首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We reported in anterior pituitary cells that hormone stimulation of cyclic AMP levels is amplified by agents that activate protein kinase C (e.g., phorbol esters). We utilized the 235-1 pituitary cell line to explore the mechanism of this response. PGE1- and forskolin-stimulated cyclic AMP accumulation and adenylate cyclase activity are enhanced by exposing viable cells to phorbol esters. Adenylate cyclase activity in the presence of PGE1 demonstrated a biphasic stimulatory, then inhibitory response to increasing GTP concentrations; phorbol esters attenuated this inhibition. These data support the hypothesis that protein kinase C can covalently change the functional state of the adenylate cyclase holoenzyme, amplifying its response to certain hormones.  相似文献   

2.
Hormonal activation and inhibition of the GH4Cl1 cell adenylate cyclase complex is delineated. In the presence of the guanyl nucleotide GTP, enzyme activity was enhanced twofold by thyroliberin, sixfold by vasoactive intestinal peptide (VIP), twofold by prostaglandin E2 and twofold by isoproterenol. The diterpene, forskolin, increased, the activity 14-fold. In the presence of high GTP (400 microM) and NaCl (150 mM) concentrations, somatostatin inhibited (ED50 = 0.5 microM) the cyclase activity by 40%. In the presence of 10 microM somatostatin, the ED50 values (5 nM) for thyroliberin- and VIP-stimulated adenylate cyclase activities were shifted to 20 nM. Forskolin-elicited activation was, however, not affected by somatostatin. Cholera-toxin and pertussis-toxin pretreatment of the enzyme brought about some 20-fold and twofold activation, respectively. Inhibition by somatostatin was abolished upon pre-exposure to pertussis toxin. Mild alkylation by N-ethylmaleimide increased basal and hormone-activated adenylate cyclase while somatostatin again failed to express its inhibitory potential. Further alkylation caused a gradual decline and convergence of hormone-modulated cyclase activities towards zero. The N-ethylmaleimide-induced attenuation of thyroliberin-elicited activity was paralleled by a decrease in [3H]thyroliberin binding. Trifluoperazine and an anti-calmodulin serum reduced basal and net thyroliberin-, VIP- and forskolin-enhanced cyclase activities by some 30%, 100%, 70% and 80%, respectively. The Vmax of basal and thyroliberin-stimulated adenylate cyclase was diminished by 65%, leaving the apparent Km values (7.2 mM and 2.6 mM, respectively) for Mg2+ unaltered. Finally, the phorbol ester 12-O-tetra-decanoyl-phorbol 13-acetate (TPA) doubled the activity. This effect was counteracted by the protein kinase C inhibitor, polymyxin B, while thyroliberin-enhanced adenylate cyclase remained unaffected. In summary, we have described an adenylate cyclase with stimulatory (Rs) and inhibitory (Ri) receptors coupled to a calmodulin-sensitive holoenzyme through the Gs and Gi type of GTP-binding proteins. The ratio of the Gs to Gi is high. It appears that the GH4C1 cell adenylate cyclase is also activated by protein kinase C by interference with Gi. Apparently, thyroliberin activates the cyclase both directly through Gs and indirectly via protein kinase C stimulation.  相似文献   

