首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
独脚金内酯(strigolactones,SLs)是近年来发现的新型植物激素,参与调控植物生长发育过程,SLs在调控根系形态方面具有重要的作用。该文重点综述了SLs对植物主根、侧根、根毛及不定根的调节,特别是SLs与其他信号分子如生长素、乙烯、NO等的相互作用,以及SLs在氮磷胁迫条件下对根系调控的研究进展,为进一步深入了解SLs对植物生长和发育的调节奠定基础。  相似文献   

2.
对独脚金内酯(strigolactones,SLs)调控植物侧枝发育的分子机制及其与生长素相互作用的相关研究结果进行了总结和归纳,在此基础上提出今后的重点研究方向。相关的研究结果显示:在拟南芥[Arabidops~thaliana(Linn.)Heynh.]、豌豆(Pisum sativum Linn.)和水稻(Oryza sativa Linn.)等植物多枝突变体中SLs作为可转导信号参与侧枝发育的分子调控,从这些植物中已克隆获得参与SLs生物合成及信号应答途径的一些基因。作为一种植物激素,SLs在侧枝发育调控网络中与生长素相互作用;腋芽发育与其中生长素的输出密切相关,SLs通过调控芽中生长素的输出间接抑制腋芽发育和侧枝生长,而生长素则在SLs生物合成中起调节作用。  相似文献   

3.
封面说明     
<正>独脚金内酯(strigolactones,SLs)是一类新型植物激素,能够抑制植物分枝的生长发育。近年来,关于SLs合成与信号在调控水稻株型方面的研究取得了重要进展。研究发现,独脚金内酯不仅可以调控水稻的分蘖数目,而且可影响分蘖角度和株高,进而影响穗部形态和籽粒大小,对水稻的产量具有显著的影响。鉴于独脚金内酯对于水稻株型的综合调控功  相似文献   

4.
植物通过内源激素或环境信号调控叶腋内腋芽的形成和发育,从而控制其分枝特性。独脚金内酯(strigolactones,SLs),一种产生于植物根部的类胡萝卜素衍生物,具有刺激寄生植物种子的萌发和促进丛枝菌根真菌菌丝分枝的作用,最近的研究表明,它还可以沿茎干向上运输,与生长素和细胞分裂素一起直接或间接抑制植物分枝,目前已经作为一种新的植物激素受到广泛认可。本文综述了独脚金内酯的结构、合成途径和生物活性,以及调控植物分枝的分子机理,并展望了其在抑制杂草或新型除草剂的研发、促进植物和有益真菌的共生,以及调控作物的分枝和株型等方面的应用前景。  相似文献   

5.
独脚金内酯(strigolactones,SLs)是一类重要的植物激素和根际信号分子,在植物生长发育、根际真菌共生和寄生植物种子萌发等过程中都有重要作用.进一步探究SL的合成、运输和感知机制、调控植物生长发育的机理、与其他植物激素的交互作用及其类似物鉴定等,都需要定量检测方法学的辅助.目前,灵敏且高特异性的SL定量分析...  相似文献   

6.
D53: The Missing Link in Strigolactone Signaling   总被引:1,自引:0,他引:1  
Strigolactones (SLs), a group of small carotenoid-derived terpenoid lactones, have been recently identified as plant hormones controlling plant architecture through modulating shoot and root branching (Brewer et al., in the rhizosphere because of 2013). SLs were first discovered their involvement in both symbiotic and parasitic interactions. Deficiencies in SL biosynthesis and perception lead to excessive growth of axillary bud, which is exemplified through various mutants such as max1, max2,  相似文献   

7.
独角金内酯(strigolactone, SLs)是一类新型植物激素,在植物生长发育的进程中发挥多种重要功能,包括调控植物的分枝,促进种子的萌发,以及影响根系建成等。MAX2 (more axillary growth 2)是SL信号传导途径的关键调控因子,位于合成途径基因MAX1MAX3MAX4的下游,几乎影响独脚金内酯所控制的所有表型。近年来,MAX2多样化的功能逐步得到揭示,大量数据表明MAX2不仅仅是SL信号的重要组分,同时也参与SL和多种激素信号间的交叉互作,在植物生长发育的各个环节,以及抵御生物和非生物胁迫的反应中都发挥至关重要的作用,但具体调控机制还有待更加深入的研究。对目前已知的MAX2功能进行了总结和阐述,以期为全面揭示MAX2功能及其调控多种激素信号的交叉机制提供理论参考。  相似文献   

