首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background and Aims Gene flow from crops to their wild relatives has the potential to alter population growth rates and demography of hybrid populations, especially when a new crop has been genetically modified (GM). This study introduces a comprehensive approach to assess this potential for altered population fitness, and uses a combination of demographic data in two habitat types and mathematical (matrix) models that include crop rotations and outcrossing between parental species.Methods Full life-cycle demographic rates, including seed bank survival, of non-GM Brassica rapa × B. napus F1 hybrids and their parent species were estimated from experiments in both agricultural and semi-natural habitats. Altered fitness potential was modelled using periodic matrices including crop rotations and outcrossing between parent species.Key Results The demographic vital rates (i.e. for major stage transitions) of the hybrid population were intermediate between or lower than both parental species. The population growth rate (λ) of hybrids indicated decreases in both habitat types, and in a semi-natural habitat hybrids became extinct at two sites. Elasticity analyses indicated that seed bank survival was the greatest contributor to λ. In agricultural habitats, hybrid populations were projected to decline, but with persistence times up to 20 years. The seed bank survival rate was the main driver determining persistence. It was found that λ of the hybrids was largely determined by parental seed bank survival and subsequent replenishment of the hybrid population through outcrossing of B. rapa with B. napus.Conclusions Hybrid persistence was found to be highly dependent on the seed bank, suggesting that targeting hybrid seed survival could be an important management option in controlling hybrid persistence. For local risk mitigation, an increased focus on the wild parent is suggested. Management actions, such as control of B. rapa, could indirectly reduce hybrid populations by blocking hybrid replenishment.  相似文献   

2.
文峪河上游华北落叶松林的种子雨、种子库与幼苗更新   总被引:1,自引:0,他引:1  
高润梅  石晓东  郭跃东  樊兰英 《生态学报》2015,35(11):3588-3597
华北落叶松林下更新不良,为探究其制约因素,开展了山西省文峪河上游5个华北落叶松林分的种子雨、土壤种子库和幼苗更新的研究。结果表明:(1)华北落叶松种子主要集中于9—10月散落。2011年为华北落叶松种子丰年:种子产量高,种子雨密度达(961.93±377.40)粒/m2;种子质量高,完整种子占(89.31±16.13)%。2012年为种子平年,种子产量低,种子雨密度为(252.73±115.12)粒/m2。华北落叶松种子雨主要源于毗邻树木,华北落叶松纯林和落叶松云杉林的种子雨密度显著高于其他3个针阔混交林。(2)土壤种子库主要由上年种子雨组成,2012年4月的土壤种子库密度为(695.18±297.23)粒/m2,完整种子占(59.73±9.56)%。种子自然萌发前,约(78.98±24.76)粒/m2具发芽力,基本可满足更新需要。但种子活力保持期少于2 a,只能形成短期持久土壤种子库。(3)华北落叶松更新不良,种子年后仍难以实现幼苗建成,当年生幼苗的出现频度平均为1.6%,且林下难以存活。幼苗发生与种子储量关联性不强,种源条件不是制约华北落叶松更新的主要因素。  相似文献   

3.
冯璐  卜兆君  李振新  冯亚敏 《生态学报》2015,35(9):2993-2997
长寿有性繁殖体对于植物种群的长存具有重要意义,迄今,泥炭地苔藓植物孢子长寿性研究还很少。在长白山哈泥泥炭地钻取丘间表层泥炭样品,测定泥炭腐殖化度和烧失量,逐层提取和培养泥炭藓孢子,研究埋藏时间对孢子萌发的影响。结果表明,丘间泥炭藓孢子埋藏环境中,随着埋深的增加即埋藏年限的增加,泥炭腐殖化度和烧失量总体上分别呈现增加和递减的趋势,而地层泥炭藓孢子萌发率呈现直线递减的规律,但在埋藏近150余年后孢子萌发率仍可达40%。研究进一步证明泥炭藓具有长期持久孢子库,根据推算,泥炭地丘间埋藏环境中,泥炭藓孢子最大寿命可超过400a。  相似文献   

4.
Summary The effects of temperature, photoperiod, phytochrome photoreversion and the response to a R/FR ratio gradient were investigated in seeds of four species from two contrasting tropical habitats; two species from a rain forest (Cecropia obtusifolia and Piper umbellatum) and two from a high altitude lava field covered by low vegetation (Buddleja cordata and Chenopodium ambrosioides). In the rain forest seed species the photoblastic response seems to be adapted to light quality changes due to canopy destruction, on the other hand, the lava field seed species seem to be adapted to instantaneous light stimulus such as would be produced by the sudden exposure of a buried seed to the soil surface light environment.  相似文献   