3.
Different peptide hormones influence hormone secretion in pituitary cells by diverse second messenger systems. Recent data indicate that luteinizing-hormone-releasing hormone (LHRH) stimulates and somatostatin inhibits voltage-dependent Ca2+ channels of GH3 cells via pertussis-toxin-sensitive mechanisms [Rosenthal et al. (1988) EMBO J. 7, 1627-1633]. In other pituitary cell lines, somatostatin has been shown to cause a pertussis-toxin-sensitive decrease in adenylate cyclase activity, and LHRH and thyrotropin-releasing hormone (TRH) stimulate phosphoinositol lipid hydrolysis in a pertussis-toxin-independent manner. Whether stimulation of Ca2+ influx by TRH is affected by pertussis toxin is not known. In order to elucidate which of the hormone receptors interact with pertussis-toxin-sensitive and -insensitive G-proteins, we measured the effects of LHRH, somatostatin and TRH on high-affinity GTPases in membranes of GH3 cells. In control membranes, both LHRH and TRH stimulated the high-affinity GTPase by 20%, somatostatin by 25%. Maximal hormone effects were observed at a concentration of about 1 microM. Pretreatment of cells with pertussis toxin abolished pertussis-toxin-catalyzed [32P]ADP-ribosylation of 39-40-kDa proteins in subsequently prepared membranes and reduced basal GTPase activity. The toxin also reduced by more than half the increases in GTPase activity induced by LHRH and TRH; stimulation of GTPase by somatostatin was completely suppressed. Stimulation of adenylate cyclase by vasoactive intestinal peptide (VIP) was not impaired by pretreatment of cells with pertussis toxin. Somatostatin but not LHRH and TRH decreased forskolin-stimulated adenylate cyclase activity. The results suggest that the activated receptors for LHRH and TRH act via pertussis-toxin-sensitive and -insensitive G-proteins, whereas effects of somatostatin are exclusively mediated by pertussis-toxin-sensitive G-proteins.  相似文献   

4.
We have reported previously that tumour-promoting phorbol esters modulate both basal and vasoactive intestinal polypeptide (VIP)-stimulated adenylyl cyclase activity in GH3 (an established pituitary cell line). Here, we probe the receptor and cell specificity of this response. Experiments were performed in the presence of isobutylmethylxanthine. Unlike the response in GH3 cells, the tumour-promoting phorbol ester (tetradecanoyl phorbol acetate (TPA] did not affect either basal adenylyl cyclase activity nor VIP-stimulated activity in the rat osteosarcoma subclones UMR 106-01 and UMR 106-06. In addition, the cyclase responses to parathyroid hormone (PTH), and, in the case of UMR 106-06, to calcitonin were unaffected by tumour-promoting phorbol ester. However, prostaglandin E2-stimulated cyclase activity in both of these subclones was attenuated in a dose-dependent manner.  相似文献   

5.
The phorbol ester 12-O-tetradecanoyl-phorbol 13-acetate (TPA) and thyroliberin exerted additive stimulatory effects on prolactin release and synthesis in rat adenoma GH4C1 pituicytes in culture. Both TPA and thyroliberin activated the adenylate cyclase in broken cell membranes. When combined, the secretagogues displayed additive effects. TPA did not alter the time course (time lag) of adenylate cyclase activation by hormones, guanosine 5'-[beta,gamma-imino]triphosphate or forskolin, nor did it affect the enzyme's apparent affinity (basal, 7.2 mM; thyroliberin-enhanced, 2.2 mM) for free Mg2+. The TPA-mediated adenylate cyclase activation was entirely dependent on exogenously added guanosine triphosphate. ED50 (dose yielding half-maximal activation) was 60 microM. Access to free Ca2+ was necessary to express TPA activation of the enzyme, however, the presence of calmodulin was not mandatory. TPA-stimulated adenylate cyclase activity was abolished by the biologically inactive phorbol ester, 4 alpha-phorbol didecanoate, by the protein kinase C inhibitor polymyxin B and by pertussis toxin, while thyroliberin-sensitive adenylate cyclase remained unaffected. Experimental conditions known to translocate protein kinase C to the plasma membrane and without inducing adenylate cyclase desensitization, increased both basal and thyroliberin-stimulated enzyme activities, while absolute TPA-enhanced adenylate cyclase was maintained. Association of extracted GTP-binding inhibitory protein, Gi, from S49 cyc- murine lymphoma cells with GH4C1 cell membranes yielded a reduction of basal and hormone-stimulated adenylate cyclase activities, while net inhibition of the cyclase of somatostatin was dramatically enhanced. However, TPA restored completely basal and hormone-elicited adenylate cyclase activities in the Gi-enriched membranes. Finally, TPA completely abolished the somatostatin-induced inhibition of adenylate cyclase in both hybrid and non-hybrid membranes. These data suggest that, in GH4C1 cells, protein kinase C stimulation by phorbol esters completely inactivates the n alpha i subunit of the inhibitory GTP-binding protein, leaving the n beta subunit functionally intact. It can also be inferred that thyroliberin conveys its main effect on the adenylate cyclase through activation of the stimulatory GTP-binding protein, Gs.  相似文献   