8.
Strigolactones(SLs) are a class of plant hormones that control plant development in response to environmental conditions. In rice,mesocotyl elongation is regulated by SLs in the dark, while mesocotyls are longer in SL deficient or insensitive mutants. SLs are perceived by DWARF14(D14), which is a member of a small gene family. In this study, we examined the function of another D14 family gene in rice, D14 LIKE(D14L), focusing on mesocotyl growth. The mesocotyls of D14 L RNAi lines are longer than those of WT in the dark. This phenotype is enhanced when the D14 L RNAi lines are combined with the d14 mutation, suggesting that D14 and D14 L work independently to inhibit mesocotyl elongation. This phenotype is alleviated by the exogenous supply of GR24, a synthetic SL, suggesting that D14 L is not necessary for SL signaling. D14 L m RNA is predominantly expressed in vascular bundles and crown root primordia. Our results suggest that D14 L and D14 confer their effects via an SL independent pathway and an SL signaling pathway respectively.  相似文献   

9.
水稻半矮化多分蘖突变体f2-132的表型分析和基因定位   总被引:1,自引:0,他引:1  
半矮化多分蘖突变体f2-132由60Co-γ辐射诱变粳稻品种F2-285A获得。遗传分析表明该性状受1对隐性基因控制,已将突变基因定位在第4染色体长臂上2个Indel标记C4-Z3和C4-Z4之间,物理距离为46 kb。该区间内包含一个已报道的多分蘖基因D17/HTD1,对f2-132中的D17基因测序发现编码区第395位的碱基由T突变为C,导致第132位的氨基酸由苯丙氨酸变成丝氨酸。D17/HTD1编码类胡萝卜素裂解双加氧酶7(CCD7,carotenoid cleavage dioxygenase 7),是植物激素独脚金内酯(SLs,strigolactones)合成途径中的重要酶之一。利用SLs的人工合成类似物GR24处理f2-132,其多分蘖表型受到抑制。  相似文献   

10.
株型是影响谷类作物产量的重要性状, 株型改良对提高作物产量具有重要意义。独脚金内酯(strigolactones, SLs)作为一种最新被鉴定的植物激素, 其通过抑制腋芽的伸长调控分枝/分蘖的形成。β-胡萝卜素异构酶(D27s)是SLs合成途径的关键酶, 通过对谷子(Setaria italica) β-胡萝卜素异构酶典型结构域Pfam:DUF4033进行分析, 鉴定到3个谷子D27s基因家族成员(Seita.8G168400Seita.6G088800Seita.3G050900)。蛋白质特性分析显示, 谷子D27s蛋白由271-277个氨基酸残基组成, 分子量为30.1-30.4 kDa, 等电点为5.85-9.31, 不稳定系数介于38.48-74.47之间, 且均定位于叶绿体; 系统进化分析发现, 谷子D27s家族成员位于3个不同进化分支; 顺式作用元件预测显示, SiD27-1 (Seita.8G168400)可能参与调控生物节律、生长素介导的生长发育以及干旱和低温等胁迫应答过程。基因表达分析显示, SiD27-1在谷子多分蘖材料中表达下调, 在低磷胁迫处理下, D27s基因均能产生不同程度的响应, 并且SiD27-1的响应较其它成员更快速。单倍型分析结果表明, SiD27-1的H001单倍型为优异单倍型, 对谷子的株高、抽穗期和产量改良具有重要应用价值。综上, 推测SiD27-1极可能在SLs合成中发挥关键作用并对谷子株型产生影响。研究结果为深入揭示D27s对谷子分蘖形成的调控机制奠定了基础, 也为谷子株型分子设计育种提供了优异的等位变异位点。  相似文献   

11.
12.
13.
Strigolactones (SLs) have been proposed as a new group of plant hormones, inhibiting shoot branching, and as signaling molecules for plant interactions. Here, we present evidence for effects of SLs on root development. The analysis of mutants flawed in SLs synthesis or signaling suggested that the absence of SLs enhances lateral root formation. In accordance, roots grown in the presence of GR24, a synthetic bioactive SL, showed reduced number of lateral roots in WT and in max3-11 and max4-1 mutants, deficient in SL synthesis. The GR24-induced reduction in lateral roots was not apparent in the SL signaling mutant max2-1. Moreover, GR24 led to increased root-hair length in WT and in max3-11 and max4-1 mutants, but not in max2-1. SLs effect on lateral root formation and root-hair elongation may suggest a role for SLs in the regulation of root development; perhaps, as a response to growth conditions.  相似文献   