5.
Abstract

The autecology of the Sardinian endemics Aquilegia barbaricina Arrigoni et Nardi and A. nugorensis Arrigoni et Nardi were investigated. Peaks of anthesis and seed dispersal were recorded for five populations occurring in two distinct habitats, one riparian and one rupicolous. Germination tests were carried out on seed lots belonging to each population by sowing seeds at 10, 15, 20, 25 and 25/15°C. In addition, seeds were incubated for 2 months at either 25°C (summer), 5°C (winter) or 25°C for 2 months plus 2 months at 5°C (summer followed by winter–SW), and then moved to the germination temperatures. Embryo measurements were taken during pre-treatments and germination. Experimental seed burials were carried out for two populations of each species. Both species dispersed in summer. The population of A. nugorensis occurring on rocky outcrops differed in phenology from both the other A. nugorensis population from riparian vegetation and from A. barbaricina. Both species showed morphophysiological seed dormancy, with <50% germination under laboratory conditions. All riparian populations germinated only after the SW pre-treatment, while the rupicolous population germinated at 25°C, without any pre-treatment. Low germination percentages were observed in the experimental seed burials, suggesting the ability for both species to form a persistent soil seed bank.  相似文献   

6.
不同年龄香果树种子雨和种子库及其更新特征   总被引:2,自引:0,他引:2  
对宝天曼自然保护区香果树种子雨、土壤种子库进行了观测,并进行不同微生境播种实验,研究其种子萌发及幼苗生长动态。结果表明:(1)不同龄级香果树种子雨持续时间及其高峰期有所不同,种子雨强度存在极显著差异。(2)20~50龄级香果树的种子饱满率、土壤种子库中种子密度均显著低于其他龄级,但其不同类型种子的水平和垂直分布规律一致;大约80%的香果树种子在其萌发前消失,剩余种子中以霉烂种子密度最高(9.81粒·m-2),饱满种子密度最低(1.94粒·m-2)。(3)野外育苗实验表明,不同龄级香果树所产饱满种子的萌发率及幼苗存活率差异不显著,其种子萌发率约为16.93%,但仅有3.86%的幼苗寿命超过5个月;不同微生境对香果树幼苗存活率产生显著影响,林窗是其最适宜微生境。研究认为,人工采集香果树种子,于次年4月份在原生境下播种;清理母树冠下和冠缘的地被物,增加林缘空地地被物覆盖度,以减少香果树种子的损失,改善香果树种子萌发和幼苗生长的光照条件,以利于幼苗根系的生长,促进香果树的自然更新。  相似文献   

7.
Davies  Angus  Waite  Stephen 《Plant Ecology》1998,136(1):27-39
The relationships between the composition of the soil seed bank, the field layer vegetation, and the scrub canopy were investigated along a 69 m transect, grading from incipient woodland, through scrub, into intensively rabbit-grazed calcareous grassland. The results are used to assess the persistence of species associated with open calcareous grassland in the seed bank under developing scrub. Scrub age, composition and density, changed along the transect from the woodland to open grassland. A total of 35 forb and grass species were found in the field layer. The pattern evident in the scrub layer was also reflected in the herbaceous vegetation. The field layer in the most closed portion of the transect, where the scrub was oldest, was dominated by shade-tolerant species normally associated with woodland habitats. The abundance of these species decreased along the transect as the scrub age declined, and the field layer became increasingly dominated by species typical of open grassland. A total of 47 species germinated from the seed bank. Few species were recorded in the seed bank along the entire length of the transect. Overall, the seed bank was dominated by Hypericum perforatum and Centaurium erythraea, which accounted for 38.2% and 28.6% of emerging seedlings respectively. As with a number of similar studies, the composition of the seed bank had a low correspondence with the composition of the field layer vegetation. The results also emphasise that the composition of the seed bank can be viewed as an ecological palimpsest, with germinable seed of species from each stage of the old-field succession occurring in the soil. The seed bank is an important component in the re-vegetation of an area after disturbance such as scrub removal. This study supports the findings of previous research in showing that relatively few characteristic calcareous grassland species form persistent seed banks. The soil seed bank would therefore appear to be of limited value in the restoration of such grassland following scrub removal.  相似文献   