6.
Treatment of HT29 cells with the tumor promoting phorbol ester PMA resulted in an attenuation of VIP-stimulated cAMP production in intact cells and VIP-stimulated adenylate cyclase activity in cell membranes. PMA did not decrease the ability of cholera toxin and forskolin to elevate cAMP levels in intact cells. Fluoride-stimulated adenylate cyclase activity in HT29 cells homogenates was not affected by PMA. The maximal VIP binding capacity of homogenates prepared from HT29 cells treated with PMA was decreased by 50%. It is concluded that protein kinase C regulates VIP receptor function possibly through phosphorylation of the VIP receptor.  相似文献   

7.
The tumour-promoting phorbol ester, PMA (phorbol 12-myristate 13-acetate), markedly reduced the steroidogenic response of mouse Leydig cells to stimulation by hCG and cholera toxin. However, 8Br-cAMP-and forskolin-stimulated steroidogenesis was not inhibited by PMA. PMA did not inhibit hCG-induced steroidogenesis in the simultaneous presence of 1 microM forskolin. The analysis of intracellular cAM P indicated that the PMA-induced inhibition of steroidogenesis was the result of an impaired cAMP accumulation. Adenylate cyclase in membranes prepared from PMA-treated cells showed a diminished response to hCG, GTP, guanosine 5'-[beta, gamma-imido]triphosphate [Gpp(NH)p] or to a combination of the stimulants. PMA, however, was unable to inhibit adenylate cyclase when added directly to the membrane preparation from untreated cells. As previous observations have indicated that 125I-hCG binding and phosphodiesterase activity in mouse Leydig cells are not influenced by PMA, it is concluded from the present study that the site of inhibition has to be localised to the regulatory guanine nucleotide binding protein of the adenylate cyclase system.  相似文献   

8.
Many cells develop enhanced adenylate cyclase activity after prolonged exposure to drugs that acutely inhibit the enzyme and it has been suggested that this adaptation may be due to an increase in Gs alpha. We have treated wild-type and Gs alpha-deficient cyc- S49 mouse lymphoma cells with a stable analogue (SMS 201-995) of the inhibitory agonist somatostatin. After incubation with SMS for 24 h, the forskolin-stimulated cAMP synthetic rate in intact cyc- cells was increased by 76%, similar to the increase found in the wild-type cells. Forskolin-stimulated adenylate cyclase activity in the presence of Mn2+ was also increased in membranes prepared from SMS-treated cyc- cells; however, guanine nucleotide-mediated inhibition of adenylate cyclase activity was not changed despite a small decrease in inhibitory Gi alpha subunits detected by immunoblotting. Pretreatment of cyc- cells with pertussis toxin prevented SMS from inducing the enhancement of forskolin-stimulated cAMP accumulation in intact cells. After chronic incubation of cyc- cells with SMS, exposure to N-ethylmaleimide, which abolished receptor-mediated inhibition of cAMP accumulation, did not attenuate the enhanced rate of forskolin-stimulated cAMP synthesis compared to N-ethylmaleimide-treated controls. These results with cyc- cells demonstrate that an adaptive increase in adenylate cyclase activity induced by chronic treatment with an inhibitory drug can occur in the absence of expression of Gs alpha.  相似文献   

