor continuously and accurately measured the glucose concentration of GTSF-2 medium in the RWPV bioreactor during cell culture. Three sets of two-point calibrations were applied to the glucose sensor during the 55-day cell culture. The system first controlled the glucose concentration in perfusing medium between 4.2 and 5.6 mM for 36 days and then at different glucose levels for 19 days. A stock solution with a high glucose concentration (266 mM) was used as the glucose injection solution. The standard error of prediction (SEP) for glucose measurement by the sensor, compared to measurement by the Beckman glucose analyzer, was +/-0.4 mM for 55 days.  相似文献   

15.
Tumors and multicellular tumor spheroids can develop gradients in oxygen concentration, glucose concentration, and extracellular pH as they grow. In order to calculate these gradients and assess their impact on tumor growth, it is necessary to quantify the effect of these variables on tumor cell metabolism and growth. In this work, the oxygen consumption rates, glucose consumption rates, and growth rates of EMT6/Ro mouse mammary tumor cells were measured at a variety of oxygen concentrations, glucose concentrations, and extracellular pH levels. At an extracellular pH of 7.25, the oxygen consumption rate of EMT6/Ro cells increased by nearly a factor of 2 as the glucose concentration was decreased from 5.5 mM to 0.4 mM. This effect of glucose concentration on oxygen consumption rate, however, was slight at an extracellular pH of 6.95 and disappeared completely at an extracellular pH of 6.60. The glucose consumption rate of EMT6/Ro cells increased by roughly 40% when the oxygen concentration was reduced from 0.21 mM to 0.023 mM and decreased by roughly 60% when the extracellular pH was decreased from 7.25 to 6.95. The growth rate of EMT6/Ro cells decreased with decreasing oxygen concentration and extracellular pH; however, severe conditions were required to stop cell growth (0.0082 mM oxygen and an extracellular pH of 6.60). Empirical correlations were developed from these data to express EMT6/Ro cell growth rates, oxygen consumption rates, and glucose consumption rates, as functions of oxygen concentration, glucose concentration, and extracellular pH. These empirical correlations make it possible to mathematically model the gradients in oxygen concentration, glucose concentration, and extracellular pH in EMT6/Ro multicellular spheroids by solution of the diffusion/reaction equations. Computations such as these, along with oxygen and pH microelectrode measurements in EMT6/Ro multicellular spheroids, indicated that nutrient concentration and pH levels in the inner regions of spheroids were low enough to cause significant changes in nutrient consumption rates and cell growth rates. However, pH and oxygen concentrations measured or calculated in EMT6/Ro spheroids where quiescent cells have been observed were not low enough to cause the cessation of cell growth, indicating that the observed quiescence must have been due to factors other than acidic pH, oxygen depletion, or glucose depletion.  相似文献   

16.
《Life sciences》1995,57(2):PL31-PL35
The regulation of the production of platelet-derived growth factor (PDGF) and the influence of high glucose concentration, eicosapentaenoic acid (EPA) were studied in cultured human umbilical vein endothelial cells (HUE). The PDGF production of HUE increased markedly depending on glucose concentration. However, EPA (3×10−4M) markedly inhibited PDGF production [27.5 mM glucose group: 123 ± 3% of control (5.5 mM glucose group), 27.5 mM glucose + EPA group: 104 ±5% of control]. These results suggested that a high glucose concentration and a high osmotic pressure-induced increase in PDGF production is involved in the development and progression of diabetic macroangiopathy. As eicosapentaenoic acid inhibits the PDGF production induced by high glucose concentration in HUE, use of this agent may exhibit anti-arteriosclerotic effects.  相似文献   

17.
Summary Growth of yeast cells on glucose resulted in complete inactivation of maltose transport and repression of the high affinity glucose transport system. When the cells were grown on maltose or subjected to substrate starvation, an increase in glucose and maltose transport was observed in both brewing and non-brewing yeast strains. The concentration of glucose employed in the growth medium was also observed to affect sugar transport activity. The higher the glucose concentration, the more pronounced the repressive effect. In addition, the time of growth of yeast on glucose or maltose also intermining the rate of sugar transport. These results are consistent with the repressive effect of glucose on the high affinity glucose and maltose transport systems.  相似文献   