14.
Strigolactones (SLs) and their derivatives were recently defined as novel phytohormones that orchestrate shoot and root growth. Levels of SLs, which are produced mainly by plant roots, increase under low nitrogen and phosphate levels to regulate plant responses. Here, we summarize recent work on SL biology by describing their role in the regulation of root development and hormonal crosstalk during root deve-lopment. SLs promote the elongation of seminal/primary roots and adventitious roots (ARs) and they repress lateral root formation. In addition, auxin signaling acts downstream of SLs. AR formation is positively or negatively regulated by SLs depending largely on the plant species and experimental conditions. The relationship between SLs and auxin during AR formation appears to be complex. Most notably, this hormonal response is a key adaption that radically alters rice root architecture in response to nitrogen- and phosphate-deficient conditions.  相似文献   

15.
16.
In most eukaryotes, sphingolipids (SLs) are critical membrane components and signaling molecules. However, mutants of the trypanosomatid protozoan Leishmania lacking serine palmitoyltransferase (spt2-) and SLs grow well, although they are defective in stationary phase differentiation and virulence. Similar phenotypes were observed in sphingolipid (SL) mutant lacking the degradatory enzyme sphingosine 1-phosphate lyase (spl-). This epistatic interaction suggested that a metabolite downstream of SLs was responsible. Here we show that unlike other organisms, the Leishmania SL pathway has evolved to be the major route for ethanolamine (EtN) synthesis, as EtN supplementation completely reversed the viability and differentiation defects of both mutants. Thus Leishmania has undergone two major metabolic shifts: first in de-emphasizing the metabolic roles of SLs themselves in growth, signaling, and maintenance of membrane microdomains, which may arise from the unique combination of abundant parasite lipids; Second, freed of typical SL functional constraints and a lack of alternative routes to produce EtN, Leishmania redirected SL metabolism toward bulk EtN synthesis. Our results thus reveal a striking example of remodeling of the SL metabolic pathway in Leishmania.  相似文献   

17.
Sphingolipids (SLs) are a unique class of nitrogen-linked lipids that are involved in membrane structure, cell signaling, and other important cellular processes. Abnormal sphingolipid metabolism is observed in several diseases including cancer, diabetes, metabolic disorders, and neurodegenerative diseases, such as Alzheimer's. However, the direct study of SLs has been hampered by their ubiquitous presence in cells and their complex metabolism. In the past few decades, efforts have been focused on creating synthetic probes and chemical tools to study SLs and decipher their roles in cellular biology. In this brief perspective, we seek to provide a concise snapshot of recently developed state-of-the-art chemical tools in SL research and the challenges that can be addressed through further development of SL probes.  相似文献   

18.
Sphingolipids and cell death   总被引:3,自引:0,他引:3  
Sphingolipids (SLs) have been considered for many years as predominant building blocks of biological membranes with key structural functions and little relevance in cellular signaling. However, this view has changed dramatically in recent years with the recognition that certain SLs such as ceramide, sphingosine 1-phosphate and gangliosides, participate actively in signal transduction pathways, regulating many different cell functions such as proliferation, differentiation, adhesion and cell death. In particular, ceramide has attracted considerable attention in cell biology and biophysics due to its key role in the modulation of membrane physical properties, signaling and cell death regulation. This latter function is largely exerted by the ability of ceramide to activate the major pathways governing cell death such as the endoplasmic reticulum and mitochondria. Overall, the evidence so far indicates a key function of SLs in disease pathogenesis and hence their regulation may be of potential therapeutic relevance in different pathologies including liver diseases, neurodegeneration and cancer biology and therapy.  相似文献   

19.
Strigolactones (SLs) are a family of terpenoid allelochemicals that were recognized as plant hormones only a decade ago. They influence a myriad of both above‐ and below‐ground developmental processes, and are an important survival strategy for plants in nutrient‐deprived soils. A rapidly emerging approach to gain knowledge on hormone signaling is the use of traceable analogs. A unique class of labeled SL analogs was constructed, in which the original tricyclic lactone moiety of natural SLs is replaced by a fluorescent cyanoisoindole ring system. Biological evaluation as parasitic seed germination stimulant and hypocotyl elongation repressor proved the potency of the cyanoisoindole strigolactone analogs (CISAs) to be comparable to the commonly accepted standard GR24. Additionally, via a SMXL6 protein degradation assay, we provided molecular evidence that the compounds elicit SL‐like responses through the natural signaling cascade. All CISAs were shown to exhibit fluorescent properties, and the high quantum yield and Stokes shift of the pyrroloindole derivative CISA‐7 also enabled in vivo visualization in plants. In contrast to the previously reported fluorescent analogs, CISA‐7 displays a large similarity in shape and structure with natural SLs, which renders the analog a promising tracer to investigate the spatiotemporal distribution of SLs in plants and fungi.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号