9.
Treatment of intact hepatocytes with glucagon, TH-glucagon [( 1-N-alpha-trinitrophenylhistidine, 12-homoarginine]glucagon), angiotensin or vasopressin led to a rapid time- and dose-dependent loss of the glucagon-stimulated response of the adenylate cyclase activity seen in membrane fractions isolated from these cells. Intracellular cyclic AMP concentrations were only elevated with glucagon. All ligands were capable of causing both desensitization/loss of glucagon-stimulated adenylate cyclase activity and stimulation of inositol phospholipid metabolism in the intact hepatocytes. Maximally effective doses of angiotensin precluded any further inhibition/desensitizing action when either glucagon or TH-glucagon was subsequently added to these intact cells, as has been shown previously for the phorbol ester TPA (12-O-tetradecanoylphorbol 13-acetate) [Heyworth, Wilson, Gawler & Houslay (1985) FEBS Lett. 187, 196-200]. Treatment of intact hepatocytes with these various ligands caused a selective loss of the glucagon-stimulated adenylate cyclase activity in a washed membrane fraction and did not alter the basal, GTP-, NaF- and forskolin-stimulated responses. Angiotensin failed to inhibit glucagon-stimulated adenylate cyclase activity when added directly to a washed membrane fraction from control cells. Glucagon GR2 receptor-stimulated adenylate cyclase is suggested to undergo desensitization/uncoupling through a cyclic AMP-independent process, which involves the stimulation of inositol phospholipid metabolism by glucagon acting through GR1 receptors. This action can be mimicked by other hormones which act on the liver to stimulate inositol phospholipid metabolism. As the phorbol ester TPA also mimics this process, it is proposed that protein kinase C activation plays a pivotal role in the molecular mechanism of desensitization of glucagon-stimulated adenylate cyclase. The site of the lesion in desensitization is shown to be at the level of coupling between the glucagon receptor and the stimulatory guanine nucleotide regulatory protein Gs, and it is suggested that one or both of these components may provide a target for phosphorylation by protein kinase C.  相似文献   

10.
GH3 cells were used to study the effect of rat growth hormone-releasing factor on adenylate cyclase activity and its interaction with somatostatin. Rat GRF stimulates adenylate cyclase activity (ED5 0 = 6 X 10(-8) M) and somatostatin-14 inhibits this GRF-stimulated activity in a non-competitive manner without affecting the basal enzyme levels. Inhibition by somatostatin-14 is observed at concentrations as low as 10(-11) M and the half-maximal effect is obtained with 10(-8) M. Somatostatin-28 is more potent than SS-14 and has an ED5 0 of 3 X 10(-11) M. VIP is more active than rat GRF in stimulating adenylate cyclase activation. We conclude that in GH3 cells rat GRF behaves as a partial VIP agonist by interacting with VIP-preferring receptors and its effects are inhibited by somatostatin.  相似文献   

11.
We investigated the effect of interleukin-6 (IL-6) on second messenger systems in anterior pituitary (AP) cells. The acute exposition of membranes derived from the pituitary gland to IL-6 did not modify basal and forskolin-stimulated adenylate cyclase (AC) activity, as well as inositol phosphate (IP) production and free [Ca(++)]i. Preincubation of AP cells with IL-6 for 20 min did not affect basal second messengers levels, while completely abolished the stimulation by VIP of AC activity, partially inhibited forskolin-stimulated cAMP formation and reduced TRH-stimulated IP production. Finally, the pretreatment of AP cells for 20 min with IL-6 also reduced the TRH-induced rise in free [Ca(++)]i.  相似文献   