8.
The pre- and postdispersal spatial patterns of the germinable seed bank of Festuca pallescens were evaluated in semiarid grasslands of Patagonia disturbed by sheep grazing. Before dispersal, the seed bank showed spatial heterogeneity and was significantly smaller than the postdispersal seed bank. The postdispersal seed bank was uniformly distributed in patches of bare soil. The size of the germinable seed bank varied with the topographic condition of sites. On slopes, bunches exhibited more panicles and the germinable seed bank was larger after dispersal and smaller before dispersal as compared with upland sites. Losses of the germinable seed bank during autumn and spring are partially accounted for by germination rates. Predominant westerly winds influenced the patterns of seed dispersal, but other agents such as predation or sheet wash may also be active, especially on slopes. The low persistence of the seed bank of F. pallescens, particularly at canopy gaps, indicates that this may constitute a primary control of the regeneration of this species in semiarid grasslands of Patagonia. Management of these grasslands for restoration should accordingly include practices oriented to an adequate replenishment of the germinable seed bank at these places.  相似文献   

9.
This study analyses how coexisting evergreen and deciduous oaks adjust their phenology to cope with the stressful Mediterranean summer conditions. We test the hypothesis that the vegetative and reproductive growth of the winter deciduous (Quercus faginea Lam.) is more affected by summer drought than that of the evergreen [Quercus ilex L. subsp. ballota (Desf.) Samp.]. First, we assessed the complete aboveground phenology of both species during two consecutive years. Shoot and litter production and bud, acorn and secondary growth were monitored monthly. Second, we identified several parameters affected by summer conditions: apical bud size, individual leaf area (LA), leaf mass per area (LMA) and acorn yield in both species, and leaf-fall in Q. faginea; and analysed their variation over 10 years. Q. ilex performed up to 25% of shoot growth and most leaf development during summer, whereas Q. faginea completed most of both phenophases during spring. Secondary growth was arrested in summer under drought conditions. Approximately, 30–40% of bud and 40–50% of acorn growth was undertaken during summer in both species. Summer drought related to differences in LA, LMA and leaf senescence, but not to acorn yield. Both species had similar year-to-year patterns of acorn production, though yields were always lower in Q. faginea. Bud size decreased severely in both species during extremely dry years. In Q. ilex, bud size tended to alternate between years of large and small buds, and these patterns were followed by opposite trends in stem length. In Q. faginea, bud size was more stable through time. Q. ilex was more phenologically active during summer than Q. faginea, indicating a higher tolerance to drought. Furthermore, bud and fruit growth (the only two phenophases that both species performed during summer) were more severely affected by summer drought in Q. faginea than in the evergreen. The differential effects of summer drought on key phenophases for the persistence (bud growth) and colonization ability (fruit production) of both species may have consequences for their coexistence.  相似文献   

10.
1. We investigated the vertical distribution of seeds in the soil, using data from nine studies in five European countries. We discovered significant correlations between seed shape and distribution in the soil.
2. The classification of the longevity of seeds of plant species has been improved by the introduction of a 'longevity index', expressing on a continuous scale the most recent information on seed longevity represented as the proportion of non-transient seed bank records in the database of Thompson et al. (1997 ). Remarkably, no difference in seed longevity was found if the index was based on direct observations only when compared with the index based on the complete data set where indirect, 'depth-derived' observations were included.
3. Seed longevity was best estimated using a multiple regression model with an integrated measure of seed size and shape and depth distribution of seeds.
4. The shape of seeds, known to be a consistent character of species, was shown to be constant within species, whereas depth distribution of seeds was highly variable among sites. This is consistent with the variability of seed longevity found in published seed bank data.  相似文献   

11.
We investigated the photosynthetic induction time-course in species of different ecological groups grown in contrasting forest irradiance environments, gap and understorey, exposed to different darkness times in order to verify the plant capacity to exploit irradiance heterogeneity. Photosynthetic induction was studied in leaves of Bauhinia forficata and Guazuma ulmifolia (early succession species, ES), and Esenbeckia leiocarpa and Hymenaea courbaril (late succession species, LS). T50 and T90 (time estimates to attain 50 and 90 % of maximum net photosynthetic rate, respectively) varied according to the time of previous exposure to darkness and growth irradiance. In both darkness times of 10 and 30 min, T50 was lower in the LS-than ES-species. These results, jointly with significant higher induction state of the leaves after 10 min of darkness, suggest that the LS-species has a higher potential to sunfleck utilization compared to ES-species, both grown in the understorey. After 10 and 30 min of darkness the differences between ecological groups were not clearly detected in the gap for T50 and T90, indicating that eco-physiological characteristics of each ecological group did not influence the induction time of the species evaluated herein. Thus the capacity to show phenotypic plasticity is not exclusive to an ecological group, but it is rather a more intrinsic feature related to the differential capacity of individuals.  相似文献   