18.
A self-regulatory mechanism of the glucose transport in rat skeletal muscle cells is described. In isolated rat soleus muscles and rat skeletal myocytes and myotubes in culture, pre-exposure to varying glucose concentrations modulated the rate of 2-deoxyglucose uptake. Maximal uptake was observed at glucose concentrations below 3 mM. Between 2.5 and 4.0 mM glucose it was reduced by 25-35%; further elevation of the glucose concentration resulted in a gradual decrease of the transport rate by approximately 2% for each millimolar glucose. The effect of glucose was time-dependent and fully reversible. Insulin rapidly increased the 2-deoxyglucose uptake in the soleus muscle; however, the insulin effect depended on the glucose concentration of the preincubation. Insulin was totally ineffective in muscles pre-exposed to 1.0-3.0 mM glucose, whereas its stimulatory action increased with increasing glucose concentrations above 4 mM. The effect of low glucose and insulin were not additive, and the maximal 2-deoxyglucose uptake rates induced by both conditions were of identical magnitude. It is postulated that glucose may "up- and down-regulate" its transport by affecting the number of active glucose transporters in the plasma membrane, and that insulin exerts its stimulatory effect only when the extracellular glucose reaches a threshold concentration.  相似文献   

19.
It is well-accepted that protein quality control (occurring either after protein synthesis or after cell damage) is mainly ensured by HSP, but the mechanism by which HSP decides whether the protein will be degraded or not is poorly understood. Within this framework, it has been hypothesized that O-GlcNAc, a cytosolic and nuclear-specific glycosylation whose functions remain unclear, could take a part in the protection of proteins against degradation by modifying both the proteins themselves and the proteasome. Because the synthesis of O-GlcNAc is tightly correlated to glucose metabolism and Hsp70 was endowed with GlcNAc-binding property, we studied the relationship between GlcNAc-binding activity of both Hsp70 and Hsc70 (the nucleocytoplasmic forms of HSP70 family) and glucose availability and utilization. We thus demonstrated that low glucose concentration, inhibition of glucose utilization with 2DG, or inhibition of glucose transport with CytB led to an increase of Hsp70 and Hsc70 lectin activities. Interestingly, the response of Hsp70 and Hsc70 lectin activities toward variations of glucose concentration appeared different: Hsp70 lost its lectin activity when glucose concentration was >5 mM (i.e., physiological glucose concentration) in contrast to Hsc70 that exhibited a maximal lectin activity for glucose concentration approximately 5 mM and at high glucose concentrations. This work also demonstrates that HSP70 does not regulate its GlcNAc-binding properties through its own O-GlcNAc glycosylation.  相似文献   

20.
Ammonia-limited (3.5 mM ammonia) cultures of Bacteroides ruminicola B(1)4 had a high number of viable cells (greater than 10(9)/ml), but only when the concentration of glucose was not too high (10 mM or less). When the glucose concentration was increased from 10 to 50 mM, there was a marked decrease in viability (10(5)-fold or greater). Because there was little decline in pH and only a small increase in succinate and acetate as the glucose concentration was increased, it did not appear that end products were killing the cells. This conclusion was supported by the observation that reinoculated cultures grew in the spent medium which had been supplemented with ammonia. Unlabeled rhamnose did not inhibit [14C]-glucose uptake, and cultures which were selected with a low concentration of rhamnose tolerated high concentrations of glucose (50 mM). The glucose-resistant mutant transported glucose at a lower rate than the wild type, and the Vmax of glucose transport was fourfold lower. The wild type stored much more polysaccharide than the glucose-resistant mutant, but it is not clear if polysaccharide accumulation per se is responsible for the glucose toxicity. These results indicated that B. ruminicola B(1)4 is unable to regulate glucose transport and utilization when growth is limited by ammonia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号