12.
12-O-Tetradecanoylphorbol-13-acetate (TPA) enhances the apparent maximal velocity of adenylate cyclase in S49 lymphoma cells, an effect that seems not to result from an increased rate of activation of the catalytic subunit by the stimulatory GTP-binding protein (Gs) (Bell, J. D., Buxton, I. L. O., and Brunton, L. L. (1985) J. Biol. Chem. 260, 2625-2628). In membranes from wild type S49 cells, this enhancing effect of TPA is largely GTP-dependent; TPA enhances forskolin-stimulated adenylate cyclase activity by 35% in the presence of guanine nucleotide but only slightly (approximately 10%) in its absence. TPA causes comparable results in membranes from the cyc- variant that lacks the GTP-binding subunit of Gs. Blockade of the activity of the inhibitory GTP-binding protein (Gi) by high concentrations of Mg2+ (100 mM) or Mn2+ (3 mM) abolishes the effect of TPA to enhance adenylate cyclase activity in wild type membranes. The potentiation by TPA of cAMP accumulation in intact cells is greater than and not additive with the similar effect of pertussis toxin (an agent known to abolish hormonal inhibition of adenylate cyclase). Kinetic experiments indicate that TPA decreases the rate of activation of Gi by guanine nucleotide. We conclude that the resultant withdrawal of tonic inhibition of adenylate cyclase is one mechanism by which phorbol esters enhance guanine nucleotide-dependent cAMP synthesis.  相似文献   

13.
Abstract: 4β-Phorbol 12-myristate 13-acetate (PMA), added to a lysed mitochondrial fraction of rat striatum, stimulates adenylate cyclase activity with an apparent time lag of ~30 s. Half-maximal and maximal enzyme stimulations are obtained with 8 and 200 nM PMA, respectively. The PMA stimulation is GTP dependent, reaching a maximum of ~60% at 50 μ.M GTP, and is associated with disappearance of the enzyme inhibition induced by micromolar concentrations of GTP. Enhancement of enzyme activity by cholera toxin and 3,4-dihydroxyphenylethylamine is amplified by PMA only at micromolar concentrations of GTP. PMA does not affect the enzyme stimulation by forskolin but reverses the inhibition of forskolin-stimulated enzyme by GTP. When guanyl-5′-yl-imidodiphosphate is substituted for GTP, PMA does not modify adenylate cyclase activity. Enzyme inhibition by acetylcholine, Leu-enkephalin, and R(-)N6-(2-phenylisopropyl)adenosine is magnified by PMA. Stimulation of adenylate cyclase by PMA is markedly reduced following EGTA treatment, is not observed when adenyl-5′-yl-imidodiphosphate is substituted for ATP as substrate for adenylate cyclase, and is enhanced by l-α-phosphatidyl-l-serine. Like PMA, 4β-phorbol 12,13-dibutyrate and 1-oleoyl-2-acetylglycerol stimulate striatal adenylate cyclase, whereas 4β-phorbol and 4β-phorbol 13-acetate are ineffective. The results indicate that phorbol esters increase striatal adenylate cyclase activity by reducing the GTP-induced inhibition of the enzyme, presumably as a result of protein kinase C activation.  相似文献   

14.
Addition of 12-O-tetradecanoylphorbol-13-acetate (TPA) to S49 lymphoma cells (wild type and a cyclic AMP-dependent protein kinase-lacking clone) has little effect alone but doubles accumulation of cyclic AMP in response to isoproterenol. The effect is immediate and has an apparent affinity and order of potency characteristic of the activation of protein kinase C by phorbol esters. Enhancement does not reflect an altered time course of the beta-adrenergic response, enhanced affinity of the cellular beta-receptor for agonist, or decreased degradation and export of cellular cyclic AMP. Reduction of the beta-adrenergic response by somatostatin does not remove the effect of TPA nor does TPA abolish the effect of somatostatin. Phorbol ester enhances cyclic AMP accumulation in response to cholera toxin in wild type and UNC clones but not in H21a or cyc-. TPA also enhances cAMP accumulation in response to forskolin in wild type cells. The effect of TPA is stable to rapid preparation of membranes. In adenylate cyclase assays on membranes from cells treated with TPA, the activation by guanosine 5'-(beta, gamma-imino)triphosphate is enhanced by 40% with no change in lag time; the effect of beta-agonist plus Gpp(NH)p is similarly enhanced; activation by Mn2+ is unchanged. We conclude that phorbol ester facilitates the productive interaction of the alpha subunit of the transducer protein Gs with the catalytic unit of adenylate cyclase, hypothetically via an action of protein kinase C.  相似文献   