12.
In the Netherlands peat was excavated for fuel until 1950. This gave rise to waterbodies (called turf ponds) which were then colonized by aquatic plants. Succession resulted in different aquatic plant communities and more terrestrialized stages such as floating fens. Nature conservation authorities started to excavate new turf ponds in 1990(ca. 2 ha y–1) with the aim to restore calcareous, mesotraphent ecosystems by totally setting back succession. A sequence of new species was revealed by mapping the aquatic vegetation from 1990 onwards.Chara spp. proved early colonizers, which was not expected because they have not been present in ditches and ponds in the area for the last 20 years. The denseChara vegetation prevents the resuspension of organic soil and contributes to keep the water column nutrient-poor and clear. ability of species such asStratiotes aloides to colonise the ponds from adjacent waterbodies is not possible because no open contact exists between a turf pond and a ditch. Management measures, such as re-introduction, have to be considered if the full-range of aquatic plant communities remains the goal.  相似文献   

13.
Seed bank formation plays an important role in plant population dynamics. However, buried seeds face several mortality factors, including the decay caused by microbial activity. Recent seed burial studies involving both fungicide-treated seeds and untreated seeds provide evidence for the importance of saprophytic soil fungi as a seed mortality factor. In this review, we summarize the available evidence. We discuss the influence of abiotic and biotic environmental factors, the specificity of plant-fungal associations at the seed level and mechanisms of resistance to seed decay. Finally, we discuss implications for plant communities and for the biocontrol of agricultural weeds.  相似文献   

14.
为了解陆均松(Dacrydium pierrei)的自然更新能力,对海南霸王岭陆均松进行为期3年的种子雨、种子库及幼苗幼树观测,并分析其与环境因子的关系。结果表明,陆均松种子雨和种子库有效种子数量太少并存在季节性差异;其结实存在大小年现象;种子雨的扩散密度随着距母树距离的增加而逐渐减少;土壤种子库种子数量在枯枝落叶层所占比例最大,但有活力种子数量极少。幼苗幼树适宜生存的海拔范围为800~1 400 m,经度、纬度、坡度与幼苗幼树分布有明显相关性。因此,选择适宜季节采摘种子,提高种源数量和质量,清除林下枯枝落叶,增加种子萌发能力等以减少陆均松更新的限制条件的人工抚育措施应适当考虑。  相似文献   

15.
The ability of plant communities to recover after non-native species invasion will depend upon the nature of their soil seed bank and seed rain characteristics. This study assessed changes in the soil seed bank and seed rain associated with the invasion of the non-native shrub Cytisus scoparius in subalpine vegetation. Soil seed bank and seed rain composition, density and richness were investigated at three areas of different stages of invasion: (i) recent (8–10 years), (ii) mature (15–16 years) and (iii) long-term (25 years). There were few changes in seed bank composition or richness regardless of invasion stage. By contrast, the seed rain composition, richness and density was substantially different within long-invaded areas. Very few seeds were able to colonise the dense barrier characteristic of larger, more mature C. scoparius stands. Some prominent herbs from the native vegetation were under-represented or absent from the seed bank, both in invaded and uninvaded areas. Laboratory germination experiments demonstrated that most native species germinate easily, which may imply a transient seed bank, rather than a persistent one. The majority of herbaceous and shrub species were capable of resprouting vegetatively. Therefore, regeneration appeared more reliant on the bud and tuber bank than a persistent soil seed bank. The dominance of graminoid species and C. scoparius rather than other herbaceous, shrub or tree species suggests that the regenerating vegetation will be dominated by grass species and/or C. scoparius. Hence, in areas where long-invaded C.␣scoparius stands are present the recovery of native subalpine vegetation maybe difficult. Recovery may only be possible through wind dispersal from the surrounding intact vegetation or through actively reseeding the area. This study highlights the importance of early intervention in invasive species management.  相似文献   

16.
Merremia boisiana (Gagnep) van Ooststr. is a noxious fast growing woody vine and is able to grow overtop other plants, causing the death of plants underneath and forming monospecies stands. To formulate management responses, we assessed its seed and vegetative reproduction efficacy through indoor and field experiments. The number of flowers counted from bagged infructescences in Guangzhou ranged from 25 to 172, with an average of 80.80. Counting the seeds of bagged infructescences had shown that there were only 1.58 hard testa seeds in each infructescence. Seed vitality tests using red ink indicated that only 68.6% of hard testa and filled seeds were viable. The emergence rate of scarified hard testa seeds in the sand bed was 31.96%. Under imitated natural conditions, 8% of hard testa seeds could germinate, and 9% still retained their germination potential in one year. Thus, seedlings should be monitored and removed in a timely fashion after any attempt of clearing. Moving soil or transplanting plant from infested patches should be strictly prohibited at least for several years. All considered, an infructescence contributed 0.3 seedlings. The investigation in the field found no seedlings either inside or at the perimeter of the patch, suggesting scant expansion by means of seed dispersal. Therefore, the elimination effort could be focused on a relatively restricted scale of patches. Of 630 cuttings of young shoots, old shoots and old lying shoots with or without growth regulators, there were only four (or 0.63%) established individuals. Air-layering shoots all died in two months. Poor cuttings and air-layering reproduction indicated that regeneration from fragments of removed stems or accidentally dropped ones was quite unlikely, and thus mechanical removal was safe.  相似文献   

17.
18.
植物替代控制是利用一种或多种植物的生长优势控制入侵杂草的方法,它是控制外来杂草危害的有效途径之一;因其既可控制入侵杂草危害又能取得一定的经济效益及生态效益而被人们广泛接受。本文简要介绍了我国3种入侵杂草植物替代控制技术研究与应用现状,系统总结了植物替代控制技术阻截和修复豚草、紫茎泽兰及黄顶菊扩散危害的技术模式和效果,提出了植物替代控制技术未来研究的方向和重点。  相似文献   

19.
Populations of two rhizomatous species, Asarum europaeum (asarabacca) and Maianthemum bifolium (May lily), were examined in two, and four forest habitats respectively, in the Roztocze National Park (south-eastern Poland). May lily populations were studied in habitats: the Carpathian beechwood, upland mixed fir forest, subboreal moist mixed coniferous forest and bog-alder forest. Asarabacca was studied in two habitats: beechwood and Scots pine community (an 80-year-old plantation). In both the species studied intra- and inter-populational differences of the size of genets in terms of above- and below-ground parts of individuals as well as the biomass and area occupied were observed. In May lily populations the greatest mean number of shoots per genet was found in the fir forest (11.62±3.29), a value almost twice as great as that in the moist coniferous forest and nearly three times greater than in the bog-alder forest. Total rhizome length was also the greatest in the fir forest (351.9±98.7 cm) followed by moist coniferous forest, beechwood and alder forest habitats. In all populations of May lily a greater part of total dry weight biomass is in below-ground organs. The greatest biomass value of a genet was found in the fir forest (4.275 g), the smallest in the bog-alder forest (0.110 g). All populations differed significantly in terms of leaf area, leaf length (with the exception of fir forest and beechwood habitats where the values were the greatest), and leaf width (excluding moist coniferous and bog-alder forests which had the smallest values). In the case of asarabacca, both the mean number of ramets per genet (3.36±0.45 vs. 2.49±0.20) and total rhizome length (40.3±6.4 cm vs. 21.1±1.8 cm) were greater in the beechwood habitat than in the pine community. In the first population genets had 3–5 times greater the total biomass of those from the pine community. Only genets of the latter had proportionately more dry weight biomass in above-ground parts. It seems to be correlated with greater rhizome dieback and disintegration of genets into smaller units. Both populations were significantly different in terms of all examined parameters of leaves. Genets of both the species studied were found to have their own structure of developmental phases that often differed for shoots and rhizomes.  相似文献   

20.
Conventional and biotechnological approaches for control of parasitic weeds   总被引:2,自引:0,他引:2  
On a worldwide basis, parasitic weeds represent one of the most destructive and intractable problems to agricultural production in both developed and developing countries. About 20 families (3,000–5,000 species) of higher plants are parasitic on the plant kingdom and may cause production losses of 30–80% in staple food and industrial crops on every continent. Compared with the other weeds, parasitic weeds are difficult to control by conventional means because of their life style: Parasites are intimately involved with the host and have so much metabolic overlap with the host that differential treatments are very difficult to develop. In some cases, the parasites are closely associated to the host root, concealed underground, and undiagnosed until they irreversible damage the crop. Several different approaches (cultural, mechanical, chemical, use of resistant varieties, and biological) to control parasitic weeds are currently in use, but are only partially successful. Recent reviews have covered the physiology and interactions between parasitic plants and their hosts, taxonomy, and the biology and classical control of parasitic weeds. The current review will discuss why alternative methods are needed to control parasitic weeds and will summarize conventional and new biotechnology-based control measures against the major world pests Striga, Orobanche, Cuscuta, and mistletoes (Phoradendron and Viscum genera). Effectiveness, advantages and disadvantages, environment safety, and simplicity of these new biotechnological methods will be reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号