15.
The inhibitory and stimulatory guanine nucleotide-binding regulatory components (Gi and Gs) of adenylate cyclase both have an alpha X beta subunit structure, and the beta subunits are functionally indistinguishable. GTP-dependent hormonal inhibition of adenylate cyclase and that caused by guanine nucleotide analogs seem to result from dissociation of the subunits of Gi. Such inhibition can be explained by reduction of the concentration of the free alpha subunit of Gs as a result of its interaction with the beta subunit of Gi in normal Gs-containing membranes. However, inhibition in S49 lymphoma cyc- cell membranes presumably cannot be explained by the Gi-Gs interaction, since the activity of the alpha subunit of Gs is not detectable in this variant. Several characteristics of Gi-mediated inhibition of adenylate cyclase have been studied in both S49 cyc- and wild type membranes. There are several similarities between inhibition of forskolin-stimulated adenylate cyclase by guanine nucleotides and somatostatin in cyc- and wild type membranes. 1) Somatostatin-induced inhibition of the enzyme is dependent on GTP; nonhydrolyzable GTP analogs are also effective inhibitors. 2) The effect of guanosine-5'-(3-O-thio)triphosphate (GTP gamma S) is essentially irreversible, and somatostatin accelerates GTP gamma S-induced inhibition. 3) Inhibition of adenylate cyclase by somatostatin or Gpp(NH)p is attenuated by treatment of cells with islet-activating protein (IAP). 4) Both cyc- and wild type membranes contain the substrate for IAP-catalyzed ADP-ribosylation (the alpha subunit of Gi). 5) beta Subunit activity in detergent extracts of membranes is liberated by exposure of the membranes to GTP gamma S. The alpha subunit of Gi in such extracts has a reduced ability to be ADP-ribosylated by IAP, which implies that this subunit is in the GTP gamma S-bound form. The resolved subunits of Gi have been tested as regulators of cyc- and wild type adenylate cyclase under a variety of conditions. The alpha subunit of Gi inhibits forskolin-stimulated adenylate cyclase activity in cyc-, while the beta subunit stimulates; these actions are opposite to those seen with wild type membranes. The inhibitory effects of GTP plus somatostatin (or GTP gamma S) and the alpha subunit of Gi are not additive in cyc- membranes. In wild type, the inhibitory effects of the hormone and GTP gamma S are not additive with those of the beta subunit.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Somatostatin was incubated in an adenylate cyclase assay of a particulate fraction of caudateputamen tissue of the rat in order to examine the effect of the peptide on D-1 receptor coupled adenylate cyclase in vitro. Somatostatin was able to enhance cyclic AMP formation in the presence of guanylylimidodiphosphate and guanosine-triphosphate. In contrast to this, somatostatin inhibited both dopamine and forskolin-stimulated cyclic AMP accumulation. Pertussis toxin and cholera toxin also depressed forskolin-induced stimulation. Somatostatin was found to antagonize these inhibitory effects of pertussis toxin and cholera toxin. The results suggest that somatostatin acts through a stimulatory as well as an inhibitory guanine nucleotide regulatory protein subtype to affect dopaminergic adenylate cyclase activity.  相似文献   

17.
The phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) was shown to mimic luteinizing hormone (LH; lutropin) in causing desensitization of LH-mediated cyclic AMP production in tumour Leydig cells. However, there were differences between LH- and TPA-induced desensitization: (1) TPA induced a more rapid effect than LH; (2) adenosine did not inhibit TPA-induced desensitization, whereas it completely inhibited the LH-induced desensitization; (3) adenylate cyclase activity in plasma membranes from TPA-desensitized cells was not decreased, whereas similar preparations from LH-desensitized cells lost their response to LH and to LH plus guanosine 5'-[beta gamma-imido]triphosphate; TPA-, but not LH-, treated cells had a decreased capacity to respond to cholera toxin and forskolin. These results indicate that LH and phorbol esters induce desensitization of adenylate cyclase in rat tumour Leydig cells by different mechanisms.  相似文献   

18.
The purpose of this work was to study vasoactive intestinal peptide (VIP) receptors and the adenylate cyclase response to VIP upon enterocytic differentiation of the human colon adenocarcinoma cell line Caco-2 in culture. The VIP-stimulated enzyme activity is very low, e.g. 20% above basal activity in undifferentiated cells (day 5) and is enhanced markedly at confluency reaching a maximum, e.g. 270%, above basal activity in fully differentiated cells (day 30). VIP potency is also slightly enhanced, the EC50 of VIP ranging from 0.31 nM at day 5 to 0.07 nM at day 30. Modifications of the adenylate cyclase system are not responsible for the development of VIP response. Indeed, forskolin-stimulated adenylate cyclase activity is unchanged during differentiation supporting no alteration of the enzyme catalytic subunit. The same holds true for NaF and guanosine 5'-(beta, gamma-imido)trisphosphate, indicating a constant activity of the guanine nucleotide regulatory unit which mediates hormonal stimulation of adenylate cyclase (Ns). This is further supported by the similar extent of cholera toxin-catalyzed [32P]ADP-ribosylation of the Ns protein that is observed during differentiation. In sharp contrast, a dramatic increase of VIP receptor concentration is observed ranging from 32 fmol/mg of protein at day 5 to 414 fmol/mg of protein at day 30. This is confirmed by affinity cross-linking experiments showing an increased specific incorporation of 125I-VIP in a major 66,000-dalton component during differentiation. A slight increase in receptor affinity is also observed during differentiation with Kd ranging from 0.39 nM at day 5 to 0.08 nM at day 30. These data indicate that one population of VIP receptors accumulates during Caco-2 cell differentiation, representing the crucial event in the development of adenylate cyclase response to the peptide.  相似文献   

19.
The beta-adrenergic receptor kinase is a cytosolic enzyme that specifically phosphorylates the agonist-occupied form of the beta-adrenergic receptor (beta AR). Beta AR kinase appears to be translocated from the cytosol to the plasma membrane when kin- S49 lymphoma cells are incubated with either beta-adrenergic agonists or prostaglandin E1, both of which act through receptors which stimulate adenylate cyclase. We report here that brief (approximately 20 min) exposure of wild type S49 lymphoma cells to somatostatin (which inhibits adenylate cyclase) promotes the translocation of beta AR kinase to an extent comparable to that observed in the presence of the beta agonist isoproterenol or prostaglandin E1. Beta AR kinase activity can be measured using either beta AR or rhodopsin, the retinal receptor for light, as a substrate. The translocation process triggered by somatostatin is rapid, reversible, and is associated with somatostatin receptor desensitization. The latter is apparent as an attenuation of the inhibition by somatostatin of forskolin-stimulated adenylate cyclase activity in membranes of S49 cells preincubated in the presence of the peptide. These results strongly suggest that beta AR kinase is able to phosphorylate and desensitize both stimulatory and inhibitory adenylate cyclase-coupled receptors, thus emerging as a general kinase that regulates the function of different receptors in an agonist-specific fashion.  相似文献   

20.
The inhibition of forskolin-stimulated adenylate cyclase activity by 5-hydroxytryptamine (5-HT) receptor agonists was measured in rat hippocampal membranes isolated from animals treated with vehicle or islet-activating protein (IAP; pertussis toxin). In vehicle-treated animals, 5-HT, 8-hydroxy-2-(di-n-propylamino)tetralin, buspirone, and gepirone were potent in inhibiting forskolin-stimulated adenylate cyclase activity with EC50 values of 60, 76, 376, and 530 nM, respectively. IAP treatment reduced by 30-55% the 5-HT1A agonist inhibition of adenylate cyclase activity via 5-HT1A receptors. The data indicate that the inhibitory guanine nucleotide-binding protein or Go (a similar GTP-binding protein of unknown function purified from brain) mediates the 5-HT1A agonist inhibition of hippocampal adenylate cyclase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号